
Real-Time Computer-Aided
Composition with bach
Andrea Agostini and Daniele Ghisi

Environments for computer-aided composition (CAC), allowing generation and
transformation of symbolic musical data, are usually counterposed to real-time
environments or sequencers. The counterposition is deeply methodological: in traditional
CAC environments interface changes have no effect until a certain ‘refresh’ operation is
performed whereas real-time environments immediately react to user input. We shall
show in this article that this distinction is by no means natural and that interactivity is
an essential performative aspect of the musical discovery process. The reunification of
the performative and speculative aspects is obtained via a Max library named bach:
automatic composer’s helper, which is a set of tools for symbolic processing and
graphical music representation, designed to take advantage of Max’s facilities for sound
processing, real-time interaction and graphical programming.

Keywords: Computer-Assisted Composition; CAC; bach; Real-Time; Max

Introduction

The relationship between music and computation is extremely well known, and it is
indeed one of the basic conceptual tools in the understanding and speculation about
music itself. The highly refined, quasi-algorithmic systems developed by Flemish com-
posers; the combinatorial complexity of dodecaphonic and serial music; the calcu-
lation of the frequency contents of sound, as a starting point for the spectral
movement of composers: these are only few examples of how computation can be
an invaluable tool for music composition. Moreover, other closely related domains,
such as musical analysis, ethnomusicology and psychoacoustics, make an extensive
use of computational tools.
It is not surprising that, since the advent of computers, there has been a great interest

on how to take advantage of the superior precision, speed and power of electronic
computers in music-related activities. Probably the best-known (and commercially
successful) direction has proven to be the generation and transformation of sound.

Contemporary Music Review, 2013
Vol. 32, No. 1, 41–48, http://dx.doi.org/10.1080/07494467.2013.774221

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



In recent years, inexpensive personal computers (and lately even top-end mobile
phones) have gained the ability to perform professional-quality audio transformation
and generation in real-time. In fact, an ever-growing number of recording and pro-
duction studios have replaced most of their equipment with a small number of com-
mercial, general-purpose computers.
On the other hand, several systems have been developed to process symbolic data or

acoustic ones—‘notes’ or ‘sounds’. These systems can be divided roughly into tools for
computer-assisted music engraving (Finale, Sibelius, Lilypond, etc.), tools for sound
generation or transformation (Csound, GRM Tools, Waves plugins, etc.), sequencers
(allowing recording, editing and playback of audio or MIDI data, like ProTools, Logic
or Cubase), and tools for computer-aided composition (CAC, allowing generation and
transformation of symbolic musical data, like OpenMusic, PWGL, Common Music,
etc.). Moreover, at least two graphical programming environments, the closely
related Max and Pd, have MIDI control and sound generation and transformation
among their main focuses—but at the same time they are capable of dealing with arbi-
trary sets of data, generic input/output devices and video. Indeed, the boundaries
between these categories are extremely fuzzy: music engraving systems often allow
non-trivial data processing; some sequencers provide high-quality graphical represen-
tation of musical scores and sound treatment; modern CAC environments include
tools for sound synthesis and transformation. It should though be remarked that
Max and Pd have very crude native support for sequencing, and essentially none for
symbolic musical notation.
Another, orthogonal distinction should be made between real-time systems, which

‘immediately’ react to interface actions (such as Finale, Max, ProTools, etc.) and non-
real-time systems, where these actions have no effect until a certain ‘refresh’ operation
is performed (such as LilyPond, OpenMusic and PWGL). The latter is the case of
typical CAC environments; yet, this is by no means natural: there is no deep reason
why symbolic processing should not be performed in real-time. Indeed, interactivity
is an essential performative aspect of the musical discovery process.

The bach Paradigm

Real-time properties of a CAC environment deeply affect the very nature of the com-
positional process. Composers working with sequencers definitely need them to react
immediately as they change envelopes or delete sound files; likewise, composers
working with symbolic data might want the machine to adapt quickly to new par-
ameter configurations. The underlying paradigm is that the creation and modification
of a musical score is not an out-of-time activity, but follows the composer’s discovery
process and develops accordingly.
This issue has already been faced by Miller Puckette (Puckette, 2004), and sub-

sequently tackled by Arshia Cont (Cont, 2008). A good overview of the questions
raised by the real-time/non-real-time dichotomy can be found in (Seleborg, 2004).
In this article, we aim to show that real-time CAC is not only theoretically possible,

