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Abstract— Autosimilar melodies put together the interplay
of several melodies within a monody, the augmentations of
a given melody, and the notion of autosimilarity which is
well known in fractal objects. From a mathematical study
of their properties, arising from experimentations by their
inventor, composer Tom Johnson, we have generalized the
notion towards the dual aspects of the group of symmetries
of a periodic melody, and the creation of a melody featuring
a set of given symmetries. This is now a straightforward
tool, both for composers and analysts, inOpenMusicvisual
programming language.

I. I NTRODUCTION

A. History

Autosimilar melodies have been conceptualized and
intensively used by composer Tom Johnson and sev-
eral american fellows from the 1980’s. They were first
rigorously defined in the last chapter of his book [5]
under the label ‘selfRep melodies’ (the word ‘autoSim-
ilar’ being used in a much fuzzier sense in the whole
book). We will restrict the meaning of ‘autosimilar’ to
the notion developed thereafter, because it is closer to
the common mathematical usage. Also, while keeping
close to this traditional meaning, it will be generalized
much further than Johnson used it, to musical objects
invariant under the action of a given subgroup of the affine
automorphisms of some cyclic ringZn. This lends itself
particularly well to implementation inOpenMusic. It must
be stressed that examples of autoSimilar melodies crop up
in many different musical styles, from Mozart’s classical
music to New Orleans Jazz. Also the degree of control
that our mathematical work entails into the software is a
contrapuntist’s dream, enabling subtle interplay between
a melody and itself at several different tempos.

B. Notations

Zn is the cyclic group withn elements.
We denote the greatest common divisor ofa, n by
gcd(a, n).
The invertible elements of(Zn,×) are the generators of
the additive group(Zn,+); they form a multiplicative
group,Z∗n.
Any set might be given by the list of its elements between
curly brackets:{0, 3, 5}; or by some defining property,
e.g.Z∗n = {a ∈ Zn, gcd(a, n) = 1}.
The subgroup generated by some elementg of a group
G is denoted by< g >. e.g.< a >= (Zn,+) ⇐⇒ a ∈
Z∗n.

A periodic melody M is a map fromZn into some
musical space, usually pitches or notes, or equivalently
a periodic sequence:∀k ∈ Z,Mk+n = Mk.
The order of an elementg of a groupG, denoted by
o(g), is the cardinality of< g >, i.e. the smallest integer
r > 0 with gr = e, the unit element of groupG. It is
classically characterised by the following equivalence:

gk = e ⇐⇒ o(g) is a divisor ofk

II. D EFINITIONS AND EXAMPLES

A. The original definition

Definition 1: A melody with periodn is autosimilar
with ratio a if, taking one note of the melody everya
beats, one hears the same melody. Equivalently, it means
that the augmentation with ratioa of the original melody
is part of it.

B. Historical examples

The most famous autosimilar melody is probably the
Alberti Bass, such as is heard in the first bars of Mozart’s
Sonata in C major K. 545 (see Fig. 1).

Fig. 1. Alberti Bass with augmentation

Picking out one note every 3 (or 5, or 7, or 9) eighth
gives the same melody.

Another example, strikingly different in style, is the
thema of Glenn Miller’sIn the Mood (Fig. 2). There the
interplay of strong binary beats with the three-periodic
melody lets hear the autosimilarity with ratio 4.

Fig. 2. In the Mood, measure 14

Voluntary use of autosimilarity is of course plainer
in modern pieces, like Johnson’sLoops for Orchestra,
Kientsy Loops, or la Vie est Si Courte (Fig. 3).



Fig. 3. La Vie Est Si Courte

C. Construction via orbits of an affine map

All the mathematical statements in this presentation
have been proved, but we will omit the proofs here for
the sake of brevity.

1) Building an autosimilar melody:
Theorem 1:Any autosimilar melody of ratioa and

period n is built up from orbits of the affine mapx 7→
a× x (mod n): if

Ox = {akx (mod n), k ∈ Z} = aZ.x

then for each noteP of the melody, the subset of indexes
M−1(P ) = {i ∈ Zn,Mi = P} is one such orbit, or an
union of several ones.
This means that one has first to compute the orbits, which
are subsets of beat indexes, and choose a single note for
all the beats of each orbit – or several orbits.

For example, the orbits ofx 7→ 3x mod 8 are (0), (4),
(1 3), (5 7), (2 6) as for instance0×3 = 0, 4×3 = 12 = 4
mod 8, 5 × 3 = 7 mod 8 and 7 × 3 = 5. Setting note
C on the first two orbits, i.e. 0 and 4, E on the last one,
i.e. 2 and 6, and G on the remaining indexes, one gets
the Alberti Bass. This is easily done inOpenMusic(see
Fig. 4).

