Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Mignot, Remi
    %A Hélie, Thomas
    %A Matignon, Denis
    %T Stable Realization of a Delay System Modeling a Convergent Acoustic Cone
    %D 2008
    %B Mediterranean Conference on Control and Automation
    %C Ajaccio
    %P 1574-1579
    %F Mignot08b
    %K Stability
    %K Linear Delay Systems
    %K State Representation
    %K Physical Modeling
    %K Digital Waveguides
    %K Kelly-Lochbaum
    %X This paper deals with the physical modeling and the digital time simulation of acoustic pipes. We will study the simplied case of a single convergent cone. It is modeled by a linear system made of delays and a transfer function which represents the wave reflection at the entry of the cone. According to [1], the input/output relation of this system is causal and stable whereas the reflection function is unstable. In the continuous time-domain, a first state space representation of this delay system is done. Then, we use a change of state to separate the unobservable subspace and its orthogonal complement, which is observable. Whereas the unobservable part is unstable, it is proved that the observable part is stable, using the D-Subdivision method. Thus, isolating this latter observable subspace, to build the minimal realization, defines a stable system. Finally, a discrete-time version of this system is derived and is proved to be stable using the Jury criterion. The main contribution of this work is neither the minimal realization of the system nor the proofs of stability, but it is rather the solving of an old problem of acoustics which has been achieved using standard tools of automatic control.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Mignot08b/

    © Ircam - Centre Pompidou 2005.