Ircam-Centre Pompidou


  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices

    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Journal Article
    %A Caramiaux, Baptiste
    %A Montecchio, Nicola
    %A Tanaka, Atau
    %A Bevilacqua, Frédéric
    %T Adaptive Gesture Recognition with Variations Estimation for Interactive Systems
    %D 2014
    %B ACM Transactions on Interactive Intelligent Systems
    %F Caramiaux14b
    %X This paper presents a gesture recognition/adaptation system for Human Computer Interaction applications that goes beyond activity classification and that, complementary to gesture labeling, characterizes the move- ment execution. We describe a template-based recognition method that simultaneously aligns the input ges- ture to the templates using a Sequential Montecarlo inference technique. Contrary to standard template- based methods based on dynamic programming, such as Dynamic Time Warping, the algorithm has an adaptation process that tracks gesture variation in real-time. The method continuously updates, during ex- ecution of the gesture, the estimated parameters and recognition results which offers key advantages for continuous human-machine interaction. The technique is evaluated in several different ways: recognition and early recognition are evaluated on a 2D onscreen pen gestures; adaptation is assessed on synthetic data; and both early recognition and adaptation is evaluation in a user study involving 3D free space gestures. The method is not only robust to noise and successfully adapts to parameter variation but also performs recognition as well or better than non-adapting offline template-based methods.
    %1 1
    %2 2

    © Ircam - Centre Pompidou 2005.