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Abstract. The development of spatial representations of musical ob-
jects allows for a reformulation of algorithmic problems arising in musi-
cal theory, fosters novel classifications and provides new computational
tools. In this paper, we show how a topological representation for n-note
chords associated with the degrees of the diatonic scale and for the All-
Interval Series (AIS) can be automatically built using MGS, a rule-based
spatial programming language. Then, we suggest a new categorization
for AIS based on their spatial construction.
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1 Introduction

The algebraic nature of many musical formalizations has been very early as-
sessed: from the equal temperament to canon, algebraic objects have been used
to study combinatorial properties and classify musical structures. Recently, a
fresh look on these structures has emerged focusing on topological or geomet-
rical representations. For example, one can characterize harmonic paths in orb-
ifolds [22,3,2] or build topological spaces embedding musical relationships in their
neighborhood relationships [10].

In this paper we will follow this line of research by using tools developed
in spatial computing. Spatial computing is an emergent domain in computer
science that enlightens the notion of space in computations either as a resource
or a result or a constraint [4,17]. Spatial computing has proven to be a fruitful
paradigm for the (re-)design of algorithms tackling problems embedded in space
or having a spatial extension.

In the following, we propose two studies of paradigmatic theoretical music
problems from a spatial computing perspective. This paper is organized as fol-
lows. Section 2 provides a brief introduction to MGS, a domain specific program-
ming language designed to investigate the spatial computing approach. Subsec-
tion 2.3 illustrates the MGS concepts on a self-assembly algorithm for the generic
computation of a topological representation of chord series initially proposed by
Guérino Mazzola. In section 3 we propose a spatial representation of the con-
straints defining an All-Interval Series (AIS). This representation enables us to
enumerate the AIS and to classify them from a topological perspective. The
paper ends with a conclusion and a discussion about future works.
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2 Presentation of the MGS programming language

MGS is an experimental domain specific language dedicated to spatial comput-
ing, see [7,6]. MGS concepts are based on well established notions in algebraic
topology [13] and relies on the use of rules to compute declaratively with spatial
data structures.

In MGS, all data structures are unified under the notion of topological col-
lection: an abstract combinatorial complex (ACC) labeled with arbitrary values.
The ACC builds a space in a combinatorial way through more simple objects
called cells [21]. It acts as a container and the values as the elements of the
data structure. Transformations of topological collections are defined by rewrit-
ing rules [19] specifying replacement of sub-collections that can be recursively
performed to build new spaces.

2.1 Topological Collections

An abstract combinatorial complex K = (C,≺, [·]) is a set C of abstract elements,
called cells, provided with a partial order ≺, called the boundary relation, and
with a dimension function [·] : C→ N such that for each c and c′ in C, c ≺ c′ ⇒
[c] < [c′]. We write c ∈ K when a cell c is a cell of C.

A cell of dimension 0 corresponds to a point, a 1-dimensional cell corresponds
to a line (an edge), a cell of dimension 2 is a surface (e.g. a polygon), etc. A cell
of dimension p is called a p-cell. For example, a graph is an ACC built only with
0- and 1-cells. An other example is pictured in Fig. 1.

In the context of this paper, we write ∂Kc for the sub-ACC made of the
cells of K lower than c for the relation ≺: ∂Kc = (C′,≺ ∩ C′ × C′, [·]) where
C′ = {c′ | c′ ≺ c}. This ACC is called the boundary of c. The faces of a p-cell c
are the (p − 1)-cells c′ of ∂Kc and we write c > c′ or c′ < c and c′ is called a
coface of c.

Two cells c and c′ are q-neighbor either if they have a common border of
dimension q or if they are in the boundary of a q-cell (of higher dimension). If
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Fig. 1. On the left, the Hasse diagram of boundary relationship of the ACC given in
the middle: it is composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and
of a single 2-cells (f). The three edges are the faces of f , and therefore f is a common
coface of e1, e2 and e3. On the right, a topological collection associates data with the
cells: positions with vertexes, lengths with edges and area with f .
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the two cells are of dimension p, we say that they are (p, q)-neighbor. A (p, q)-
path is a sequence of p-cells such that two consecutive cells are q-neighbor. For
example, the usual notion of path in a graph (a sequence of vertexes such that
from each of its vertexes there is an edge to the next vertex in the sequence)
corresponds to the notion of (0, 1)-path.

