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Abstract
In this paper we describe a transformation system of speech ex-
pressivity. It aims at modifying the expressivity of a spoken or
synthesized neutral utterance. The phonetic transcription, the
stress level and the other information about the corresponding
text supply a sequence of contexts. Every context corresponds
to a set of parameters of acoustic transformation. These parame-
ters change along the sentence and are used by a phase vocoder
technology to transform the speech signal. The relation between
the transformation parameters and the contexts is initialized by
a set of rules. A Bayesian network transforms gradually this
rule-based model into a data-driven model according to a learn-
ing phase involving an French expressive database. The system
functions for French utterances and several acted emotions. It
is employed at artistic ends for the multi-media, the theater and
the cinema.

1. Introduction
The capacity to express and to identify emotions, intentions and
attitudes through the modulation of the parameters of the voice
is prevailing for human communication. It seems that all these
controlled or uncontrolled aspects [1] belong to more than one
category. We group them in the termexpressivitywhether they
are simulated or not.

Current speech synthesis methods provide speech with
good naturalness and intelligibility. Art directors, contempo-
rary composers and film dubbing studios are now interested by
the multiple possibilities of a system which offers to analyze, to
synthesize and transform theexpressivityof the voice [2]. Sta-
tistical models of emotional prosody have been used by voice
conversion systems [3] as well as by speech synthesizers [4, 5].
Our system should changeexpressivityof a sentence as an ac-
tor does. Therefore we have recorded French actors to build
an expressive speech database. Then recordings are studied ac-
cording to the five dimensions of prosody [6]:

• intonation (fundamental frequency)

• intensity

• local speech rate (syllable duration)

• degree of reduction (formant parameters)

• voice quality: estimation of the glottal excitation signal
(not yet involved in this study)

A first study on speech rate [7] has shown the importance of
the stress level of syllables. For instance, stressed syllables last

much longer than unstressed in the case of happiness whereas
all syllables last approximately the same duration in the case of
fear. This categorization of syllables helps to analyze and mod-
ify expressivity. The degree of reduction is also influenced by
expressivity. In order to analyze it (to draw a vocalic triangle,
for instance), we need at least the phonetic labels of the vow-
els. This level of annotation offers a categorization in phonetic
classes in which the spectra of the corresponding vowels can be
compared. Thus the degree of reduction can be estimated for all
utterances independently of the phonetic context and then used
to compareexpressivity.

Indeed, one major difficulty in the analysis of para-
linguistic features is the influence of the verbal content of the
sentence. Context-dependent categorization is a useful tool to
analyze para-linguistic aspects of speech. The recordings di-
vided in linguistic units can be classified according to phonetic
label, stress level or other symbolic information. Statistics of
acoustic values can be estimated in each class. Then statistic
values between the different classes can be compared and re-
lated to variousexpressivities.

Our first expressive transformation system was rule-based
like many others [8]. Transposition ratios, time-stretch factors
and gain have been chosen according to mean values estimated
on the database. For example, “to transform a given utterance
from neutral to happy, transpose voiced segments one octave
up” is one of the rules that has been hand-written and applied.
In order to keep this knowledge while giving more complexity
to the model and making it closer to the data, we have decided
to enrich these rules by the use of machine learning algorithms.
In our new system, transformation parameters are learned in a
Bayesian network. An initial rule-based model is partly moved
into a data-based model according to the amount of observed
data.

After a quick overview of the system, of the database and
of the involved features, this article explains how context de-
pendent acoustic transformations are inferred with a Bayesian
network and applied to the speech signal to modifyexpressiv-
ity. Theneutral sentence which we wish to transform can be,
either recorded or produced by a Text-To-Speech synthesizer
which supplies then, the phonetic segmentation.

