
Guessing the Composer’s Mind: Applying Universal Prediction to Musical Style
Gérard Assayag (Ircam) , Shlomo Dubnov (Ben Gurion Univ.), Olivier Delerue (Ircam)

Abstract
In this paper, we present a dictionary based universal prediction algorithm that provides a very general and
flexible approach to machine learning in the domain of musical style. Such operations as improvisation or
assistance to composition can be realized on the resulting representations.

1. Introduction
It is commonly admitted that musical perception is
guided by expectations based on the recent past
context. Predictive theories are often related to
stochastic models which estimate the probability for
musical elements to appear in a given musical
context, such as Markov chains, already used
extensively in computer music. The main problem
with these models is that the length of musical
context (size of memory) is highly variable, ranging
from short figurations to longer motifs. Taking a
large fixed context makes the parameters difficult to
estimate and the computational cost grows
exponentially with the size of the context.

2. Dictionary-based prediction
In our work we present a dictionary-based prediction
method, which parses an existing musical text into a
lexicon of phrases/patterns, called motifs, and
provides an inference method for choosing the next
musical object following a current past context. The
parsing scheme must satisfy two conflicting
constraints. On the one hand, one wants to maximally
increase the dictionary to achieve better prediction,
but on the other hand, enough evidence must be
gathered before introducing a new phrase, so that a
reliable estimate of the conditional probability is
obtained. The secret of dictionary-based prediction
(and compression) methods is that they cleverly
sample the data so that most of the information is
reliably represented by few selected phrases. This
could be contrasted to better known Markov models
that build large probability tables for the next symbol
at every context entry. Although it might seem that
the two methods operate in a different manner, it is
helpful to understand that basically they employ
similar statistical principles.

Incremental Parsing
We chose to use an incremental parsing (IP)
algorithm suggested by Lempel and Ziv [LZ78]. IP
builds a dictionary of distinct motifs by sequentially
adding every new phrase that differs by a single next
character from the longest match that already exists
in the dictionary. For instance, given a text
{ababaa…}, IP parses it into {a,b,ab,aa,…} where
motifs are separated by commas. The dictionary may
be represented as a tree (see last section).

Probability Assignment
Assigning conditional probability lzp (n+1x 1

nx) of a

symbol n+1x given 1
n
x as context is done according

to the code lengths of the Lempel Ziv compression
scheme. Let c(n) be the number of motifs in the
parsing of an input n-sequence. Then, log(c(n)) bits
are needed to describe each prefix (a motif without
its last character), and 1 bit to describe the last
character (in case of a binary alphabet). For example,
the code for the above sequence is
(00,a),(00,b),(01,b),(01,a) where the first entry of
each pair gives the index of the prefix and the second
entry gives the next character. Ziv and Lempel have
shown that the average code length c(n)log(c(n))/n
converges asymptotically to the entropy of the
sequence with increasing n. This proves that the
coding is optimal. Since for optimal coding the code
length is 1/probability, and since all code lengths are
equal, we may say that, at least in the long limit, the
IP motifs have equal probability. Thus, taking equal
weight for nodes in the tree representation,
lzp (n+1x 1

nx)will be deduced as a ratio between the
cardinality of the subtrees (number of subnodes)
following the node 1

n
x . As the number of subnodes

is also the node's share of the probability space
(because one codeword is allocated to each node), we
see that the amount of code space allocated to a node
is proportional to the number of times it occurred.

Relation to Markov models
An interesting relation between Lempel-Ziv and
Markov models was discovered by [WIL91] when
considering the length of the context used for
prediction. In IP every prediction is done in the
context of earlier prediction, thus resulting in a
sawtooth behavior of the context length. For every
new phrase the first character has no context, the
second has context of length one, and so on. In
contrast, the Markov algorithm makes predictions
using a totally flat context line determined by the
order of the model. Thus, while a Markov algorithm
makes all of its prediction based on 3- or 4-character
contexts, the IP algorithm will make some of the
predictions from lower depth, but very quickly it will
exceed the Markov constant depth and use a better
context. To compensate for its poor performance in
the first characters, IP grows a big tree that has the
effect of increasing the average length of the phrase
so that beginnings of the phrase occur less often. As
the length of the input increases to infinity, so does
the average length, with the startling effect that at
infinity it converges to the entropy of the source. In
practice though, the average phrase length does not
rise fast enough to provide for reliable short-time

predictions. On the other hand, it behaves
surprisingly well for long sequences. Our
experiments show that this IP scheme, along with the
appropriate linear representation of music, provides
with patterns and inferences that successfully match
musical expectation.
Another important feature of the dictionary-based
methods is that they are "universal". If the model of
the data sequence was known ahead of time, an
optimum prediction could be achieved at all times.
The difficulty with most real situations is that the
probability model for the data is unknown. Therefore
one must use a predictor that works well no matter
what the data model is. This idea is called "universal
prediction" and it is contrasted to Markov predictors
that assume a given order of the data model.
Universal prediction algorithms make minimal
assumptions on the underlying stochastic sources of
musical sequences. Thus, they can be used in a great
variety of musical and stylistic situations. Our IP
based predictor is one such example of universal
predictor. This differs also from knowledge-based
systems, where specific knowledge about a particular
style has to be first understood and implemented
[COP96].