Topological Collections. A topological collection C is a function that associates
a value with a cell in an ACC, see Fig. 1. Thus the notation C(c) refers to the
value of C on cell c.

We write |C| for the set of cells for which C is defined. The collection C can
be written as a formal sum

∑
c∈|C| vc ·c where vc

df
= C(c). With this notation, the

underlying ACC is left implicit but can usually be recovered from the context.
By convention, when we write a collection C as a sum C = v1 · c1 + · · ·+ vp · cp,
we insist that all ci are distinct. Notice that this addition is associative and
commutative. This notation is directly used in MGS to build new topological
collections on arbitrary ACC of any dimension.

2.2 Transformations

The mechanics of rewriting systems are familiar to anyone who has done arith-
metic simplifications: an arithmetic expression can be simplified by repeatedly re-
placing parts of the term (subterms) with other subterms. For example, 1

2 ·
2
3 ·

3
4 ⇒

1
3 ·

3
4 ⇒

1
4 . The rule that is applied here is: M

N ·
N
P ⇒

M
P , where M , N and P

are pattern variables representing arbitrary non-null numbers. A transformation
generalizes this process to topological collections.

Topological collections are transformed using sets of rules called transfor-
mations. A rule is a pair pattern => expression . When a rule is applied on a
topological collection, a sub-collection matching with the pattern is replaced by
the topological collection computed by the evaluation of expression . There exist
several ways to control the application of a set of rules on a collection but these
details are not necessary for the comprehension of the work presented here. A
formal specification of topological rewriting is given in [19]. We sketch here only
the specification of patterns.

A pattern variable specifies a cell to be matched in the topological collection
together with some (optional) guard. For example the expression x / x == 3
matches a cell labeled with the value 3. The guard is the predicate after the
symbol /. The variable x can be used in the guard (and elsewhere in the rule) to
denote the value of the matched cell or the cell itself, following the context (in
case of ambiguity, the variable always denotes the associated value).

A pattern is a composition of pattern variables. There are three composition
operators:

1. The composition denoted by a simple juxtaposition (e.g., “x y”) does not
constraint the arguments of the composition.

2. When two pattern variables are composed using a comma (e.g., “x, y”), it
means that the cells matched by x and y must be p-neighbors. The default
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value for p is 1 and can be explicitly specified during the application of the
transformation if needed.

3. The last composition operator corresponds to the face operator: a pattern
“x < y” (resp. “x > y”) matches two cells cx and cy such that cx < cy (resp.
cx > cy).

Patterns are linear : two distinct pattern variables always refer to two distinct
cells.

2.3 Self-Assembly

In this subsection, we illustrate the notions of topological collection and transfor-
mation with a self-assembly mechanism used to compute a spatial representation
of a chord set. Guérino Mazzola presents in [11] a topological representation of
the seven trichords associated with the degrees of the diatonic scale (for exam-
ple C major) which appears to be a Möbius strip. We propose here a generic
self-assembly process that achieves the same construction for any set of chords.

Spatial Representation of a Chord. We represents a n-note chord by a (n − 1)-
simplex. A simplex is a p-cell that has exactly p+1 faces. For instance, a bounded
line is a simplex but a cube is not (a cube is a 3-cell but has 6 faces). Simplexes
are often represented geometrically as the convex hull of their vertexes as shown
in Fig. 2 for p-simplexes with p ∈ {0, 1, 2, 3}. In the simplicial representation of
chord, a 0-cell represents a single note.

The first step of a spatial representation of a set of chords, consists in giving
a simplicial representation (as presented on Fig. 2) of each chord. As an example,
for the spatial representation of the C major tonality, the seven degrees

IC = {C,E,G} IIC = {D,F,A} IIIC = {E,G,B}
IVC = {F,A,C} VC = {G,B,D} V IC = {A,C,E} V IIC = {B,D,F}

are associated with seven 2-simplexes. The complex associated with a chord is
thus represented by one 2-cell (a triangular surface) whose boundary is composed
of three 1-cells (edges) and three 0-cells (vertexes) respectively associated with
three 2-note chords and a single note. See Fig. 2.

3-cell1-cell

{C,E}

{E,G}

C

{C,G}

{C,E,G}

G E

3-note
chord2-cell0-cell note

2-note
chord

4-note
chord

Fig. 2. A chord represented as a simplex. The complex on the right corresponds to
first degree IC of the C major tonality and all 2-note chords and notes included in it.
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The Space of Chords. To gather in the same ACC all the considered chord
simplexes and their respective boundaries, we must identify the various simplexes
representing the same chord. For instance, merging chords IC and IIIC requires
us to identify three elements: the vertexes E and G, and the two edges {E,G}
as shown on Fig. 3.