2. Context-dependent model
All the involved processes use two information levels conveyed
by speech. On one hand, the linguistic part of the spoken mes-
sage, i.e. the text and supplementary information, such asex-
pressivity, give symbolic discrete data notedSvariable (repre-



sented by circles in figure 1). On the other hand, the acoustic
realization of this text, e.g the recorded speech, gives contin-
uous acoustic data notedAvariable (represented by rectangles
in figure 1). The segmentation step is predominant as it con-
nects acoustic data to symbolic units. Features involved in the
statistical model are thus notedS or A.

2.1. Goals of a generative model

Our system is aimed at transforming a givenneutral utterance
into the same sentence but with a givenexpressivity Ewith a
given expressivedegree D. First, symbolic descriptors are com-
puted on each phone of the neutral sentence (see section 4). This
provides a temporal sequence ofcontext C(see section 2.2).
Then two corresponding acoustic descriptors sets are predicted,
one usingexpressivity neutraland the other usingexpressivity
E. Inferred acoustic parameter distributions are then compared
so as to provide transformation factors. Hence the problem be-
comes to infer acoustic dataA corresponding to a given context
S = Ci, i.e. to evaluateP (A|S = Ci).

2.2. Context definition

The context is defined as the set of the symbolic variables that
can take different states in closed vocabularies. An example of
such a contextC1:

C1 =

8>>><
>>>:

Sgender = “male”
Sexp = “neutral”
Sdegree = “3”
Sstress = “unstressed”
Sphonem = “/œ/”

These variables can be derived from higher level variables such
asSspeaker andStext. Table 1 shows the number of states they
can take (cardinality):

These symbolic variables are supposed independent since
phonetic, stress,expressivityand speaker related information
levels can occur in any combination (assumption discussed in
section 4.3). Thus theUniverseU of the context-dependent
model is composed of 9180 possible contexts per gender.
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Figure 1: Bayesian network: discrete (circles) and continuous
(rectangles) involved variables and their dependencies.

variable cardinality state description
Sgender 2 female or male
Sexp 15 expressivities(see section 4.2)
Sdegree 6 degree or power ofexpressivity
Sstress 3 unstressed, secondary stressed,

primary stressed
Sphonem 34 phonemes (XSAMPA code)

Table 1: Symbolic variables, cardinalities and state descriptions

3. From a rule-based model toward a
data-driven model

For artistic purposes, a model needs to be flexible in the sense
that most users would like to change understandable and mod-
ifiable parameters. A rule-based model is a good start and can
be hand-designed. But the cardinality ofU is too large to keep
a simple set of rules. Contrary to a rule-based model, a data-
driven model can manage many different contexts but suffers
from a lack of controllability and from a lack of generalization
(the model stay too close to the data). A statistical parametric
model is employed because it allows to reconcile these two ap-
proaches [5]. In order to make our rule-based model more pre-
cise and fitting real data better, we use the Bayes paradigm. Af-
ter the learning phase, the rule-based model is partially turned
into a statistical data-driven model according to the amount of
clustered data per context. We briefly present the transition be-
tween models which corresponds to our chronological use (see
reference [9] for more details).

3.1. Rule-based model

Our first attempt inexpressivitytransformation was based on
cumulative hand-designed rules created on a case by case ex-
amination of the database. For instance, allneutralunstressed
“/œ/” with contextC1, are lengthened by a factor 1.5 to be trans-
formed inextrovert sadness(contextC2) and again by a factor
1.8 for stressed ones (contextC3). Such a rule can be written:

Aduration(C3) = 1.8×Aduration(C2)

= 1.8× 1.5×Aduration(C1)

But the cardinality of the UniverseU makes the task of con-
structing a rule-based model very complex. This is the reason
why we chose a machine learning paradigm involving a data-
base of examples.

3.2. Frequentist approach

The database employed is described in section 4. Let:

• X = {X(l)}l=1..N be the set ofN observed data

• θ be the parameters of the model

• Sacous be a discrete acoustic variable, instead of a con-
tinuous one, used for a better explanation.

