| Catégorie de document |
Contribution à un colloque ou à un congrès |
| Titre |
A Syllable-Based Prominence Detection Model Based on Discriminant Analysis and Context-Dependency |
| Auteur principal |
Nicolas Obin |
| Co-auteurs |
Xavier Rodet, Anne Lacheret-Dujour |
| Colloque / congrès |
Speech and Computer. Saint-Pétersbourg : 2009 |
| Comité de lecture |
Oui |
| Année |
2009 |
| Statut éditorial |
Non publié |
| Résumé |
On the basis of our previous work, we propose a syllable-based prominence detection model within the framework of exploratory data analysis and discriminant learning in the acoustic domain. This paper investigates two hypothesis on the acoustic data processing: a linear discriminant analysis in which the relative discriminant ability of single prosodic cues are combined into prosodic patterns and a context-dependant model that accounts for phonological dependencies (phonetic intrinsic properties and coarticulation effect). The proposed approach significantly outperforms a baseline method on a corpus of French read speech with a performance of 87.5% in f-measure for the prominent syllables (respectively 90.4% in global accuracy). |
| Equipe |
Analyse et synthèse sonores |
| Cote |
Obin09a |
| Adresse de la version en ligne |
http://architexte.ircam.fr/textes/Obin09a/index.pdf |
|