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Abstract— Autosimilar melodies put together the interplay A periodic melody M is a map fromZ, into some
of several melodies within a monody, the augmentations of musijcal space, usually pitches or notes, or equivalently
a given melody, and the notion of autosimilarity which is a periodic sequence’k € Z, My, = M,
: , n = M.

well known in fractal objects. From a mathematical study
of their properties, arising from experimentations by their The order of an elementy of a group &, denoted by

inventor, composer Tom Johnson, we have generalized the ©(g), is the cardinality of< g >, i.e. the smallest integer
notion towards the dual aspects of the group of symmetries r > 0 with ¢" = e, the unit element of groug-. It is

of a periodic melody, and the creation of a melody featuring  classically characterised by the following equivalence:
a set of given symmetries. This is now a straightforward

tool, both for composers and analysts, irOpenMusicvisual gk =e <= o(g) is a divisor ofk
programming language.
Il. DEFINITIONS AND EXAMPLES
I. INTRODUCTION

_ A. The original definition
A. History Definition 1: A melody with periodn is autosimilar
Autosimilar melodies have been conceptualized angyith ratio « if, taking one note of the melody every
intensively used by composer Tom Johnson and se\peats, one hears the same melody. Equivalently, it means

eral american fellows from the 1980's. They were firstthat the augmentation with ratio of the original melody
rigorously defined in the last chapter of his book [5]is part of it.

under the label ‘selfRep melodies’ (the word ‘autoSim-
ilar' being used in a much fuzzier sense in the wholeB. Historical examples

book). We will restrict the meaning of ‘autosimilar’ to  The most famous autosimilar melody is probably the

the notion developed thereafter, because it is closer taibertj Bass, such as is heard in the first bars of Mozart's
the common mathematical usage. Also, while keepingsonata in C major K. 545 (see Fig. 1).

close to this traditional meaning, it will be generalized
much further than Johnson used it, to musical object:

g : ) _ 0 o e P P
invariant under the action of a given subgroup of the affine é’,} »- i i. g i e PRE! i. !
automorphisms of some cyclic rirg,,. This lends itself v :

particularly well to implementation i@penMusiclt must ) — — — ————————
be stressed that examples of autoSimilar melodies cropL \tF J*e* _feei_e e e el e e o @

in many different musical styles, from Mozart's classical

music to New Orleans Jazz. Also the degree of control Fig. 1. Alberti Bass with augmentation

that our mathematical work entails into the software is a

contrapuntist's dream, enabling subtle interplay between Picking out one note every 3 (or 5, or 7, or 9) eighth

a melody and itself at several different tempos. gives the same melody.
] Another example, strikingly different in style, is the
B. Notations thema of Glenn Miller'sIn the Mood (Fig. 2). There the
Z,, is the cyclic group withn elements. interplay of strong binary beats with the three-periodic

We denote the greatest common divisor @fn by  melody lets hear the autosimilarity with ratio 4.
ged(a, n).

The invertible elements dfZ,,, x) are the generators of — —

the additive group(Z,,+); they form a multiplicative ﬁﬂ—dﬂ—@—_i
group,Z:. &35 - "

Any set might be given by the list of its elements between

curly brackets:{0, 3,5}; or by some defining property, Fig. 2. In the Mood measure 14

eg.Z; ={a€Z,, gcd(a,n)=1}.

The subgroup generated by some elemgmtf a group Voluntary use of autosimilarity is of course plainer

G is denoted by g >. e.g.< a >= (Z,,+) < a € in modern pieces, like Johnsonkoops for Orchestra,
Z. Kientsy Loops, or la Vie est Si Courte (Fig. 3).
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Fig. 3. La Vie Est Si Courte

C. Construction via orbits of an affine map M
) F

All the mathematical statements in this presentation

have been proved, but we will omit the proofs here for £ & &8 & £ & & ®
the sake of brevity.
1) Building an autosimilar melody: Fig. 4. A patch inOpenMusicshowing the process leading to the

L . construction of the Alberti Bass
Theorem 1:Any autosimilar melody of ratioa and

period n is built up from orbits of the affine map —

ax x (mod n): if This case can be seen as a realization of a tiling with a
O, = {d*z (mod n),k € Z} = a%.x motif O; = {1,a,a?... and some augmentatioi®, =
_ {z,ax,a’z...} = x x O1. Fig. 5 shows the tiling of
then for each noté” of the melody, the subset of indexes ye |ing process with 0 (which is left aside) and orbit (1
M~=(P) = {i € Z,, M; = P} is one such orbit, or an 5 4) yggether with its augmentation (3 6 12). Modulo 7,

uni_on of several ones. , ) . this reduces of course to the three orbitsaof— 2z,
This means that one has first to compute the orbits, Whlcﬂ‘,;lme'y (0), (1 2 4) and (3 5 6) but musically the effect

are subsets of beat indexes, and choose a single note flgrdifferent.