If all variables are fully observed, i.e. that we have a mea-
sure of the acoustic variablesA for all possible contextsS ∈ U ,
the simplest method is to evaluate the probability of an event
(Sacous = Sj) by the frequency of appearance of that event
within the same context (S = Ci). This approach, called the
maximum likelihood (ML), gives:

P̂ (Sacous = Sj |S = Ci) = θ̂ML
i,j =

Ni,jP
j Ni,j

(1)



whereNi,j is the number of times thatSacous = Sj in the
contextS = Ci.

3.3. Bayesian approach

Bayesian probability is a formalism that allows us to reason
about beliefs under conditions of uncertainty. Similar to fre-
quentist approach, it possesses an augmented optimization ob-
jective which incorporates a prior distribution over the quantity
one wants to estimate. It consists of finding the most proba-
ble parametersθ knowing that the data have been observed and
using a prior on these parameters. This approach, called expec-
tation a posteriori (EAP), gives:

P̂ (Sacous = Sj |S = Ci) = θ̂EAP
i,j =

Ni,j + αi,jP
j (Ni,j + αi,j)

(2)

whereαk are the parameters of a Dirichlet distribution associ-
ated to the priorP (Sacous = Sj |S = Ci). αk are the parame-
ters controlling the weights of the rule-based model and of the
data-driven model into the final model. Ifαi,j → ∞, the final
model is completely influenced by the prior and ifαi,j → 0, the
final model is completely influenced by the data. The prior is
thus defined by a ratio between a controllable number of simu-
lated cases and the fixed number of really observed cases. Note
there exists also the maximum a posteriori (MAP) approach.

3.4. Bayesian network

Bayesian networks have been used for several speech process-
ing purposes. Emotion recognition [10] use both naı̈ve bayes
classifier or dynamic Bayesian networks. A Bayesian network
models dependencies between some discrete and continuous
variables. It is composed of a qualitative description repre-
sented by a graph the structure of which can be learned or given
arbitrarily (see figure 1), and of a quantitative description rep-
resented by a generalized (joint) probability density function:

GPDF = P (A, S) (3)

3.4.1. Qualitative part: Graphical model

The structure of the graphical model is arbitrarily given and
presented on figure 1. This qualitative view of the statistical
model shows the variables involved during learning and infer-
ence steps. Circles represent discrete variables related to the
symbolic context and rectangles represent continuous variables
that are vectors ofcharacteristic values(see section 5.1) com-
puted on dynamic acoustic descriptors. Arrows represent de-
pendencies between variables.

3.4.2. Quantitative part: Generalized probability density func-
tion: P (A, S)

The Generalized Probability Density FunctionGPDF quanti-
fies all dependencies between variables of a Bayesian network.
Each continuous variable is assumed to follow a Linear Condi-
tional Gaussian (LCG) distribution, conditional to the configu-
ration of its discrete parent variables.GPDF is estimated by
the use of the Bayes rule:

P (A, S) = P (A|S)P (S) (4)

Once theGPDF is estimated (learning step), the LCG distribu-
tionsP (A|S = Ci) of acoustic data are inferred using equation
4 (inference step).

4. Database

In order to estimate aGPDF , we recorded a database of
French expressive speech. It presents 3996 contexts per gender.
Uobserved is thus none exhaustive and covers less than the half
of the UniverseU . This lack of data raises difficulties when a
new sentence (context) is presented to the system. This problem
is considered and partially resolved in the section 5.3.

4.1. Recordings

The database is composed of recordings of four actors
(Sspeaker), two males and two females (Sgender), during ap-
proximately one hour and a half each. They were all recorded
in the same professional conditions following an identical pro-
cedure. Ten sentences (Stext) extracted from a phonetically bal-
anced corpus [11] have been marked with prosodic boundaries
using punctuation and underlined parts of words.