3. The Incremental Parsing (IP) algorithm
The IPMotif function computes an associative
dictionary (the motif dictionary) containing motifs
discovered over a text.
Parameter text, a list of objects
dict = new dictionary
motif = ()
While text is not empty
 motif = motif ! pop (text)
 If motif belongs to dict
 Then value(dict,motif)++
 Else add motif to dict with value
1
 motif = ()
return dict
dict is a set of pairs (key, value) where the keys are
motifs and values are integer counters. text and
motif are ordered lists of untyped objects (we don’t
restrict to characters). value(dict,motif)
retrieves the value associated with motif in dict.
W!k notates the list obtained by right-appending
object k to list W. Pop(var) returns the leftmost
element from the list pointed to by var and advances
var by one position to the right.
The text is processed linearly from left to right,
object after object, without any backtracking or look-
ahead. At any current time, the variable motif
contains the current motif W being discovered and
the variable text contains the remaining text,
beginning just after W. Now a new object k is
popped from the text and appended to the right of
motif, which value changes to W!k. If W!k is not
already in the dictionary, it is added to it and motif
is reset to an empty list (), thus being prepared to
receive the next motif. The LZ78 compression
algorithm would, at that time, output a codeword for

W, depending on W's index in the dictionary, along
with the object k. Compression would occur because
W, which must have been previously encountered, is
now output as a simple code. But since we are not
concerned with compression, we do nothing more. If
W!k is already in the dictionary, we increment the
counter associated with it and iterate. By doing this,
we compute for each motif W!k the frequency at
which object k follows motif W in the text. It is an
IP property that, if motif W is in the dictionary, then
all its left prefixes are there. So, if for instance motifs
ABC, ABCD, ABCE, ABCDE, are discovered at
different places, the frequency of C following AB
will be equal to 4. Another way to look at it is to
consider that, for each motif W in the dictionary, for
which there exists other motifs W!ki in the
dictionary, we will easily get the (empirical)
conditional probability distribution P(ki | W)
(probability of occurrence of ki knowing that W has
just occurred).
In order to achieve this, we have to transform the
motif dictionary into another one, called a
continuation dictionary, where each key will be a
motif W from the previous dictionary, and the
corresponding value will be a list of couples
(.. (k, P(k | W)) ..) for each possible k in the object
alphabet, representing in effect the empirical
distribution of objects following W.
The IPContinuation function computes a
continuation dictionary from a motif dictionary.
Parameter dict1, a dictionary
dict2 = new dictionary.
For each pair (W!k, counter) in dict1
 If W belongs to dict2
 Then value(dict2,W) =
 value(dict2,W) !(k counter)
 Else add W to dict2
 with value ((k counter))
Normalize (dict2)
Return dict2
The function Normalize turns the counters in
every element of dict2 into probabilities.

Exemple
Text =(a b a b a b c a b d a b c d a b c e)
Motif dictionary = { ((a) 6) ((b) 1) ((a b) 5) ((a b c)
3) ((a b d) 1) ((a b c d) 1) ((a b c e) 1) }
Continuation dictionary = { ((a) ((b 1.0))) ((a b) ((c
0.75) (d0.25)) ((a b c) ((d 0.5) (e 0.5)) }

As can be seen in the previous example, a single pass
IP analysis on a short text is not sufficient to detect a
significant amount of motifs. There is no information
on continuations for motif b or motif ba. Due to the
asymptotic nature of IP, these motifs will eventually
appear when analyzing long texts. Another way to
increase redundancy and to detect more motifs is to
parse several times the same text using the same
motif dictionary, rotating each time the text to the
left by one position.
The IPGenerate function generates a new text from
a continuation dictionary. Suppose we have already
generated a text (a0 a1 … an-1). There is a parameter p

which is an upper limit on the size of the past we
want to consider in order to choose the next object.
1. Current text is (a0 a1 … an-1)
 context = (an-p … an-1).
2. Check if context is a motif in the continuation

dictionary.
3. If found, its associated value gives the probability

distribution for the continuation. Make a choice
with regard to this distribution and append the
chosen object k to right of text.

 text = text ! k. Iterate in 1.
4. If context is not found in dictionary, shorten it by

popping its leftmost object.
 context = (an-p+1 … an-1). If motif becomes ()

generate a failure otherwise iterate in 2.
5. Upon failure either stop or append a random object

to text, then iterate in 1.

