Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Fazi, Filippo Maria
    %A Noisternig, Markus
    %A Warusfel, Olivier
    %T Representation of the spatial impulse response of a room.
    %D 2012
    %B Acoustics 2012 (ASA, ASC, WESPAC, HIOK meeting)
    %C Hong Kong
    %V 131
    %P 3209-3209
    %F Fazi12b
    %K virtual room acoustics
    %K acoustics
    %X Microphone arrays allow for the measurement of the so-called spatial impulse response (SIR) of a room or of a concert hall. The SIR provides a local description of the reverberant field of that environment as a function of both time and space. It is shown that, under given assumptions, the SIR can be described by means of an integral operator, the so-called Herglotz wave function, which represents an infinite superposition of plane waves arriving from all possible directions. The kernel of this operator (the Herglotz kernel) contains all the information on the SIR. In practical cases only a limited amount of information is available to compute the Herglotz kernel, typically because a finite number of sensors is used for the measurement. In that respect, several alternatives are discussed to represent the Herglotz density as a sum of a finite number of basis functions. Some results for numerical simulations are then presented, which show the Herglotz kernel for simple examples. Finally, some limitations of this representation are discussed, especially those imposed by the use of real microphone arrays.
    %1 7
    %2 3

    © Ircam - Centre Pompidou 2005.