4.2. Expressivities

Chosenexpressivities(Sexp) were acted emotions:neutral, in-
trovert and extrovert anger, introvert and extrovert happiness,
introvert and extrovert fear, introvert and extrovert sadness, as
well aspositiveandnegative surprises, disgust, discretion, ex-
citation andconfusion. Each sentence was pronounced in all
the expressivities. Furthermore, in the case of acted emotions,
every sentence was repeated six times with an increasing degree
(power) ofexpressivity(Sdegree). Finally, the corpus is com-
posed of approximately 550 utterances per actor. Somefillers
have been also uttered for eachexpressivity.

4.3. Phonetic segmentation

The first step of the analysis process is the segmentation of
recorded utterances, in phones (Sphonem).The automatic seg-
mentation method used [12] is classical and achieved by a Hid-
den Markov Model trained on aneutralmulti-speaker database
[13]. Then this initial segmentation has been hand-corrected by
phoneticians using wavesurfer [14] to better match the phonetic
realization which is often different from the automatically pre-
dicted phonemic transcription in the case of expressive speech.
In fact, the phonetic realization of an expressive utterance is in-
fluenced byexpressivityas it is shown in section 6.1.

4.4. Prosodic segmentation

Phonetic segmentation provides XSAMPA labels that are
used by post-processings to define boundaries and durations
(Aduration) of other unit types: syllable, prosodic group,
phraseandsentence. A rule-syllabifier uses phonetic labels to
define syllable boundaries. Prosodic boundaries are defined us-
ing an automatic text-based prediction of the stress level of these
syllables, corrected by hand (Sstress). These descriptions and
symbolic descriptors defining the relative place of a unit with
respect to others are stored in XML files which allows the stor-
age of hierarchical relationships.

4.5. Acoustic descriptors

All the labeled units are segment of analyzed speech signal. Dy-
namic descriptors are acoustic analysis data varying during the
time span of a unit.
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Figure 2: Duration and fundamental frequency of syllables of a
French sentence pronounced with extrovert happiness: “It was
the same name as the person who had signed up this paper”.
Squared syllables are stressed.

4.5.1. Fundamental frequency and energy

Pitch curve, also called intonation contour, is a prominent per-
ceptual cue forexpressivity. Fundamental frequency (Af0) is
calculated by the YIN algorithm [15]. This algorithm also
gives the energy (Aenergy) and the harmonic to noise ratio (also
called aperiodicity) of the signal for each computed frame. Fun-
damental frequency is interpolated within unvoiced segments
the boundaries of which are defined by a threshold process on
the aperiodicity (see figure 2).

4.5.2. Speech rate

Local speech rate is defined from the duration of syllables [7]
(see figure 2). Contrary to the well defined mean speech rate
computed over an entire utterance and measured in syllables
per second, we keep on the syllable duration as the unity. Be-
cause the most prominent syllables have often a longer duration,
the speech rate curve is thus shown by the durations of sylla-
bles which draw an “instantaneous” view of the evolution of the
speech rate. A deceleration corresponds to a rising of the curve
and an acceleration is represented by a falling of the curve.

4.5.3. Formant frequencies

The formant parameters are computed by an estimation algo-
rithm of formant trajectories [2]. At first, the method finds the
poles of an auto regressive model, estimated on the LPC of the
time-framed windowed signal. Then, it defines the most im-
portant poles according to several criteria of which the group
delay [16]. Finally, it makes correspond some of these poles
to formants, while assuring that the trajectories of formants are
smoothed in the time-frequency space. Trajectories are decoded
recursively thanks to dynamic programming.

5. Transformation
Once the learning step is over (GPDF estimated), a new sen-
tence can be presented. Phonetic, stressing and other contextual
information such as the wishedexpressivity, build up a sequence

of symbolic contexts. Acoustic variables parameters are then
inferred for each phoneme taking into account its context. The
processes are summarized in the algorithm 1.