42 A. Agostini and D. Ghisi

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



but also practically achieved via a library for Max named bach: automatic composer’s
helper. bach is a set of tools for symbolic processing and graphical music represen-
tation, designed to take advantage of Max’s facilities for sound processing, real-time
interaction and graphical programming. At the forefront of the bach system are two
highly interactive and customizable musical notation interfaces, which at the same
time serve as sequencers for both musical events (notes and chords) and arbitrary
data (e.g. sound files, instructions to a synthesizer, etc.).
Being a Max library, bach follows the general Max dataflow paradigm. The essential

principle is that users do not call explicitly for operations upon data; rather, they build
a sort of ‘assembly chain’ made of very specialized operators, and as soon as data are
received at the beginning of the chain, they are serially processed by the operators, one
after another, and the result is retrieved at the end of the chain. This kind of program-
ming paradigm actually reflects, and is a metaphor for, a wide range of non-computer-
related experiences, such as the behaviour of the mail system—at the moment we bring
a parcel to the post office, we are confident that the correct chain of operations (whose
details we neither know, nor care about) will be performed by a correspondingly struc-
tured chain of humans and machines, eventually leading to the delivery of the parcel in
some remote part of the world. Or, the mechanics of a piano, where the pressure on a
key immediately moves a chain of mechanical devices that eventually, in a measurable
but usually negligible time, set the corresponding strings in motion so that we can hear
the resulting sound. Or, again, a traditional sound recording, mixing and amplification
chain, in which the sound entering the chain is transformed into electrical signals,
added to other sounds, amplified, filtered and eventually re-transformed into sound.
It should be noted that the two latter examples are particularly relevant to Max, as
the ‘musical instrument’ and ‘mixing chain’ metaphors have informed its very con-
ception, and still inform its current development.
Although the graphical interfaces of the PatchWork (Laurson & Duthen, 1989),

OpenMusic (Assayag, Rueda, Laurson, Agon, & Delerue, 1999) and PWGL (Laurson
& Kuuskankare, 2002) look quite similar to that of Max, their programming paradigm
is deeply different, as the entry of the data does not trigger any immediate reaction: in
these systems, an explicit evaluation command must be given to the machine in order
to perform the desired operation. The difference is less subtle than it might appear,
both from the conceptual and the practical point of view. Actually, the evaluation
command is just a key pressure, or a mouse click, but whereas this single action
might not be very critical in a non-real-time context, it becomes crucial when synchro-
nicity matters, or when the data flow comes, for instance, from a MIDI keyboard, or a
microphone, or a video camera. The non-real-time approach is thus unable to keep track
of a stream of incoming events properly, be they a sequence of keys pressed by a player or
a series of instructions guiding the composer’s thought.
As a final note on this subject, it should be remarked that the differences in the user-side

behaviours of these paradigms actually reflect totally different underlying structures, and
the rift between them is far deeper than itmight appear. In this sense,bach is essentially and
structurally different from all the major existing CAC environments (see Figure 1 for a

Contemporary Music Review 43

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



comparison example). The consequences of this real-time approach toCAC, fromamusi-
cian’s point of view, will be further explored in the following section of this article.

Performative and Speculative Aspects

If the composer’s interface choices affect the symbolic result in real-time, the machine
feedback is way more extensive and intuitive, allowing the user to handle and validate a
much larger set of possibilities. In this sense, bach allows a sort of ‘trial and error’
approach to symbolic data, in a similar way as composers generally do when they
compose electronic music. Of course, one has to strike a balance between the
amount of feedback obtained from the machine and the amount of information
that the composer himself can favorably process. In this sense, bach is meant to
close the gap between the ‘performative’ and ‘speculative’ aspects of tools for computer
music, which has pushed the real-time and CAC communities apart. It is worth noti-
cing that what we call here the ‘speculative’ aspect of music writing is what Miller
Puckette (Puckette, 2004) refers to as the ‘compositional’ aspect. Since we believe
that compositional aspects are not necessarily in counterposition with performative
ones, we prefer to use the ‘speculative’ adjective to dispel all doubts.

Figure 1 A Comparison between an OpenMusic Patch (left) and a bach Patch (right)
Performing the Same Process (Creation of a bisbigliando Around a Base Note). In the
OpenMusic Patch, the Resulting Score is Left Untouched Until it is Re-evaluated. In the
bach Paradigm, as One Changes a Parameter, the Result is Updated.

44 A. Agostini and D. Ghisi

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



At the same time, as discussed above, bach is a citizen of the Max environment, and
as such it can be very easily embedded into systems whose inputs and outputs are
different from the traditional computer console. For instance, data coming from a
MIDI device, such as almost any modern electronic musical instrument, can be pro-
cessed by taking advantage of bach’s whole set of advanced musical representation
facilities, and transformed into audio in real-time. Or the results of a real-time
audio analysis can be filtered, processed and displayed as notes on a staff, perhaps
using different colors and shapes for the note heads to represent different parameters
of the analysis. If this approach is taken to the extreme, bach can be used as a tool for
‘computer-aided improvisation’, either as a preliminary phase to the actual writing or
as an autonomous form of musical expression.