We propose to unify these elements by using a self-assembly growing pro-
cess [8] based on the identification of the cells boundaries. This operation is not
elementary because the identification must occur at every dimensions. A sim-
ple way to compute the identification is to iteratively apply, until a fixed point
is reached, the merge of topological cells that exactly have the same faces. The
corresponding topological surgery can be expressed in the MGS syntax as follows:

transformation identification = {
s1 s2 / (s1 == s2 & faces(s1) == faces(s2))
=> let c = new_cell (dim s1)

(faces s1)
(union (cofaces s1) (cofaces s2))

in s1·c
}

The primitive new_cell p f cf returns a new p-cell with faces f and cofaces cf .
The rule specifies that two elements s1 and s2, having the same label and the
same faces in their boundaries, merge into a new element c (whose cofaces are
the union of the cofaces of s1 and s2) labeled by s1 (which is also the label of
s2).

In Fig. 3, the transformation identification is called twice. At the first
application (from the left complex to the middle), vertexes are identified. The
two topological operations are made in parallel. At the second application (from
the complex in the middle to the right), the two edges from E to G that share
the same boundary, are merged. The cofaces of the resulting edge are the 2-
simplexes IC and IIIC corresponding to the union of the cofaces of the merged
edges. Finally (on the right), no more merge operation can take place and the
fixed point is reached.

As expected, the fixed point application of identification to the triadic
chords IC , . . . , V IIC builds the Möbius strip given in Figure 4. Notice that
in [11], the dual complex is described: in this complex, a vertex represents a

C

G

E

BIC IIIC BIIICC

G

E

ICC

E

GG

E

IIICIC B

Fig. 3. Identification of boundaries.
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3-note chord, an edge links two vertexes that share two notes and a face cor-
responds to a note common to three vertexes. Obviously, we can adapt the
construction presented here to self-assemble this complex but our representa-
tion makes the dimension of a note independent of the number of notes in the
considered chords.

Higher Dimensional Spaces. The previous transformation is generic with respect
to the dimension of the simplexes. So, it can be applied without modification for
the p-note chord for any p. For example, the geometrical representation of a four-
note chord is a 3-simplex, that is a tetrahedron (for example IC = {C,E,G,B}).
The elaboration of the cellular complex associated with the 4-note chords of the
seven degrees is difficult by hand. Thanks to the dimension-free definition of the
transformation identification, the cellular complex is automatically computed
by MGS. After computing the Euler characteristic and the orientability coefficient
of the complex, its topology appears to be a toroid (the volume bounded by a
torus). The one dimensional boundary of the Möbius strip exhibits the cycle
of fifths whilst the two dimensional boundary of the toroid exhibits a surface S
composed of triangles representing 3-note chords. It is easier to interpret the dual
D of this surface: each vertex in S corresponds to a polygonal surface in D and
conversely each surface in S correspond to a vertex in D (edges remain edges).
The dual D can be visualized as an hexagonal lattice interpreted as a kind of
tonnetz. This lattice is generated by the intervals of third, fifth and seventh, cf.
Fig. 5. These intervals can be perfect or diminished (for the fifths) and minor or
major (for thirds and sevenths) in order to generate only notes in the C major
scale. This lattice includes the part of the circle of fifths composed by the notes
of the C major tonality.

C G D A E

E B F C

IC VC IIC V IC

IVCV IICIIIC

Fig. 4. Representation of tonality C major. The edge and the vertexes at one end must
be merged with the edge and the vertexes with the same label at the other end. The
resulting surface is a Möbius strip.

3 All-Interval Series

In this section we illustrate a general methodology of spatial computing, using
the enumeration and classification of All-Interval Series (AIS) as an example. We
first make a short presentation of AIS. Then we propose a spatial specification
of AIS. This specification is further used to characterize some noticeable AIS
and to classify them.
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Fig. 5. The toroid boundary is the surface specified by the triangular lattice S (unfolded
on the left). Its dual is the hexagonal latice D (on the center) where notes are organized
following the intervals of fifth, seven and third (on the right).