5.1. Temporal model

The evolution of dynamic descriptor is modeled over the time
span of a unit by a vector ofcharacteristic values(see figure 3):

• start, middle, end, minimum, maximum and range values

• arithmetic mean, geometric mean, standard deviation

• temporal center of gravity/anti-gravity giving the loca-
tion of the most important elevation or depression in the
descriptor curve

• 2nd order Legendre polynomial approximation giving
the slope and the curvature

• inflexion point corresponding to the target value occur-
ring at the time the derivative of the2nd order approxi-
mation reaches zero or at the middle if evolution is linear.

• Fourier spectrum and spectral centroid of the descriptor
(not represented in figure 3), related to descriptor rapid
or slow movements, and oscillation.Jitter is related here
to a deviation of the gravity center of the Fourier spec-
trum of f0. Shimmeris related to a similar deviation for
energy.

Some of thesecharacteristic valuesare only computed for
analysis. Up to here, all acoustic variable is correspond to the
value of its inflexion point.

5.2. Inference

Two inference steps give plausible acoustic realizations of the
neutral utterance and of theexpressiveone. Comparisons of
these two sets of acoustic data lead to transposition, time-
stretch, gain and spectral frequency warping factors that evolve
along the sentence since context changes at each phone. After a
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Figure 3: Example ofcharacteristic valuesof the fundamental
frequency (in [Hz]) computed over a vowel time span (in [s])
pronounced with introvert anger.



smoothing step of transformation parameters, a phase vocoder
technology [17] transforms theneutralspeech signal according
to these parameters.

5.3. Unobserved contexts

A new sentence can present a context which was not observed
during the learning phase because our data base does not cover
all the universeU . In that case, our generative model has all the
same to propose a solution and supply parameters of transfor-
mation. This is achieved by using two inference steps. The first
one used acoustic data of theneutralutterance to infer the most
probable known context. Theexpressivityand the degree ofex-
pressivitywished are added/modified to this context. A second
inference allows then to predict acoustic data. The learning does
not thus allow the generalization for all the contexts, what is a
crucial question which exceeds the subject of this article. Nev-
ertheless, the solution presented here allows to deduce parame-
ters of transformation for all possible contexts by proceeding by
analogy.

→Initialization
- GPDF estimated (learning step over) ;
- observed contexts:Uobserved ;
- newneutral[N] sentence (audio and text) ;
- desiredexpressivity[E] with degree[D] ;

→Analyses
- segmentation inP phones ;
- context sequence definition:{CN (t)}t∈[1:P ] ;
- acoustic analyses ;
- computation ofcharacteristic values;

→Inference of acoustic data
for t ∈ [1 : P ] do

- check if context has already been observed:
if CN (t) ∈ Uobserved then

inference ofneutralacoustic dataAN (t) with
contextCN (t) ;

else
inference ofneutralcontextCN (t) with
acoustic dataAN (t) ;

end
- computeexpressivecontextCE(t):

CE(t) = CN (t)

CE(t) =

�
Sexp = E
Sdegree = D

- inference ofexpressiveacoustic dataAE(t) with
contextCE(t) ;

end
→Transformation parameters

- compute transformation parametersTN→E from AE

andAN

- Smooth/filter transformation parametersTN→E ;
→Transformation of the speech signal

- dynamic transposition ;
- dynamic time-stretching ;
- dynamic gain ;
- dynamic frequency warping ;

Algorithm 1 : Algorithm of the transformation of a new sen-
tence

This procedure leads to a prediction of acoustic transfor-
mation parameters for any symbolic context even if it was not
observed before, by use of analogy [18].

6. Discussions

Learning with a Bayesian network has a number of advantages
over a rule-based system. Our previous rule-based model is kept
and used to initialized the data-driven model. Application of
the Bayesian rule allows to compute acoustic parameter distrib-
utions that fit the data according to the amount of observations.
The Bayesian network gradually and partially turns the rule-
based model into a data-driven model. The Matlabr Bayesian
Network Toolbox [19] efficiently computes conditional prob-
ability distributions of either discrete or continuous variables.
This heterogeneity of the nature of the descriptors gives the
means to the model of being context-dependent. This Bayesian
network approach raises several questions, especially on the in-
dependency of variables as mentioned in 4.3.

