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ABSTRACT

We present an approach to model the temporal evolution of audio
descriptors using Segmental Models (SMs). This method allows
to segment a signal as a sequence of primitives, constitutedby a
set of trajectories defined by the user. This allows one to explic-
itly model the time duration of primitives, and to take into account
the time dependence between successive signal frames, contrary
to standard Hidden Markov Models. We applied this approach to
a database of violin playing. Various types of glissando anddy-
namics variations were specifically recorded. Our results shows
that our approach using Segmental Models provides a segmenta-
tion that can be easily interpreted. Quantitatively, the Segmental
Models performed better than standard implementation of Hidden
Markow Models.

1. INTRODUCTION

One way of producing innovative music is to add complex sounds
to the composer’s vocabulary. We can think of various examples
such as noise machines of the italian Futurists1, sounds produced
from electronical devices as well as extended playing techniques
on traditionnal instruments [1, 2, 3]. Along a single sound event,
complexity can be introduced by modulating pitchness, the timbre
enveloppe, granularity etc. In such cases, an elementary sound
can not be described only with steady values for pitch, timbre,
duration and intensity values, which is the modeling assumption
behind most systems designed for western music transcription.

If one wants to describe such complex notes, it is desirable
to seek for existing sound ontologies [4, 5]. We pursue ideas
from previous works [6, 7] where authors aimed to implement
ideas from Pierre Schaeffer’s description of sounds[8]. One could
roughly describe his system as the representation of complex notes
as characteristic temporal profiles on perceptual dimensions. In
these works, the authors designed temporal features in order to
fit Schaeffer’s morpholgical sound descriptions. There areseveral
limitations in these previous attempts that we try to overcome in
the present work. The first comes from considering global fea-
tures on an isolated portion of sound as opposed to instantaneous
features. This is suboptimal from a statistical learning standpoint.

1The Intonarumori (noise intoners) built by Russolo in the early 20th
century.

Defining sub-units would allow to limit the number of models [9].
Moreover, the combination of sub-units can lead to more expres-
sive models, as the use of a limited set of phonemes allow the
modeling of a high number of words.

In the proposed approach, we try to overcome these limitations
by proposing a statistical framework to explicitly model audio de-
scriptor trajectories. The modeling philosophy consists in tak-
ing maximum advantage of our prior knowledge that data can be
viewed as trajectories, so that subsequents observations are strongly
correlated. This segmental approach already used for handwriting
modeling in [10] has proven to be a good solution when only little
training data is available. Furthermore, explicitly modeling the du-
ration has shown to increase robustness to noisy conditions[11].
The statistical framework is based on Segmental Models (SMs).
SMs are a generalization of Hidden Markov Models (HMM) [12]
that address three principal HMM limitations: 1) weak duration
modelling, 2) assumption of conditional independence of obser-
vations given the state sequence and 3) the restrictions on fea-
ture extraction imposed by frame-based observations [13].To the
contrary, SMs provide explicit state duration distributions, explicit
correlation models and use segmental rather than frame-based fea-
tures.

The paper is structured as follows. In section 2 we introduce
the formalism of SMs and how we adapt it to audio descriptors.
In section 3, we present an experimental set up to validate our
approach. We finally present the results of a classification task,
and give perspective for future studies in sections 4 and 5.

2. SEGMENTAL MODELS

In this section, we present some key points of the SM formalism
to model time dynamics. This modelling is based on a set of curve
primitives that we introduce here. We also describe the decoding
process that permits to segment a signal into a sequence of curve
primitives.

2.1. Model Description

The SM formalism addresses two aspects that are particularly es-
sential for our approach. We briefly review these two points and
we invite the reader to refer to [13] for a more in-depth presen-
tation of SMs. First, contrary to HMMs where observations are
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assumed to be independent from each other, SMs directly model
sequences of observations. Each state represents elementary curve
shapes, also called primitives. This first property enablesto fully
consider possible time dependence between successive signal frames
thanks to the use of explicit curve shapes. The second property ad-
dresses duration modeling of states. In SMs, the time spent in each
state is defined in a flexible way, using duration distributions. This
permits to reflect that each curve shape possesses a characteristic
duration length with some variability. Combined together,these
two properties enables to consider curve primitives with possible
amplitude and/or time deformations, which grants a flexibleframe-
work for the modelling of shapes. SMs have shown successful in
data mining to identify patterns in time series [14], or to provide a
higher level representation in handwriting recognition tasks [10].
We here extend the idea to model time shapes in audio feature
curves.

