Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
%0 Conference Proceedings
%A Vergez, Christophe
%A Rodet, Xavier
%T Bifurcation Sequence in a Physical Model of Trumpet-like Instruments : from a Fixed Point to Chaos
%D 1998
%E IEICE
%B NOLTA
%C Crans Montana
%V 2
%P 751-754
%F Vergez98a
%K Physical models
%K Bifurcation analysis
%K Trumpet
%K Hopfquasi-periodicity
%K chaos
%X We have built a numerical model of trumpet-like instruments. Since the
understanding of the model's behavior is desirable for a musical
usage, we have studied the model in the framework of the theory of the
nonlinear dynamical systems. The blowing pressure has been chosen as
the bifurcation parameter. We have been able to predict, according to
the frequential version of the Hopf theorem, the critical threshold at
which a stable fixed point looses its stability and gives birth to a
unique stable limit cycle. Moreover, amplitude and frequency of the
limit cycle have been forecasted to an excellent approximation. By
still increasing the blowing pressure, a secondary supercritical Hopf
bifurcation has been obtained, leading to a quasi-periodic motion on a
two-torus. Finally, with a further increase in blowing pressure, the
progressive destruction of the two-torus has been observed, leading to
a chaotic motion.
%1 7
%2 3
|
|