6.1. Interdependencies of variables within a context

Phoneticians that have corrected the segmentation of the data-
base, have observed that for severalexpressivities, some ex-
pected phonemes were undershot, absent or added and required
re-labeling (An open “/E/” could sound like a “/œ/”, for in-
stance). This means that, even if the same text has been pro-
nounced, theSphonem tabular distribution is different accord-
ing to expressivity. P (Sphonem|Sexp) has been estimated by
adding an arrow in the graph:Sexp →Sphonem (dotted arrow
in figure 1). The mean frequencies of the appearance of some
phonological classes per sentence, computed with two actors
data sets (one male and one female), are represented by height
of bars in the figure 4. It shows howexpressivityinfluences
the prononciation of the text. A study on the correspondences
between the wished phonemic transcription and the phonetic
annotation of the realized pronunciation supplies more infor-
mation, but exceeds the scope of this article.

A similar context interdependency occurs at stress level:
Sexp →Sstress (dotted arrow in figure 1). For instance, in the
case ofextrovert anger, almost all syllabes could be perceived
stressed, since they are separated by caesura.

Figure 4: Tabular distributions of the mean frequency of appear-
ance of phonological classes per sentence. The same text has
been pronounced with differentexpressivities.



6.2. Interdependencies between acoustic variables

A second strong interrelationship is the interdependence be-
tween acoustic variables. For instance, the variance of f0 seems
highly correlated to the speech rate. The degree of reduction is
also often raised when speech is accelerated, although the con-
trary has been observed for severalexpressivitieslike anger(see
reference [7]). Thus relations likeAf0 � Aduration should be
added.

6.3. Dependencies between successive contexts

Hidden Markov Models are widely used in speech recognition
and share the same formalism as Bayesian networks (graphical
models). It has been shown that the knowledge of the prob-
ability of transitions between phonemes increases recognition
rate. Therefore, we expect an improvement in prediction re-
sults by adding connections from the previous context:S(i−1)
→S(i). Hence coarticulation could also be modeled by a dy-
namic Bayesian network.

6.4. Expressivity variable: discrete or continuous?

Finally, the nature ofSexp can be discussed because there are
various representations of theexpressivity, of which some are
category-specific (discrete) and the others continuous [8]. No
strong motivation has yet guided our choice and it is still an
open question. However, we envision to replace the discrete
expressive degree variableSdegree by a continuous variable.
This would lead to LCG distribution the parameters of which
(means) are linearly dependent (Wi) of the expressive degree:

P (Af0|Sdegree = d, S = Ci) = N (µi + Wi × d, σi) (5)

7. Conclusion
In this paper, we have described a transformation system of
speechexpressivity. A statistical model is learned on a multi-
speaker expressive database in a Bayesian Network. Acoustic
transformation parameters are time-varying and dependent of
symbolic contexts extracted of the text and of a speaker state de-
finition. It has been shown how a Bayesian network achieves the
mutation of a rule-based model into a data-driven model. Even
if all possibilities and improvements evoked in this paper have
not been tested yet, the reliability of this learning algorithm to
the problem and its relative transparency/interpretability make
the system full of promises. It is now working for several acted
emotions in French. Some examples can yet be listened to at
the following address:http://recherche.ircam.fr/
equipes/analyse-synthese/beller . Future work
will now be focused on quantifying the results by perception
tests and introducing voice quality as an acoustic modifiable pa-
rameter.
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[14] K. Sjölander and J. Beskow, “Wavesurfer - an open source
speech tool,” inInternational Conference on Spoken Lan-
guage Processing, 2000.
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