We represented on Figure 1 the general concept of the seg-
mental approach applied to a monodimensional signal. We built
an ergodic model where each stateSi is a predefined curve primi-
tive: for each curve primitive, several duration lengthslj are pos-
sible. This topology then enables to decompose the input signal
into a sequence of primitives, each characterized by a duplet (Si,
lj), using the decoding procedure presented in section 2.3.
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Figure 1: Model topology for the SM: each state represents a curve
primitive Si with possible duration lengthslj . The model is fully
connected. The decoding procedure then segments an input signal
into a sequence of duplets (primitives, lengths).

2.2. Trajectory Models

From the model description, it appears that the choice made for
the set of curve primitives is crucial. It not only conditions the ob-
tained segmentation, but a judicious choice of primitives can addi-
tionally grant a level of interpretation on the signal decomposition.

In this paper, we defined a set of primitives a priori as done in[15]:
the primitives are segments with constant or weak curvature, with
slopes equally distributed within[−π/2; π/2].

A T-long trajectory is generated using an initial angleθinit, a
final angleθfinal, and the following linear interpolation:

θt = θinit +
n

T − 1
(θfinal − θinit), with t = [0, T − 1]

Varying T, we obtain different lengths of elementary trajectories.
Varyingθinit andθfinal, we can set the main segment angle. A set
of nine such elementary models is illustrated on Figure 2a. Each
segment represents an archetype building block for a feature curve,
in the sense that it is built upon the idea that any feature curve could
be roughly described as a concatenation of successive segments
with various durations.

The reason for choosing this set is partly inspired by the work
in [16] where the author compared an analogous predefined set
to a more specific one, learned from several handwriting datasets,
and found that the predefined one were generic enough to account
for any handwriting curve. We adapted it using only segmentsin
the x-positive plane. Although quite basic, these curve primitives
can capture possible trends of signal, typically stationary, going
up or down. In addition, these features actually match aspects of
the sound typology proposed by Schaeffer [8]. More advanced
primitives can also be defined, in particular primitives with more
specific curve shapes.

Another important aspect in the modeling deals with the choice
of a set of possible duration lengths for the primitives. This set
actually controls the time deformations that each primitive can as-
sume and parallely defines a temporal granularity.
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Figure 2: Set of nine curve primitives

2.3. Decoding

The decoding of the ergodic model yields to a segmentation ofan
input signal into the chosen primitives. We perform this step on
the basis of amaximum a posteriorilikelihood, with a 3D Viterbi
procedure [13].

For an observed input signalx0...xt, we compute the corre-
sponding sequence of anglesθ̂1...θ̂t to be invariant to possible
curve offsets. We use the following formula :

θt = arctan((xt − xt−1) ∗ fr) (1)

wherefr is the input signal’s frame-rate.
Assuming a white gaussian noisebt with varianceσ for the

observations, we get̂θt = θt + bt. The likelihood of the primi-
tive Sk with respect to the observed sequence of anglesθ̂1...θ̂t is
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approximated, as done in [10]:

− logp(θ̂1...θ̂t|t, Sk) =
1

2

t
X

i=1

(θ̂i − θi)
2

σ2
(2)

whereθi is an element in the sequence of angles forSk.
For an observed sequence of anglesθ̂1...θ̂T , the decoding is

based onδt(j), the log probability of the most likely sequence of
elementary trajectories ending with trajectory labelj, at timet:

δt(j) = max
i=1,...,M

max
l∈L

δt−l(i) aij pj(l) p(θ̂t−l+1...θ̂t|l, Sj) (3)

whereaij is the transition probability from stateSi to Sj , M is
the number of elementary trajectories,L is the set of possible du-
ration lengths, andpj(l) the probability to stay in stateSj during
l successive observations.

Choosing the maximum posterior probability path yields to
two N -long sequences:SN

1 and lN1 , whereN is the number of
states in the path. These two sequences actually give a representa-
tion of the input signal temporally decomposed on the set of primi-
tives. Given our choice of curve primitives, this decomposition di-
rectly informs us of the signal trends over successive time ranges.

3. EXPERIMENTS

The approach was evaluated on a set of violin contemporary play-
ing techniques. We describe here the datasets, the chosen audio
description and the evaluation procedure.

