Ircam-Centre Pompidou


  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices

    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Generic
    %A Ludlow, Vicky
    %T Perceptive approach for sound synthesis by physical modelling
    %D 2008
    %I Chalmers University of Technology
    %F LUDLOW08b
    %K material perception
    %K psychoacoustic experiment
    %K active learning
    %K physical sound synthesis model
    %K sound classification
    %X This study is part of the European project CLOSED (Closing the Loop Of Sound Evaluation and Design, []). The CLOSED project aims at providing new tools to develop a methodology able to create and evaluate sound design products. Among these tools, a set of sound synthesis models based on physical parameters have been developed so as to encourage sound creation. These models comprise for instance solid contact models (impact, friction...) and liquid models (bubbles...). The goal of this master thesis is to contribute to the design of a perceptive interface for these sound synthesis models. It focuses on impact models and on material perception (more specifically on the four following classes: wood, metal, plastic and glass). The aim is then to perform a perceptive classification of synthesised impact sounds according to the material category in order to achieve a mapping between the physical space (the model parameters) and the perceptive space (the four material classes). The many physical dimensions of the synthesis model and thus the infinity of possible sounds represent a challenge for this approach. Actually, classical perceptive experiment methods are not adapted to deal with such a large sound corpus. A possible field of investigation is active learning techniques that may solve this problem by reducing the required amount of sounds to define the boundaries between the material classes. This report presents a study on a reduced parameter space, on which both classical perceptive method and active learning techniques can be carried out, so as to evaluate the latter method. Subsequently to this validation phase, a new experimental protocol driven by active learning procedures would allow achieving perceptive experiment on larger sound corpus.
    %1 8
    %2 1

    © Ircam - Centre Pompidou 2005.