3.1 Presentation of AIS

The enumeration and the classification of AIS is a widely known problem in the
computing music community. An AIS is a twelve-tone series including eleven
different intervals reduced in Z12. Such series contain many notable properties
[12]. One of them is that the first and the last notes are always separated by a
tritone interval. One of the most known use of this particular kind of series is
probably on the Lyric Suite of Alban Berg:

Intervals:      11     8      9     10     7       6      5      2      3      4       1 

& n n# n n# n n n# n n# n n# n

& n n n n n n n# n# n# n# n# n

!"#$%&''''''(''''''')''''''*'''''''+'''''',''''''-''''''.'''''''/'''''0'''''''1''''')(''''))'
23#$4567%&'''''')'''''')''''''')'''''')'''''')'''''')''''''')'''''')'''''')'''''')''''''')'

!"#$%&''''''-''''''',''''''(''''''1''''''/'''''''*''''''0'''''')''''''+'''''''.''''')(''''))'
23#$4567%&'''''))'''''0''''''1''''')('''''/'''''''.''''''-''''''*''''''+'''''',''''''')'

Chromatic scale 
All-interval series of the Lyric Suite of Alban Berg 

Other composers like Luigi Nono (e.g., Il canto sospeso) or Karlheinz Stock-
hausen (e.g., Grüppen, Klavierstück IX ) used this material in their compositions.
Different computing approaches, increasingly optimized, have been used to enu-
merate the totality of the AIS. One of the first enumeration was done by André
Riotte [15] with the help of a FORTRAN program. This enumeration problem
has quickly become a classical problem in Constraint Programming [20] and is
now part of the 50 problems of the CSPLib [5]. Some previous works have been
based on the enumeration of the All-Interval Chords, which is a similar problem
[14].

Beyond the enumeration of the 3 856 AIS, composers and music analysts
have been interested in finding pertinent criterions to classify them. André Riotte
proposed a classification considering the harmonic content of the AIS. It consists
for example in grouping together AIS containing a sub-sequence corresponding
to the notes of particular scales or chords [15]. We will propose an example
motivated by a similar goal in the next section. Elliot Carter investigated a
classification enumerating all AIS containing in sequence the complete set of
notes included in the All-Triad Hexachord (this 6-note chord is the only one
containing the twelve possible triads) [16]. We can also mention an original
classification from Franck Jedrzejewski based on knot theory [9].
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3.2 Enumeration of All-Interval Series

We propose a new approach for the old problem of AIS enumeration. Our solution
is based on the construction of a topological space adapted for their combinato-
rial analysis.

AIS can be seen as objects that inhabit a specific and well designed abstract
space. Let’s respectively call this space and the objects the support space and the
solutions of the computation. The computation of the AIS consists in finding all
the solutions in the support space. Space is considered as a constraint to guide
the search: the more structured the space, the more efficient the computation.
Thus, the challenge lies in the construction of a relevant support space together
with an efficient search algorithms to find the solutions in the support space.

The notion of search space in the domain of search algorithms corresponds
to the special case of support space where the possible solutions are the points
of this space. In our example, instead of building a search space of 12! ' 479.106

points and looking for the relevant solutions, we will build a much smaller sup-
port space composed of 12 points and we will look for paths in this space exhibit-
ing some relevant properties: here, the paths associated with AIS are Hamilto-
nian.

A first naive method, corresponding to a brute force search, is given to explain
our approach. Finally by adding more spatial structure to the support space, we
increase the efficiency of the computation.

A Brute Force Approach. A brute force approach starts by considering the set
of the twelve notes, and consists in computing all the possible permutations and
keeping those having exactly eleven different intervals.

The spatial expression of this algorithm is straightforward. The support space
of the computation is here the set of the twelve notes. From a spatial point of
view, a set is a topological collection corresponding to a complete graph: each set
element is associated with a vertex labelled by the element itself. The complete
graph topology, meaning that there is an edge between each pair of vertexes,
specifies that there is no predefined order between the elements. Fig. 6 presents
the support space we consider for the computation of the AIS.

In this space, a permutation is an Hamiltonian path where each note appears
only once. Using the definitions given section 2, these paths exactly correspond
to the (0, 1)-paths of maximal length: the elements are the 0-cells that have to
be neighbor by dimension 1 (that means linked by a 1-cell). An example of a
(0, 1)-path is given in bold on Fig. 6. Such path is easily expressed using an MGS
pattern:

n0, n2, ..., n11 / ais(n0,...,n11)

In this pattern, the comma stands for the (0, 1)-neighborhood. The additional
guard ais(n0,...,n11) checks if the Hamiltonian path matched by the ni is
an AIS or not: the predicate ais holds if its arguments correspond exactly to
11 distinct intervals. Thus, this pattern specifies exactly the solutions of our
computation.