4. Resolving the polyphonic problem
The IPGenerate algorithm works on any linear
stream of objects. It was successfully tested on linear
streams of midi pitches from solo pieces or isolated
voices of polyphonic pieces. In order to be able to
process polyphony, thus fully capturing rythmical,
countrapuntal and harmonic gestures, we had to find
a way to linearize multivoice midi data in a way that
would musically make sense and take advantage of
the IP scheme. The best results were achieved by
using a variant of the superposition languages
defined by Chemillier & Timis [CHE90].
To understand this, take the 2-voice example shown
below.

Only the rhythm is notated. Pitch, as well as other
relevant information are coded with letters a through
h. If we slice time with respect to the common time
unit (the gcd of the durations, i.e. the eighth note) we
may code the sequence using 2 parallel words:

aabcdd
effggh

where the letter x in bold means the continuation of
the previous (contiguous) letter x (which is either a
beginning symbol or itself a continuation). In order to
linearize, we go from the normal alphabet,
augmented by continuation symbols, S = {a, b, c, ..,
a, b, c, ..} to the cross-alphabet SxS. Now the
sequence is: (a,e) (a, f) (b, f) (c, g) (d, g) (d, h).
In order to cope with any arbitrary time structure and
to optimize the parsing, we use the following variant.

Time is sliced at each event boundary occuring in
any voice. A set of durations D = {d1,..d7} is thus
built. Using the cross alphabet SxSxD we build the
linear triplet sequence: (a, -, d1) (a, d, d2) (b, d, d3) (b,
-, d4) (b, e, d5) (-, e, d6) (c, e, d7), where - denotes the
empty symbol (musical rest).
These triplets can easily be packed into 3 bytes
numbers if we code only the pitches along with the
durations. In order to optimize the duration alphabet,
we quantize the original durations into a reasonable
set of discrete rhythmic values. The idea is then
easily generalized to n-voice polyphony.

5. Experiments
Once a multi-voice midi file is transformed into a
linear text based on the cross alphabet, it is presented
to the IPMotif/IPcontinuation algorithm. The
resulting continuation dictionary can then be
randomly walked by IPGenerate to build variants of
the original music.
The cross-alphabet representation used has proven to
fit decisively into the IP framework. In particular, the
continuation symbols encode the fact that certain
notes, in certain contexts, have a certain probability
of being sustained while other notes are playing on
other voices. The result is that countrapuntal
gestures, as well as harmonic patterns, tend to be
generated in a realistic way with regard to the
original. Another caracteristic of IP is that if not only
one text but a set of different texts are analyzed
using the same motif dictionary, the generation will
"interpolate" in a space constituted by this set. This
interpolation is not a geometrical one, but rather goes
randomly from one model to another when there
exists a common pattern of any length and a
continuation from the second model is chosen instead
the first one.
IPGenerate has been tested, in normal and
interpolation mode, over the set of 2-voices Bach
Inventions, normalized for tonality and tempo. While
the lack of overall harmonic control do not favors
consistant harmonic progression in the resulting
simulations, these should be seen as "infinite"
streams where very interesting subsequences, show
original and convincing counterpoint and harmonic
patterns.
On the Bach material, we have established
empirically that 0 rotation of the original text would
lead to a poor, unusable, continuation dictionary; 3-4
rotations are optimal, in that whole phrases from the
original may be generated; more rotations do not
improve the generation quality. This is certainly due
to the way phrases are built from combination of
small motifs in this style of music.
In the Jazz domain, a new piece by Jean-Rémy
Guedon, miniX, has been created recently at Ircam
by the French "Orchestre National de Jazz" with the
assistance of Frederic Voisin. In this 20 mn piece,
about half of the solo parts were IPGenerated and
transcribed on the score.

These experiments were carried-out using
OpenMusic, a Lisp-based visual language for music
composition [ASS99]. Some results are available at:
http://www.ircam.fr/equipes/repmus.

