Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
%0 Journal Article
%A Freund, Anton
%A Andreatta, Moreno
%A Giavitto, Jean-Louis
%T Lattice-based and Topological Representations of Binary Relations with an Application to Music
%D 2015
%B Annals of Mathematics and Artificial Intelligence
%F Freund15a
%K Formal concept analysis
%K Q-analysis
%K Simplicial complex
%K Homotopy invariance
%K Betti numbers
%K Combinatorial classification of harmonies
%K Mode of limited transposition
%X Formal concept analysis associates a lattice of formal concepts to a binary relation. The structure of the relation can then be described in terms of lattice theory. On the other hand Q -analysis associates a simplicial complex to a binary relation and studies its properties using topological methods. This paper investigates which mathematical invariants studied in one approach can be captured in the other. Our main result is that all homotopy invariant properties of the simplicial complex can be recovered from the structure of the concept lattice. This not only clarifies the relationships between two frameworks widely used in symbolic data analysis but also offers an effective new method to establish homotopy equivalence in the context of Q -analysis. As a musical application, we will investigate Olivier Messiaen’s modes of limited transposition. We will use our theoretical result to show that the simplicial complex associated to a maximal mode with m transpositions is homotopy equivalent to the (m−2)–dimensional sphere.
%1 1
%2 2
|
|