Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Hélie, Thomas
    %A Laroche, Béatrice
    %T Computation of convergence radius and error bounds of Volterra series for multiple input systems with an analytic nonlinearity in state
    %D 2010
    %B IEEE Conference on Decision and Control
    %C Atlanta
    %V 49
    %P 1-6
    %F Helie10j
    %X In this paper, the Volterra series decomposition of a class of multiple input time-invariant systems, analytic in state and affine in inputs is addressed. Computable bounds for the non-local-in-time convergence of the Volterra series to a trajectory of the system are given for infinite norms (Bounded Input Bounded Output results) and for specific weighted norms adapted to some ``fading memory systems'' (exponentially decreasing input-output results). This work extends results previously obtained for polynomial single input systems. Besides the increase in combinatorial complexity, a major difference with the single input case is that inputs may play different roles in the system behavior. Two types of inputs (called ``principal'' and ``auxiliary'') are distinguished in the convergence process to improve the accuracy of the bounds. The method is illustrated on the example of a frequency-modulated Duffing's oscillator.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Helie10j/

    © Ircam - Centre Pompidou 2005.