Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
Catégorie de document |
Contribution à un colloque ou à un congrès |
Titre |
French Prominence: A Probabilistic Framework |
Auteur principal |
Nicolas Obin |
Co-auteurs |
Xavier Rodet, Anne Lacheret |
Colloque / congrès |
International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Las Vegas : 2008 |
Comité de lecture |
Oui |
Année |
2008 |
Statut éditorial |
Non publié |
Résumé |
Identification of prosodic phenomena is of first importance in prosodic analysis and modeling. In this paper, we introduce a new method for automatic prosodic phenomena labelling. The authors set their approach of prosodic phenomena in the framework of prominence. The proposed method for automatic prominence labelling is based on well-known machine learning techniques in a three step procedure: i) a feature extraction step in which we propose a framework for systematic and multi-level speech acoustic feature extraction, ii) a feature selection step for identifying the more relevant prominence acoustic correlates, and iii) a modelling step in which a gaussian mixture model is used for predicting prominence. This model shows robust performance on read speech (84%). |
Mots-clés |
Prosody / prominence / acoustic correlates / feature selection / classification / GMMl |
Equipe |
Analyse et synthèse sonores |
Cote |
Obin08a |
Adresse de la version en ligne |
http://architexte.ircam.fr/textes/Obin08a/index.pdf |
|
|