Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Hélie, Thomas
    %A Hézard, Thomas
    %A Delebecque, Louis
    %A Mignot, Remi
    %T Considerations on travelling waves in the horn equation and energetic aspects
    %D 2012
    %B Acoutics 2012
    %C Nantes
    %P 1-5
    %F Helie12b
    %X The digital waveguide synthesis of wind resonators and of the vocal tract is based on decompositions into travelling waves. Typical ones are planar waves in straight pipes and spherical waves in conical pipes. However, approximating a bore by cascading such basic segments introduce unrealistic discontinuities on the radius R or the slope R' (with acoustic consequences). It also can generate artificial instabilities in time-domain simulations, e.g. for non convex junctions of cones. In this paper, we investigate the case of the "conservative curvilinear horn equation" for segments such that the flaring parameter R''/R is constant, with which smooth profiles can be built. First, acoustic states that generalize planar waves and spherical waves are studied. Examining the energy balance and the passivity for these travelling waves allows to characterize stability domains. Second, two other definitions of travelling waves are studied: (a) one locally diagonalizes the wave propagation operator, (b) one diagonalizes the transfer matrix of a segment. The propagators obtained for (a) are known to efficiently factorizes computations in simulations but are not stable if the flaring parameter is negative. A study in the Laplace domain reveals that propagators (b) are stable for physically meaningful configurations.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Helie12b/

    © Ircam - Centre Pompidou 2005.