| Catégorie de document |
Contribution à un colloque ou à un congrès |
| Titre |
A Webster-Lokshin model for waves with viscothermal losses and impedance boundary conditions: strong solutions |
| Auteur principal |
Houssem Haddar |
| Co-auteurs |
Thomas Hélie, Denis Matignon |
| Colloque / congrès |
Waves - International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena (INRIA). Jyvaskyla : 2003 |
| Comité de lecture |
Oui |
| Volume |
6 |
| Collation |
p.66-71 |
| Année |
2003 |
| Statut éditorial |
Publié |
| Résumé |
Acoustic waves travelling in a duct with viscothermal losses at the wall and radiating conditions at both ends obey a Webster-Lokshin model that involves fractional time-derivatives in the domain and dynamical boundary conditions. This system can be interpreted as the coupling of three subsystems: a wave equation, a diffusive realization of the pseudo-differential time-operator and a dissipative realization of the impedance, thanks to the Kalman-Yakubovich-Popov lemma. Existence and uniqueness of strong solutions of the system are proved, using the Hille Yosida theorem. |
| Equipe |
Analyse et synthèse sonores |
| Cote |
Haddar03a |
| Adresse de la version en ligne |
http://articles.ircam.fr/textes/Haddar03a/index.pdf |
|