Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Mémoire ou rapport de stage
    Titre Online learning for audio clustering and segmentation
    Auteur principal Alberto Bietti
    Cadre du mémoire ou du rapport MVA
    Université ou établissement ENS
    Directeurs Arshia Cont, Francis Bach
    Année 2014
    Statut éditorial Non publié
    Résumé

    Audio segmentation is an essential problem in many audio signal processing tasks which tries to segment an audio signal into homogeneous chunks, or segments. Most current approaches rely on a change-point detection phase for finding segment boundaries, followed by a similarity matching phase which identifies similar segments. In this thesis, we focus instead on joint segmentation and clustering algorithms which solve both tasks simultaneously, through the use of unsupervised learning techniques in sequential models. Hidden Markov and semi-Markov models are a natural choice for this modeling task, and we present their use in the context of audio segmentation. We then explore the use of online learning techniques in sequential models and their application to real-time audio segmentation tasks. We present an existing online EM algorithm for hidden Markov models and extend it to hidden semi-Markov models by introducing a different parameterization of semi-Markov chains. Finally, we develop new online learning algorithms for sequential models based on incremental optimization of surrogate functions.

    Equipe Représentations musicales
    Cote Bietti14a
    Adresse de la version en ligne http://architexte.ircam.fr/textes/Bietti14a/index.pdf

    © Ircam - Centre Pompidou 2005.