Building Topological Spaces for Musical Objects 9

C

C]

D

D]

E

F

F]

G

G]

A

A]

B

Fig. 6. Spatial representation of Alban Berg’s AIS (in bold in the complete graph).

Optimizing a spatial search algorithm can be done at the level of the solution
specification and at the level of the support space definition. We propose in the
following both optimizations.

Optimization of the Solution Specification. One can easily notice that the largest
part of the computations involved by the brute force approach is useless. Indeed,
it is possible in most of the cases to detect that a series is not all-interval before
having determined the twelve notes. For example, if the interval between n0 and
n1 is the same as the interval between n1 and n2, there is no need to look further.
In other words, predicate ais can be distributed along the path specification in
the pattern.

Suppose that the edges of the graph pictured in Fig. 6 are labeled by the
corresponding intervals (e.g. the edge between E and G is labeled by 3). The
following pattern distributes the evaluation of the predicate ais along the match-
ing of the path:

n0 < i1 > n1
< i2 > n2 / (i2!=i1)
< i3 > n3 / (i3!=i1) / (i3!=i2)
...
< i11 > n11 / (i11!=i1) / ... / (i11!=i10)

This pattern is quite similar to the previous one. One of the major differences
stands in the use of < ip > instead of the comma to express the neighborhood.
The pattern variable ip corresponds to the interval between the notes np′ and
np with p′ = p − 1. Assuming that the edges are labelled by the corresponding
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interval, the path specifies an AIS if all the labels ip are distinct3. This property is
ensured by the guards (ip!=iq) that are distributed along the pattern as required
by the optimization. The search algorithm induced by this pattern corresponds
to the algorithm of the FORTRAN program given in [12]. This new pattern
speeds-up the computation of the AIS by a factor of 30.

Optimization of the Support space. There are two different kinds of constraint
in the solution specification: spatial constraints and logical constraints. Spatial
constraints specify which sub-parts of the support space are structural candidates
for being solutions without taking labels into account. On the other hand, logical
constraints are used to determine the solutions among the structural candidates
by checking some formulas on labels. The two previous patterns are spatially
equivalent. In fact, the previous optimization does not decrease the number of
structural candidates but only reduces the number of visited candidates from
12! to about 9.106 during the computation by avoiding the whole construction
of wrongly started paths.

From a spatial point of view, it is more interesting to optimize the search
by reducing the number of structural candidates. Ideally, we are looking for a
totally spatial solution specification (without any logical constraint).

In our example, the proliferation of structural candidates comes from the
lack of spatial distinction between intervals. Indeed, each interval is instantiated
several times: for example, the semitone corresponds to the edge between C and
C], to the edge between C] and D, etc. Therefore, we propose, for each interval
i, to add in the support space, a 2-cell whose faces are exactly the 1-cells incident
to two notes separated by the interval i. This cell represents the class of all the
intervals i. Fig. 7 illustrates the boundary relationships defined for the classes
of the fourth and the minor third. The 2-cells are filled in light gray. Notice that
the topologies of the classes differs: in the given two examples, the minor third
exhibits two holes while the fourth has no hole.

This new space is easily built following the method exposed in section 2.3.
In this space, the specification of the AIS is completely structural. We are look-
ing for a path, made of 0, 1 and 2-cells, which is 0-Hamiltonian and also 2-
Hamiltonian4:

n0 < i1 < I1 > i1 > n1
< i2 < I2 > i2 > n2
...
< i11 < I11 > i11 > n11

Fig. 8 illustrates the instantiation of this path on the five first elements of Alban
Berg’s AIS. It is easy to see on this figure that the spatial constraint consists in
3 We do not enter in the technical details of the correct handling of the edges orien-
tation. We assume that the pattern c < e > c’ means that c (resp. c’) is negatively
(resp. positively) oriented with respect to e.

