Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Generic
    %A Kaprykowsky, Hagen
    %T Time modeling in Hidden Markov Models
    %D 2004
    %I Universität Karlsruhe, Allemagne
    %F Kaprykowsky04a
    %K score following
    %K temporal modeling
    %K musical modeling
    %K Hidden Markov Models
    %K probabilistic modeling
    %X A classical problem with the HMM approach lies in its temporal modeling. Perhaps the major weakness of conventional HMMs is the modeling of state duration. In this report a connection between implicit state duration modeling in HMMs, explicit state duration modeling, and time invariant linear systems will be given. The work takes place in the context of the Ircam score follower while most approaches are given in speech recognition. The maximum state duration measured as the number of observations in speech recognition is typically 32 frames of 10 ms. The maximum state duration of a note is typically much higher. This has to be taken in account in the temporal modeling of the HMM of the score follower.
    %1 8
    %2 1
    %U http://articles.ircam.fr/textes/Kaprykowsky04a/

    © Ircam - Centre Pompidou 2005.