all the beats of each orbit — or several orbits. This is precious, as few algorithms producing tilings

For example, the orbits af — 3z mod 8 are (0), (4), : ;
(13). (57), (2 6) as for instandex3 — 0, 4x3 — 12 — 4 ZﬁoamgToe:éatlons are known as y®penMusicfeatures

mod 8,5 x 3 =7 mod 8 and7 x 3 = 5. Setting note
C on the first two orbits, i.e. 0 and 4, E on the last oney ot generalization
i.e. 2 and 6, and G on the remaining indexes, one gets’
the Alberti Bass. This is easily done DpenMusic(see The family of mapsz +— ax (with a invertible
Fig. 4). mod n) form a subgroupH,,, of the general affine group:
2) About numbers: Some predictibility about the Aff, = {x — ax =b,a € Z%,b € Z,}. The groupH,,
lenghts of orbits, their total number, its maximal value,of homotheties modulo: is a quotient of Aff,, by its
and other interesting figures, have been obtained. Let itormal subgroug”,, of all translationsr, : z — = + b,
be observed on this simple example the following generaind is isomorphic to the multiplicative grouy;.

facts: Leaving aside this theory, it is obvious to generalize the
1) Several orbit lengths are possible; above definition to such general affine automorphisms:
2) All orbit lengths divide the longest one. Definition 2: A melody with periodn is autosimilar
3) The longest orbit has for lengti{a). with ratio ¢ and offsetb if, taking one note of the
4) Length 1 (a lone note) occurs; melody everya beats, andtarting with the b'" beat, one

3) Prime cases:Tom Johnson has been particularly hears the same melody. Equivalently, it means that the
interested in periods which are a power of 2, or aaugmentation with ratia of the original melody is part
prime number. The first case led to the elucidation ofof it, though maybe with a different starting point.
the guestion of the greatest possible number of differenthe construction is identical, giving the same note to all
notes: beats belonging to a same orbit of mAp = — ax + b

Theorem 2:The greatest number of notes for an au-mod n.
tosimilar melody with periodh is 3n/4. It occurs when More than half the time, this construction gives exactly

n is a multiple of 4 anch = 1 + n/2. the same melodies as before: it is sufficient to change
In the prime case on the other hand, all orbits but one arthe (arbitrary) origin of beats. For instance, the orbits of
the same size: x+— 3z +2mod 8 are (0 2), (15), (3), (4 6) and (7),

Theorem 3:If n is prime then{0} is one orbit; all which are exactly the same as the orbitsef 3 x, up to
other orbits have the same lengtiia). a translation of 3. In the remaining cases however, new,
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Fig. 5. Tiling the line with one orbit of an autosimilar melody and some of its augmentations

interesting autosimilar melodies are obtained. They have E=========—==

no single notes:
Theorem 4:A melody can be generated hy+— az,

up to some appropriate choice of time origin, iff it admits

1 note orbits.

This new species of autosimilar melodies arising from
purely mathematical considerations opens up a wider
choice for the composer. It it still true that all different

orbit lengths divide the longest one, though its length is

now o(f), usually a multiple ofo(a).

Example: the popular melodic pattern in figure 6 is

autosimilar with ratio 3 and offset 1.
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Fig. 6. AutoSimilar with offset

Ill. SYMMETRY GROUP
A. Stabilizer

Definition 3: Let M = (Mjy)rez be ann—periodic
melody. The set7), of all f € Aff,, verifying

Vk € Z Mf(k) = My

is a subgroup ofAff,, called the symmetry group, or

stabilizer, of M.

Fig. 7. The family of symmetries for the Alberti Bass

B. The ultimate definition

It is from there a natural step to define

Definition 4: A melody M, n—periodic, is autosimilar
under the subgrougr of Aff,,, iff G C Gy,.

Theorem 5:Such a melody can be built by giving the
same notes to all elements of a same orbit of gréup
such an orbit i0, = {f(x), f € G}.