3.1. Dataset

We specifically recorded data to carry out an evaluation of our
approach. The music material involved various pitch and inten-
sity profiles. To do so, we defined a musical vocabulary (see
Figure 3a ) composed of two pitch profiles (upward glissando,
downward glissandoand three intensity profiles (crescendo, de-
crescendo, sforzando, refered asp1,2 andi1,2,3 respectively. This
vocabulary was chosen for the strong intrinsic temporal evolutions
of its elements.Crescendi(resp. glissandi) consist in continu-
ously progressing from one intensity level (resp. pitch) toanother.
Sforzando consists in a step-like intensity profile with a louder
part at the beginning. We generated short music sketches outof
this vocabulary, by random combination of the vocabulary’sele-
ments with random pitches. Each sketch is a four-beat score,each
beat being a combination of one intensity profile and one pitch
profile. Moreover, no global dynamic levels were imposed, only
crescendianddecrescendi. Figure 3b shows one example of a gen-
erated music sketch.

We automatically generated 43 sketches involving random pro-
portions of pitch and intensity profiles. The generated scores were
interpreted by a violin player at a given tempo of60 bpm. Sound
was recorded at44100 Hz, and sliced into46.4 msec windows,
every5.8 msec, yielding an approximate frame ratefr = 172 Hz.

3.2. Audio Features

We extracted two sound descriptors, highly correlated to the musi-
cal dimensions of pitch and intensity involved in our data, namely
fundamental frequency [17] and loudness [18]. In order for the
considered pitch profiles to be shift-invariant along the frequency

!" ###
sfz

## #

!" ### #
sfz

##

b)

p1

p2

i1 i2 i3a)

! " # #
sfz

## # # # #
(p2,i2) (p1,i2) (p1,i3) (p2,i1)

Figure 3: Pitch and intensity vocabulary elements (a) and sketch
example generated from the combination of pitch and intensity
profiles (b). Sketches were performed on a violin.

axis, fundamental frequency was mapped fromHertz to a loga-
rithmic scale (cents). The descriptor sequences were normalised
within the [0, 1] interval, using the possible violin ranges in pitch
(190Hz to 4400Hz) and intensity (0.01 Sones to 15 Sones).
Subsequently, these values are converted to angle sequences with
Equation 1.

3.3. Evaluation Method

To assess our approach, we carried out a classification task on the
vocabulary elements defined in section 3.1. The tasks can be iden-
tified as:

• taskT1: classify theupwardanddownward glissandopitch
profiles

• taskT2: classify thecrescendo, decrescendoandsforzando
intensity profiles

The audio feature computation on each class element yields to a
set of pitch and loudness values on which we separately ran a 3D
Viterbi decoding. The output sequences of primitives and asso-
ciated durations are then fed into a higher level HMM to consti-
tute models of each vocabulary elements. This step is similar to
the higher-level stage performed in [10] and can be seen as a way
to agglomerate constitutive sub-units (i.e. the user-defined primi-
tives) into larger semantic units. For this higher level HMM, we
chose a 3-state left-right topology with a 2-dimensional Gaussian
model and diagonal covariance to account for state indices and
segment duration lengths.

The classification task was performed as follows. A typical
train/test round consisted in training the higher-level model on a
randomly picked70% of the data, and testing on the remaining
30%. To evaluate a model on a given task, we ran each train/test
round ten times in a row and averaged the classification scores on
each test set. Training the models was done with conventional
EM learning [19] using HTK [20] with simple left-right models.
Classification scores were computed as the mean of diagonal terms
on the normalised confusion matrix.

As a reference, we performed the same classification tasks
with a HMM directly operating on the audio frames. We used
the same 3-state left-right topology and train/test procedures, with
a 1-dimensional Gaussian model to account for an incoming an-
gle sequencêθ1...θ̂t. The experiment protocol is summed up on
Figure 4
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Figure 4: Experimental set overview. A left-right HMM with three
states is trained with segmented observations output from the seg-
mental decoding procedure. Classification results are compared to
a left-right HMM operating on audio frames.

4. RESULTS

In this section, we first give a qualitative result intendingto illus-
trate a typical output of the segmental decoding layer. We then
give quantitative results on the classification tasks.

4.1. Segmentation results

The segmentation was performed using the primitives presented in
section 2.2. We defined the set of possible duration lengths with
values linearly taken between230ms (roughly corresponding to
short violin note) and2.6s (several notes). The curves on Figure
5 show the resulting segmentation for one example of pitch profile
and loudness profile.