4 A path in a graph which visits every edge exactly once is called Eulerian. However
there is no general name for path in a complex which visits the p-cells exactly once.
We name such path a p-Hamiltonian path.
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Fig. 7. Spatial representation of the 2-cells (and their boundaries) of the interval classes
associated with the fourth (on the left) and with the minor third (on the right)
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Fig. 8. Spatial representation of the five first notes of Alban Berg’s AIS

matching an additional 2-cell. More precisely, two consecutive notes np′ and np
with p′ = (p − 1) have to be (0, 1)-neighbors by ip and (0, 2)-neighbors by Ip
and such that cells Ip and ip are incident.

Finally, the AIS computation time decreases by a factor of 4 with this solution
specification applied on the original support space extended with 2-cell intervals.
The speed-up obtained by tailoring the support space w.r.t. the brute force
approach is greater than 120.

3.3 A Spatial Classification of AIS

By definition, each AIS visits only one 1-cell in the boundary of each 2-cell. A
natural idea to classify the AIS is then to look further in the structure of the
2-cells boundary. As we can see on Fig. 7, the boundary of a 2-cell is composed
of a variable number of disconnected cycles (here a cycle is a closed (0, 1)-path).
Each cycle is one of the orbits of the action of the corresponding interval on the
set of notes. For an interval i, it is well known that the number of orbits, hence
cycles in the boundary of the associated 2-cell, is di = gcd(i, 12). For instance,
there are gcd(3, 12) = 3 cycles in the boundary of the minor third class 2-cell:

(C −D]− F]−A) (C]− E −G−A]) (D − F −G]−B)
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These cycles can be uniquely identified by an integer between 0 and di − 1
corresponding to the least note of the orbit (with the usual identification between
pitch classes and numbers: C = 0, C] = 1, etc.).

We can associate with an AIS a vectorV = (v1, . . . , vi, . . . , v11) of 11 numbers
giving, for each interval class, the visited cycle. This vector is called the cyclic
vector of the AIS. Beware that the ith element in this vector is associated with
the interval i which does not usually coincide with the ith interval in the AIS.
For example, the cyclic vector VB of the AIS in the Lyric Suite is

interval class i 1 2 3 4 5 6 7 8 9 10 11
di 1 2 3 4 1 6 1 4 3 2 1
VB 0 1 0 2 0 2 0 0 0 1 0

A cluster is the set of AIS sharing the same cyclic vector.

Construction of a Cyclic Vector Compliant with a Given Scale. As previously
mentioned, some composers and analysts are interested in building some AIS
including a sub-sequence of notes having a particular meaning [15,16].

For instance, André Riotte has analyzed AIS containing a sub-series of notes
belonging to a particular scale. This problem can be formalized in various ways.
Based on our representation, we propose the following formulation: given a scale
S containing some whole orbits for some intervals, compute the AIS whose cyclic
vectors includes these orbits. In other words, the two consecutive notes in the
AIS separated by such an interval belong to S.

For example, the harmonic C minor scale C D E[ F G A[ B contains two
orbits (D − F − A[− B) and (E[−G− B) for the interval of minor third and
of major third (and the two corresponding retrograde orbits for major sixth and
for minor sixth). Following the definition of the cyclic vector, these two orbits
are respectively identified by the integers v3 = 2 and v4 = 3. In the same way, we
arbitrarily propose to use, for the tritone class interval, the cycle (F −B) whose
notes are included in the scale too. This choice reaches to define v6 = 5. Interval
classes of minor second (i = 1), perfect fourth (i = 5), perfect fifth (i = 7) and
major seventh (i = 11) correspond for each to a single orbit (identified by the
integer 0). We can summarize the choice of the orbits for each interval in the
following table:

interval class i 1 2 3 4 5 6 7 8 9 10 11
di 1 2 3 4 1 6 1 4 3 2 1
V 0 ∗ 2 3 0 5 0 ∗ ∗ ∗ 0

Among the two possible orbits of the major second class interval, we choose the
cycle (C] − D] − F − G − A − B) because it contains four of the seven notes
of the scale, i.e. v2 = 1. A check of the remaining possible combinations for the
cyclic vector, gives the following vectors:

V1 0 1 2 3 0 5 0 0 0 0 0
V2 0 1 2 3 0 5 0 0 1 0 0
V3 0 1 2 3 0 5 0 2 0 0 0
V4 0 1 2 3 0 5 0 2 1 0 0
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Each vector is associated with a different non-empty set of AIS. Because of the
constraints on the orbits we have imposed for some intervals, we know that all
these AIS include several times in their structure two consecutive notes included
in the harmonic C minor scale. A research of AIS containing the longer sub-
sequence of notes belonging to the scale reaches to the following series associated
with the vector V2:

E D[ G[ F B D C A[ E[ G A B[

As we can observe, this AIS contains in sequence the seven notes of the harmonic
C minor scale.

