Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Journal Article
    %A Cont, Arshia
    %A Dubnov, Shlomo
    %A Assayag, Gérard
    %T On the Information Geometry of Audio Streams with Applications to Similarity Computing
    %D 2011
    %B IEEE Transactions on Audio, Speech, and Language Processing
    %V 19
    %N 1
    %P 837-846
    %F Cont10b
    %K Information Geometry
    %K Realtime Analysis
    %K Similarity
    %X This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with non-stationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.
    %1 1
    %2 3
    %U http://articles.ircam.fr/textes/Cont10b/

    © Ircam - Centre Pompidou 2005.