2) About numbers: Some predictibility about the
lenghts of orbits, their total number, its maximal value,
and other interesting figures, have been obtained. Let it
be observed on this simple example the following general
facts:

1) Several orbit lengths are possible;
2) All orbit lengths divide the longest one.
3) The longest orbit has for lengtho(a).
4) Length 1 (a lone note) occurs;
3) Prime cases:Tom Johnson has been particularly

interested in periods which are a power of 2, or a
prime number. The first case led to the elucidation of
the question of the greatest possible number of different
notes:

Theorem 2:The greatest number of notes for an au-
tosimilar melody with periodn is 3n/4. It occurs when
n is a multiple of 4 anda = 1 + n/2.
In the prime case on the other hand, all orbits but one are
the same size:

Theorem 3:If n is prime then{0} is one orbit; all
other orbits have the same length,o(a).

Fig. 4. A patch inOpenMusicshowing the process leading to the
construction of the Alberti Bass

This case can be seen as a realization of a tiling with a
motif O1 = {1, a, a2 . . . and some augmentationsOx =
{x, a x, a2 x . . . } = x × O1. Fig. 5 shows the tiling of
the line process with 0 (which is left aside) and orbit (1
2 4) together with its augmentation (3 6 12). Modulo 7,
this reduces of course to the three orbits ofx 7→ 2 x,
namely (0), (1 2 4) and (3 5 6) but musically the effect
is different.

This is precious, as few algorithms producing tilings
by augmentations are known as yet.OpenMusicfeatures
another one.

D. First generalization

The family of mapsx 7→ ax (with a invertible
mod n) form a subgroup,Hn, of the general affine group:
Affn = {x 7→ a x = b, a ∈ Z∗n, b ∈ Zn}. The groupHn

of homotheties modulon is a quotient ofAffn by its
normal subgroupTn of all translationsτb : x 7→ x + b,
and is isomorphic to the multiplicative groupZ∗n.

Leaving aside this theory, it is obvious to generalize the
above definition to such general affine automorphisms:

Definition 2: A melody with periodn is autosimilar
with ratio a and offset b if, taking one note of the
melody everya beats, andstarting with the bth beat, one
hears the same melody. Equivalently, it means that the
augmentation with ratioa of the original melody is part
of it, though maybe with a different starting point.
The construction is identical, giving the same note to all
beats belonging to a same orbit of mapf : x 7→ a x + b
mod n.
More than half the time, this construction gives exactly
the same melodies as before: it is sufficient to change
the (arbitrary) origin of beats. For instance, the orbits of
x 7→ 3 x + 2 mod 8 are (0 2), (1 5), (3), (4 6) and (7),
which are exactly the same as the orbits ofx 7→ 3 x, up to
a translation of 3. In the remaining cases however, new,



Fig. 5. Tiling the line with one orbit of an autosimilar melody and some of its augmentations

interesting autosimilar melodies are obtained. They have
no single notes:

Theorem 4:A melody can be generated byx 7→ a x,
up to some appropriate choice of time origin, iff it admits
1 note orbits.
This new species of autosimilar melodies arising from
purely mathematical considerations opens up a wider
choice for the composer. It it still true that all different
orbit lengths divide the longest one, though its length is
now o(f), usually a multiple ofo(a).

Example: the popular melodic pattern in figure 6 is
autosimilar with ratio 3 and offset 1.

Fig. 6. AutoSimilar with offset

III. SYMMETRY GROUP

A. Stabilizer

Definition 3: Let M = (Mk)k∈Z be an n−periodic
melody. The setGM of all f ∈ Affn verifying

∀k ∈ Z Mf(k) = Mk

is a subgroup ofAffn, called the symmetry group, or
stabilizer, ofM .
This general concept encapsulates the previous defini-
tions: M is autosimilar with ratioa, offset b, iff the map
f : x 7→ a x + b is in its stabilizer. So areipso facto
all powers off , and sometimes other maps too: for the
Alberti Bass, no fewer than 8 symmetries occur:

x 7→ x, 3x, 5x, 7x, x + 4, 3x + 4, 5x + 4, 7x + 4

Fig. 7. The family of symmetries for the Alberti Bass

B. The ultimate definition

It is from there a natural step to define
Definition 4: A melodyM , n−periodic, is autosimilar

under the subgroupG of Affn, iff G ⊂ GM .
Theorem 5:Such a melody can be built by giving the

same notes to all elements of a same orbit of groupG:
such an orbit isOx = {f(x), f ∈ G}.