Geometry of the Clusters. There are about
∏

i di = 3456 possible clusters where
the 46 272 AIS are scattered (some clusters are empty). We introduce here some
preliminary idea to study how they are related with each other in the light of the
standard algebraic operations sending an AIS to another one [12]. Given an AIS
(n0, . . . , nj , . . . , n11) with corresponding cyclic vector V = (v1, . . . , vi, . . . , v11),
the application of an operation ϕ computes an AIS (n′0, . . . , n

′
j , . . . , n

′
11) with

corresponding cyclic vector V′ = (v′1, . . . , v
′
i, . . . , v

′
11) defined by:

– for the transposition ϕ = Tb

n′j ≡ nj + b mod 12 and v′i ≡ vi + b mod di;

– for the homothety ϕ = Hp (p relatively prime with 12)

n′j ≡ p nj mod 12 and v′i ≡ p vp−1 i mod di;

– for the retrograde ϕ = R

n′j ≡ n−j−1 mod 12 and v′i ≡ v−i mod di;

– for the circular shift ϕ = Q (w is the position of the tritone)

n′j ≡ nj+w mod 12 and v′i ≡
{
n0 mod di if i = 6
vi mod di otherwise .

We aim at simplifying the study of the AIS distribution within the space of
clusters by studying these operations.

Previous studies considered only the 3 856 normalized AIS (i.e., beginning
with C); the others AIS can be reached by the 11 transpositions. Unfortunately
this reduction is not relevant in the context of cluster classification which relies on
the interval classes but not on the notes positions. In other words, the normalized
AIS are not localized in a specific subset of clusters. Nevertheless, a normalized
AIS always ends with F], so the circular shift of a normalized AIS produces an
other AIS

Q(0, . . . , nw, nw+1, . . . , 6) = (nw+1, . . . , 6, 0, . . . , nw)
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where the visited tritone class is (C − F]): thus, it belongs to a cluster with
v6 = 0. We can only consider the

∏
i 6=6 di = 576 clusters with v6 = 0. Since

these clusters also include the AIS of the form (. . . , 0, 6, . . . ), the symmetries
induced by the retrograde R and the transposition T6 can be used to reduce
a step further the set of clusters. The 156 remaining clusters are completely
identified and exactly include 3 856 different AIS (equivalent to the normalized
one using R, T6 and Q). Finally, the last operations, namely the homotheties,
decrease this number to 72. This reduction process, as well as the proofs, are
detailed in a companion technical report [18].

4 Conclusion and Future Work

This paper aims at presenting the first results in the application of the spatial
computing paradigm to musical theory problems. The two problems illustrating
our approach are the structure of the n-note chords of the diatonic scale and the
classification of the AIS. They are hardly new, but the framework presented here,
based on the topological notions supported by the MGS programming language,
is generic. For instance, one can study systematically the simplicial complex
associated with an n-note chord series for a wide range of n, even for n > 4
when it cannot be graphically visualized. The topological formalization of the
AIS enumeration relies on the hamiltonicity of a path in a well-designed space,
a notion already used elsewhere as a compositional tool (e.g., Robert Morris in
Hamiltonian Cycle: Saxophone, Michael Winter in Maximum Changes or Gio-
vanni Albini in Corale #4, preludio for cello and string orchestra) to express
various musical constraints [1].

We believe that this preliminary work shows the interest of a framework
enabling the systematic building and processing of abstract spaces that appear
in musical analysis. Our framework is based on spatial notions developed and
studied in algebraic topology, and then amenable to a computer implementation
due to their algebraic nature. Initially developed for the modeling and the sim-
ulation of dynamical systems, it appears well suited for the musicologist. As a
matter of facts, one of the benefits of the spatial approach is the expressiveness
and the concision of the constraint formulation. Only one rule is used to build
the underlying space and only one rule is enough to specify the path to search.

We are currently working on spatial approach for the enumeration of Hamil-
tonian paths in various chord networks. We are also investigating the detailed
geometry of the clusters of AIS. Future works include the validation of the ap-
proach on more examples and on larger scale problems, as well as the develop-
ment of additional spatial constructions that may be necessary to handle further
musical formalizations.
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