6. Towards a real-time IP improviser
Once a continuation dictionary, capturing a
polyphonic style or style space, has been built in
OpenMusic, it can be provided to a real-time
interactive program that will use it in order to
improvize a voice in response to a human performer
playing another voice. As an improvement to known
digital improvisers, we want to take advantage of the
IP capacity to capture and render convincing
polyphonic-contrapuntal gestures.
Implemented in Java, the (still experimental) IPImpro
program responds to a performer playing the soprano
voice by generating bass notes in accordance with:
the continuation dictionary, the past context, and the
last note played by the performer. In the following
example, where bold symbols denote the sustaining
of the previous symbol:

sop: a b c c a a b
bass: b b a b a b ?
durs: 2 2 1 1 3 1 ?

the soprano has begun to play b and we have to
decide for the bass. If we find, for example, a motif
((a a 3) (a b 1)) with continuation (b b 2) in the
continuation dictionary we could decide to ask the
bass to play b with a duration of 2 units (as b is a
continuation symbol, this would really mean « keep
on playing the previous b for 2 units). We have now
a real-time specific problem: we don’t know if the
(human) soprano is actually going to keep on playing
b during 2 time units, so we are never sure we have
chosen the right triplet. If soprano plays b during one
time unit then moves to c, we’ll try to find a new
triplet that matches the suffix (... ((a a 3) (a b 1) (b b
1)), which will eventually cause the bass to stop
playing b sooner than expected. If the soprano plays
b longer than expected, then we’ll consider he is now
playing a continuation b of b, and look for a new
triplet in accordance with the new context.
As for the OpenMusic version, for each generation
step a past context of a predetermined maximum
length is checked for a possible continuation in the
dictionary. If no continuation is found, one element is
cropped on the left of the context and the new
context is checked until success is achieved.
Another real-time concern is that the motif dictionary
representation used in OpenMusic (table or hash-
table) is too costly in retrieval time for fast
interaction. IPImpro rather uses a tree representation.
Suppose we have, in the dictionary, the following set
of pairs context→continuations: (A → B) ; AB →
B,D ; ABD → A,C ; C → B ; CB → D ; D → A,C.
This can be easily represented as a tree structure:

Each node of the tree is associated with a triplet
(bass, soprano, duration) notated as a symbol. Paths
from the root to a leaf contain, in a condensed
representation, available motifs as well as their
continuations. Continuation probabilities are easily
computed by giving weight 1 to all the leaves, then
recursively, bottom-up computing other nodes’
weights by summing their children’s weights, then
normalizing. As long as new continuations are found
without needing to crop the current context, a pointer
to the tree may move in a contiguous way from node
to node and keep track of the last node generated.
The new context is simply the path from the root to
this node. But when the context has to be cropped (a
leaf has been reached) , a new search , starting from
the root must be started. If, for instance, the current
context was ABDC, the search for a possible
continuation in the tree would lead us to examine the
A branch down to its leaf (C). Then, as no
continuation is found, we would consider the cropped
context BDC and examine the B branch. Finally, the
context would reduce to C so we would go to the C
branch and choose the continuation B. As this
research is bounded only by the size of the tree, we
might have unpredictable latencies that would
endanger real-time interaction.
To overcome this problem, we finally chose a
representation that was more costly in space but
more effective in time. A tree is built, in the same
way, from the continuation dictionary, except the
contexts (left side of the arrows) are reversed. So the
branch A -B-D becomes D-B-A. At each node N we
attach a set of pointers to direct children of the root.
They represent the continuations available for the
motif matching the path from N up to the root.

Suppose the current context is ABD. As D is the last
object of the context, the pointer is on the D node
right under the root. We descend the branch
downwards as much as we can, looking for the
longest match between the reversed context (DBA)
and the successive nodes. We arrive at node A, where
we found the continuations (A,C). Suppose we
choose to generate C: the new context is ABDC, the

pointer moves to the C node under the root. At the
next generation step, we’ll see immediatly that the
new context has no continuation, only it’s last suffix
C has continuation B.
Now the search is bounded by the maximum depth of
the tree, not its total size, which works fine for real-
time.

References
[ASS99] Assayag, Agon, Laurson, Rueda. Computer Assisted
Composition at Ircam: PatchWork & OpenMusic. Computer
Music Journal, to come,1999.
[CHEM90] Chemillier, M, Structure et méthode algébriques en
informatique musicale. Doctorat,LITP 90-4, Paris VI, 1990.
[COP96] Experiments in Musical intelligence. Madison, WI:A-R
Editions, 1996.
[LZ78] Ziv J, Lempel A, "Compression of individual sequences
via variable rate coding", IEEE Trans. Inf. The., 24:5, pp.530-536,
1978.
[WIL91] Williams, R.N, "Adaptive Data Compression", Kluwer
Academic Publishers, Norwell, Massachusetts, 1991.

