Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Journal Article
    %A Lanchantin, Pierre
    %A Lapuyade-Lahorgue, Jérôme
    %A Pieczynski, Wojciech
    %T Unsupervised Segmentation of Triplet Markov Chains Hidden with Long-Memory Noise : hidden Markov chains, Triplet Markov Chains, Copulas, non-Gaussian correlated noise
    %D 2008
    %B Signal Processing
    %F Lanchantin08b
    %K Hidden Markov chains
    %K Triplet Markov Chains
    %K Copulas
    %K Long-Memory noise
    %X The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which X is an unobservable Markov chain, and Y is its observable noisy version. Classically, the distribution p(y|x) is simple enough to ensure the Markovianity of p(x|y), that enables one to use different Bayesian restoration techniques. HMC model has recently been extended to "pairwise Markov chain" (PMC) model, in which one directly assumes the Markovianity of the pair Z=(X,Y), and which still enables one to recover X from Y. Finally, PMC has been extended to "triplet Markov chain" (TMC) model, which is obtained by adding a third chain U and considering the Markovianity of the triplet T=(X,U,Y). When U is not too complex, X can still be recovered from Y. Then U can model different situations, like non-stationarity or semi-Markovianity of (X,Y). Otherwise, PMC and TMC have been extended to pairwise "partially" Markov chains (PPMC) and triplet "partially" Markov chains (TPMC), respectively. In a PPMC Z=(X,Y) the distribution p(x|y) is a Markov distribution, but p(y|x) may not be and, similarly, in a TPMC T=(X,U,Y) the distribution p(x,u|y) is a Markov distribution, but p(y|x,u) may not be. However, both PPMC and TPMC can enable one to recover X from Y, and TPMC include different long-memory noises. The aim of this paper is to show how a particular Gaussian TPMC can be used to segment a discrete signal hidden with long-memory noise. An original parameter estimation method, based on "Iterative Conditional Estimation" (ICE) principle, is proposed and some experiments concerned with unsupervised segmentation are provided. The particular unsupervised segmentation method used in experiments can also be seen as identification of different stationarities in fractional Brownian noise, which is widely used in different problems in telecommunications, economics, finance, or hydrology.
    %1 1
    %2 3

    © Ircam - Centre Pompidou 2005.