Ircam-Centre Pompidou


  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices

    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Journal Article
    %A Cont, Arshia
    %T A coupled duration-focused architecture for realtime music to score alignment
    %D 2010
    %B IEEE Transaction on Pattern Analysis and Machine Intelligence
    %V 32
    %N 6
    %P 974-987
    %F Cont09a
    %K Score Following
    %K Anticipatory Systems
    %K Real-time systems
    %K Hidden Markov Models
    %K Duration Models
    %K Antescofo
    %X The capacity for realtime synchronization and coordination is a common ability among trained musicians performing a music score that presents an interesting challenge for machine intelligence. Compared to speech recognition, which has influenced many music information retrieval systems, music's temporal dynamics and complexity pose challenging problems to common approximations regarding time modeling of data streams. In this paper, we propose a design for a realtime music to score alignment system. Given a live recording of a musician playing a music score, the system is capable of following the musician in realtime within the score and decoding the tempo (or pace) of its performance. The proposed design features two coupled audio and tempo agents within a unique probabilistic inference framework that adaptively updates its parameters based on the realtime context. Online decoding is achieved through the collaboration of the coupled agents in a Hidden Hybrid Markov/semi-Markov framework where prediction feedback of one agent affects the behavior of the other. We perform evaluations for both realtime alignment and the proposed temporal model. An implementation of the presented system has been widely used in real concert situations worldwide and the readers are encouraged to access the actual system and experiment the results.
    %1 1
    %2 3

    © Ircam - Centre Pompidou 2005.