We can see that on this example, theglissandois composed
of three phases, i.e. flat pitch then increasing pitch and again flat
pitch. This description in itself is quite informative on the violinist
playing as we are able to see the details of his performance onthis
vocabulary element: in this example the pitch increasing phase was
relatively short with two well defined flat phases. On the loudness
profile, we can see that thecrescendois composed of a linearly
increasing phase during most of the time before a rapid release.
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Figure 5: Segmentation results on two profile classes from DB1.
a) shows a pitch profile for anupward glissandoclass. b) shows an
intensity profile for acrescendoclass. Below each feature curve,
the sequence of primitive labels and durations is reported.In each
box, the shape of the corresponding symbolic representation of
each primitive is printed.

4.2. Classification results

Classification scores for pitch profiles displayed in Figure6 (task
T1) show that the segmental approach performs significantly bet-
ter than the baseline frame-based approach (median value at92%
versus 72%). Moreover, the results also show more consistency
as their variability is much smaller in the segmental approach (in-
terquartile of 7 versus interquartile of 18). For the loudness profiles
(taskT2), results appear to be relatively similar between the two
approaches (median value around 77%). However, the segmental
approach shows once again a narrower variability in classification
(interquartile of 3 versus interquartile of 12).

We can get insight of these results by inspecting the learned
models and how the data fits. Figure 7 shows an example of the
learned models for the two pitch profiles, for the frame-based ap-
proach (a and c) as well as for the segmental approach (b and d).
As one could expect for this classification task, the second state
seems to be the most discriminating one. In the frame-based ap-
proach, the second-state Gaussians only differ by a slight differ-
ence of mean, and tend to overlap. In the segmental approach,
these second-state Gaussians are much more distinct. Interest-
ingly, looking at the graphs, the segment duration observations do
not seem to add much more discriminative power to the model.
When inspecting loudness models, no such clear contrast wasob-
served between the two approaches on the Gaussian distributions.
In both cases, data looked less unimodal, which questions the cho-
sen topology.
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Figure 6: Classification scores on tasksT1andT2.

5. CONCLUSION AND PERSPECTIVES

We propose the use of Segmental Models to segment time curves
of audio signals. The implementation we proposed was tested
on two classification tasks using a database of violin contempo-
rary playing. The segmental approach performed better thanstan-
dard implementations of Hidden Markov Models in most cases.
Importantly, Segmental Models overcome well-known limitations
of HHMs, by explicitly modeling the time duration of primitives,
and by taking into account the time dependence between succes-
sive signal frames. Future perspectives may adress the study of
a realtime implementation on a data stream, using Viterbi exten-
sions such as in [21]. The segmental approach performed wellon
a monophonic instrument in the context of contemporary music,
however we believe that this approach can be easily extendedto
broader situations. In particular, we are investigating the use of
more complex curve primitives to directly address specific sound
components. Besides, we are also currently extending the ap-

DAFX-4



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

�� �" # "
�#

#$%

"

&'($)"

*
+
" �! �" # " !

#

%

"#

*
+
! �! �" # " !

#

"

!

*
+
,

�! �" # " !
#

"

!

$%&'("

)
*
" �! �" # " !

#

#'+

"

)
*
! �! �" # " !

#

+

)
*
,

1 2 3 4 5 6 7 8 9
0

0.5

1

Dim. 1

k
=
1

1 2 3 4 5 6 7 8 9
0

0.5

k
=
2

1 2 3 4 5 6 7 8 9
0

0.5

1

k
=
3

0 200 400
0

0.005

0.01

Dim. 2

0 200 400
0

0.02

0.04

0 200 400
0

0.005

0.01

1 2 3 4 5 6 7 8 9
0

0.5

1

Dim. 1

k
=
1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

k
=
2

1 2 3 4 5 6 7 8 9
0

0.5

1

k
=
3

0 200 400
0

0.005

0.01

Dim. 2

0 200 400
0

0.02

0.04

0 200 400
0

0.005

0.01

angle si lia) b)

c) d)

Figure 7: Observation densities and state aligned data for learned
models for the two pitch classes.k stands for the state number
of the model. a) states of the frame-based HMM for classp1. b)
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based HMM for classp2 d) states of the segmental HMM for class
p2

proach to multidimensional features that could include other modal-
ities like mouvement data.
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