C. Algorithms

We have two algorithms about stabilizers implemented
in OpenMusic:

1) Find the stabilizer of a given melody (with a given
period). This is done by checking exhaustively the action
of all affine maps inAffn – there are less thann2

such maps. Fig. 7 shows howOpenMusicprovides the
collection of affine transformations for the Alberti Bass,
and exhibits their effects on the original melody. This
enables the composer to visualize at a glance all the copies
of a melody that are present inside itself, i.e. its whole
autosimilar potential.



Fig. 8. This patch shows how to produce an autosimilar melody (the
Alberti Bass) starting with a set of symmetries, a period and a collection
of pitches.

2) Find a melody with some given symmetries. One
builds the orbits first as explained below, from there it
is the composer’s choice to associate notes to each orbit
with a standardOpenMusicprocedure.
The user inputs a collection of affine maps. Starting from
an elementx in Zn, a set is initialized withx as sole
element. Then all the maps in the collection are applied
repeatedly to that set until it no longer changes. All
elements of this set, now an orbit, are set aside and
the algorithm carries on with the next element inZn

that has not been reached yet, untilZn is exhausted
(see Fig. 8). This is the dual approach from the last
one, providing the composer with the simplest structure
admitting autosimilar copies with the desired ratios and
offsets.

D. Palindromes

The above concept enables to clarify which autosimilar
melodies will be palindromes, as it is only a question
of whetherx 7→ −x (or some more general inversion
x 7→ c − x) is present in the stabilizer of the melody.
The algorithms allow the straighforward construction of
palindromic melodies (among other symmetries), and the
theory reaches interesting result, as (simplifying a little)

Theorem 6:An autosimilar melody with ratioa will
be palindromic iff there is some power ofa equal to -1
mod n.
For instance, as in Fig. 9 it is clear thatx 7→ 3 x gives a
palindrome modulo 14, as33 = 27 = −1 mod 14.

The sequence of periodsn owning some such roots
of −1, that is to say of periods allowing palindromic
autosimilar melodies, was previsouly unknown and has
been added to Sloane’s online encyclopedia of integer

Fig. 9. A palindrome with period 14

Fig. 10. Autosimilar melody with period 15 and its palindromic
deformation

sequences1 under reference A126949.
Besides of course, it is always possible to build a palin-

dromic (autosimilar) melody fromanyautosimilar melody
by just collapsing together notes belonging to orbits that
are symmetrical (the mapf : x 7→ −x exchanges orbits of
a primitive autosimilar melody with ratioa). For example
see the original and the ‘palindromized’ on Fig. 10
obtained by collapsing together the two inversionally-
related orbits(1, 2, 4, 8) and (7, 11, 13, 14).2

A nice theoretical property of autosimilar melodies
appears when one tries to iterate an affine map with
a ratio that isnot invertible modulon: the map being
no longer one-to-one, there is no reversibility and some
information is lost at each iteration, but (this is related
to the very deep Fitting Lemma of commutative algebra
that already appeared in a musical context in Anatol
Vieru’s sequences, [3]) after a time an autosimilar melody
emerges (see Fig. 11).

Thus chaos hides inside itself the deepest harmony.

Fig. 11. An autosimilar melody from a random one

IV. CONCLUSION

We presented some theoretical and implementational
aspects of melodic autosimilarity. After describing a gen-
eral group-theoretical framework for the construction of
autosimilar melodies (via the orbits of an affine trans-
formation), we presented a new approach that generalizes

1http://www.research.att.com/ njas/sequences/
2The remaining orbits are invariant under inversion, e.g.

f(3, 6, 9, 12) = 15− (3, 6, 9, 12) = (12, 9, 6, 3).



Tom Johnson’s original definition of self-similar melodies
by considering autosimilarity between melodic pattern
having different starting point. We then focused on the
two main algorithmic aspects of this approach as it has
been implemented inOpenMusic visual programming
language. This implementation provides the set of affine
maps that fix a given autosimilar melody and conversely
it constructs an autosimilar melody of a given period
starting with a family of affine transformations and a
collection of pitches. After briefly describing the case
of palindromic autosimilar melodies, we concluded the
paper by suggesting how to use a general result of com-
mutative algebra in order to establish a possible connec-
tion between two apparently very different compositional
processes: the construction of autosimilar melodies and
Anatol Vieru’s theory of finite difference calculus applied
on periodic sequences.
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