Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
%0 Conference Proceedings
%A Cont, Arshia
%A Schwarz, Diemo
%A Schnell, Norbert
%T Training Ircam's Score Follower
%D 2005
%B IEEE International Conference on Acoustics, Speech, and Signal Processing
%C Philadelphia
%F Cont05a
%K score following
%K automatic accompaniment
%K performing
%K training
%K learning
%K Hidden Markov Models
%K Gaussian Mixture Models
%K probabilistic modeling
%X This paper describes our attempt to make the Hidden Markov Model (HMM) score following system developed at Ircam sensible to past experiences in order to obtain better audio to score real-time alignment for musical applications. A new observation modeling based on Gaussian Mixture Models is developed which is trainable using a learning algorithm we would call automatic discriminative training. The novelty of this system lies in the fact that this method, unlike classical methods for HMM training, is not concerned with modeling the music signal but with correctly choosing the sequence of music events that was performed. Besides obtaining better alignment, new system's parameters are controllable in a physical manner and the training algorithm learns different styles of music performance as discussed.
%1 6
%2 3
%U http://articles.ircam.fr/textes/Cont05a/
|
|