Figure 2 A Patch Used by Andrea Agostini to Manage the Electronic Score for a Film
Music. Each Note Contains a Set of Instructions for a Synthesizer, Expressed as Text Com-
mands and Graphical Marks. When the Score is Played, All the Information Connected to
Each Note is Sent to the Appropriate Synthesizer Voice, Represented on Screen by the Note
Color. Below the Score, Some Frames of the Movies are Shown, Providing a Visual Refer-
ence to the Position of the Musical Events. In a Separate Window, Not Shown Here, the
Frame Corresponding to the Exact Position of the Play Cursor (the Thin Vertical Bar) is
Shown in Real-Time, Allowing Fine Control Over the Sound and Image Synchronization.

Contemporary Music Review 45

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



Figure 3 A Patch, Used by Daniele Ghisi, to Achieve Real-Time Symbolic Granulation. The
Original Score (Upper Window) has Some Markers to Determine and Modify the Grain
Regions. Parameters are Handled in the Lower Left Window. When the User Clicks the
‘Start Transcribing’ Button, the Result Appears and Accumulates in the Middle
Window. When Desired, One may then Make it Monophonic (if Needed), Refine it,
and Finally Quantize it. Every Parameter is User-Modifiable and Affects in Real-Time
the ‘Rough’ Result, as in Any Electroacoustic Granulation Machine.

46 A. Agostini and D. Ghisi

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



On the other hand, it is worth underlining that the real-time paradigm is a resource,
rather than an obligation: score changes are handled by the user, who is completely free
to make them happen immediately or only after some ‘refresh’ operation (as would be
the case in non-real-time environments). This means that, in principle, nothing pre-
vents the user from using bach as any other CAC environment, and there are cases
(such as a fine rhythmic quantization) in which one is obliged to settle in the non-
real-time paradigm, since the significant amount of time needed for performing a par-
ticular task might actually disrupt the immediacy of response to the user’s actions.

Some Examples

We give some screenshot examples of how the performative and speculative aspects
can be unified, convinced that this might show, better than any words, the possibilities

Figure 4 A Patch Performing Real-Time Symbolic Transposition, Frequency Shift and Fil-
tering. As the User Changes One of the Envelopes, the Underlying Score is Updated with
the New Filtered Values (for Instance, Notice that as the Low-Cut Frequency Increases, the
Notes Gets More and More Rarefied). The Patch is Obtained by a Close Interaction of bach
Objects (such as the Underlying Score) and Standard Max Objects (such as the Breakpoint
Functions Used for the Envelopes).

Contemporary Music Review 47

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 



of the new model. The first example (Figure 2) shows that the boundary between
sequencers and scores is no longer rigid: a score can be a customizable sequencer,
whose content is completely open to any real-time process the user might want to
realize. Notes carry extra information, specifying the parameters for the processes
which will concern them. At the same time, thanks to the possibility to retrieve in
real-time all the information related to the details of the graphical display of the
score, it is straightforward to keep a video sequence constantly aligned to the
musical score. In this way, when working with a video, one can always be aware of
which video frame each musical event is synchronized to.
In the second example (Figure 3), we set up mechanisms to apply granulation (a

typical electroacoustic treatment) to symbolic data. An original score is used as a
reading buffer, where granulation regions are defined; the result is immediately
visible in a second, constantly growing score, and is affected in real-time by any par-
ameter change. In the last example (Figure 4), we set up a system to have counterparts
to typical audio-domain transformations, such as transposition, frequency shifting and
filtering, applied in real-time to symbolic data.

Acknowledgements

We are deeply grateful to the following people for their precious support and advice: Carlos Agon,
Arshia Cont, Eric Daubresse, Emmanuel Jourdan, Serge Lemouton, Jean Lochard and Mikhail
Malt. We also wish to thank DaFact for actively sponsoring the development of bach.

References

Assayag, G., Rueda, C., Laurson, M., Agon, C., & Delerue, O. (1999). Computer assisted composition
at Ircam: From PatchWork to OpenMusic. Computer Music Journal, 23(3), 59–72.

Cont, A. (2008). Modeling musical anticipation: From the time of music to the music of time (PhD
thesis in Acoustics, Signal Processing, and Computer Science Applied to Music (ATIAM),
University of Paris 6 (UPMC), and University of California San Diego (UCSD) (joint),
Paris, 2008).

Laurson, M., & Duthen, J. (1989). Patchwork, a graphical language in preform. Proceedings of the
international computer music conference (pp. 172–175). Ann Arbor: International Computer
Music Association.

Laurson, M., & Kuuskankare, M. (2002). PWGL: A novel visual language based on common lisp, CLOS
and OpenGL. Proceedings of international computer music conference, Gothenburg, Sweden,
pp. 142–145.

Puckette, M. (2004). A divide between ‘compositional’ and ‘performative’ aspects of Pd. First internation
Pd convention, Graz, Austria.

Seleborg, C. (2004). Interaction temps-réel/temps différé. Marseille: mémoire ATIAM.

48 A. Agostini and D. Ghisi

D
ow

nl
oa

de
d 

by
 [I

rc
am

] a
t 0

9:
34

 2
9 

A
pr

il 
20

13
 