C. Algorithms

We have two algorithms about stabilizers implemented
in OpenMusic

1) Find the stabilizer of a given melody (with a given
period). This is done by checking exhaustively the action

This general concept encapsulates the previous defingf all affine maps inAff, — there are less thamn?

tions: M is autosimilar with ratiou, offsets, iff the map
f:x — ax+bis in its stabilizer. So ardpso facto

such maps. Fig. 7 shows ho@penMusicprovides the
collection of affine transformations for the Alberti Bass,

all powers of f, and sometimes other maps too: for theand exhibits their effects on the original melody. This

Alberti Bass, no fewer than 8 symmetries occur:

r—z,3z,5c,Te,x+4,3x + 4,5z +4,7Tx + 4

enables the composer to visualize at a glance all the copies
of a melody that are present inside itself, i.e. its whole
autosimilar potential.
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sequencésunder reference A126949.
Fig. 8. This patch shows how to produce an autosimilar melody (the Besides of course, it is always possible to build a palin-
Alberti Bass) starting with a set of symmetries, a period and a collectiordromic (autosimilar) melody froranyautosimilar melody
of pitches. by just collapsing together notes belonging to orbits that
are symmetrical (the map: x — —z exchanges orbits of
. . . . a primitive autosimilar melody with ratia). For example
2) Find a melody with some given symmetries. Onese% the original and the ‘)p/)alindromiged’ on Figp. 10

builds the OI’bItS' first as explained below, from there ity qineq by collapsing together the two inversionally-
is the composer’s choice to associate notes to each Or%lated orbits(1, 2, 4,8) and (7, 11, 13, 14) 2

with a standardDpenMusicprocedure.

Th  inout lection of affine m Starting from A nice theoretical property of autosimilar melodies
€ usernputs a coflection ot attineé maps. starting Iro appears when one tries to iterate an affine map with
an elementr in Z,, a set is initialized withz as sole

| t Th I'th in th llecti i ‘i ratio that isnot invertible modulon: the map being
element. Then all In€ maps In the collection are applieg, longer one-to-one, there is no reversibility and some
repeatedly to that set until it no longer changes. All.

. . ) information is lost at each iteration, but (this is related
elements of this set, now an orbit, are set aside an

. : . the very deep Fitting Lemma of commutative algebra

:Ezt ar:gcs)mnhon: g:;ﬁefegghg;hyé?eurgf izleer?(ﬁgtj?é d that already appeared in a musical context in Anatol
. o ' Vieru'’ n ratime an imilar mel

(see Fig. 8). This is the dual approach from the las eru's sequences, [3]) after a time an autosimilar melody

o . . merges (see Fig. 11).
one, providing the composer with the simplest structure Thus chaos hides inside itself the deepest harmony.
admitting autosimilar copies with the desired ratios and '

offsets. )
. {:“. S e e

D. Palindromes "

The above concept enables to clarify which autosimilar (SESESEESs s ssss == ===
melodies will be palindromes, as it is only a question {,9 ‘ — : , ,
of whetherz — —z (or some more general inversion &% b e s i s be
x — ¢ — x) is present in the stabilizer of the melody. _ o
The algorithms allow the straighforward construction of Fig. 11. An autosimilar melody from a random one

palindromic melodies (among other symmetries), and the
theory reaches interesting result, as (simplifying a little)

Theorem 6:An autosimilar melody with ratiaz will i _ )
be palindromic iff there is some power afequal to -1 We presented some theoretical and implementational
mod n. aspects of melodic autosimilarity. After describing a gen-

For instance, as in Fig. 9 it is clear that— 3z gives a eral group-theoretical framework for the construction of
palindrome modulo 14, a3 = 27 = —1 mod 14. autosimilar melodies (via the orbits of an affine trans-
formation), we presented a new approach that generalizes

IV. CONCLUSION

The sequence of periods owning some such roots
of _1.’ t.hat IS to .Say of penOd.S allowing palindromic http://www.research.att.com/ njas/sequences/
autosimilar melodies, was previsouly unknown and has 2The remaining orbits are invariant under inversion, e.g.
been added to Sloane’s online encyclopedia of integef(s,6,9,12) = 15 — (3,6,9,12) = (12,9,6,3).



Tom Johnson’s original definition of self-similar melodies
by considering autosimilarity between melodic pattern
having different starting point. We then focused on the
two main algorithmic aspects of this approach as it has
been implemented irOpenMusicvisual programming
language. This implementation provides the set of affine
maps that fix a given autosimilar melody and conversely
it constructs an autosimilar melody of a given period
starting with a family of affine transformations and a
collection of pitches. After briefly describing the case
of palindromic autosimilar melodies, we concluded the
paper by suggesting how to use a general result of com-
mutative algebra in order to establish a possible connec-
tion between two apparently very different compositional
processes: the construction of autosimilar melodies and
Anatol Vieru's theory of finite difference calculus applied
on periodic sequences.
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