Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Article ou chapitre dans un livre
    Titre Anticipatory Model of Musical Style Imitation using Collaborative and Competitive Reinforcement Learning
    Auteur principal Arshia Cont
    Co-auteurs Shlomo Dubnov, Gérard Assayag
    Paru dans Anticipatory Behavior in Adaptive Learning Systems, Berlin, 2007, Martin Butz and Olivier Sigaud and Gianluca Baldassarre
    Collation p.285-306
    Copyright Springer Verlag
    Année 2007
    Statut éditorial Publié
    Résumé

    The role of expectation in listening and composing music has drawn much attention in music cognition since about half a century ago. In this paper, we provide a first attempt to model some aspects of musical expectation specifically pertained to short-time and working memories, in an anticipatory framework. In our proposal Anticipation is the mental realization of possible predicted actions and their effect on the perception of the world at an instant in time. We demonstrate the model in applications to automatic improvisation and style imitation. The proposed model,based on cognitive foundations of musical expectation, is an active model using reinforcement learning techniques with multiple agents that learn competitively and in collaboration. We show that compared to similar models, this anticipatory framework needs little training data and demonstrate complex musical behavior such as long-term planning and formal shapes as a result of the anticipatory architecture. We provide sample results and discuss further research.

    Mots-clés Style / Anticipation / Machine Learning
    Equipes Interactions musicales temps-réel, Représentations musicales
    Cote Cont07a
    Adresse de la version en ligne http://articles.ircam.fr/textes/Cont07a/index.pdf

    © Ircam - Centre Pompidou 2005.