
SOUND WRITING AND REPRESENTATION IN A VISUAL
PROGRAMMING FRAMEWORK

Jean Bresson and Carlos Agon
IRCAM - CNRS UMR 9912

Music Representations Research Group

ABSTRACT

This article addresses the issue of the representation and manip-
ulation of sounds in Computer-Aided Composition and presents
related works in the OpenMusic visual programming environ-
ment.
Keywords– Computer-Aided Composition, Visual Programming,
Sound Synthesis.

1. INTRODUCTION

OpenMusic (OM) [1] [2] is a visual programming language for
music composition that allows composers to create and exper-
iment on formal computing models of musical structures and
processes. It is a visual extension of the LISP/CLOS language
improved with data structures and features specialized in the mu-
sical processing.
The Computer-Aided Composition (CAC) approach followed by
OM puts forward the notion of potential scores; it provides vi-
sual representations of music, but also writing supports, that is,
places where symbols and objects are organized and thought in
order to develop processes leading to musical constructions [3].
Visual programming seems us an interesting approach for this
conception of music representation, by offering a great expres-
siveness together with readable interfaces (see Figure 1).

Figure 1. Creating musical structures by visual programming
in OpenMusic.

In this framework, we investigate the possibilities to integrate
new tools and structures for the manipulation (analysis, synthe-
sis, processing) of sound signals.

Email: jean.bresson@ircam.fr

Contemporary music practices, indeed, increasingly make use
of both symbolic computing and sound synthesis techniques, but
these two aspects are generally designed and performed inde-
pendently. We believe that putting them together in a same en-
vironment improves the musical expressiveness afforded by the
computer for music creation.
We hence deal with new problems which were not that salient
when the finality was limited to the building of somehow tradi-
tional scores by computing means, and regardless (from a com-
positional standpoint) of the actual rendering of this score. Sound
description data are not the more adapted to symbolic process-
ing and visual programming, due to the new scales and ontology
of these musical objects. Musical writing and representation are
thus to be thought through a renewed angle, and the program-
ming framework must be adapted in order to integrate and bridge
the low-level sound processing data and conformed high-level
compositional tools.
This article presents some propositions developed in OpenMu-
sic, regarding data structures (section 2), programming tools (sec-
tion 3) and high-level writing supports (section 4).

2. DATA STRUCTURES

2.1. High-Level Control and Low-Level Processing

CAC evolves in the symbolic domain, using high-level represen-
tations of objects and processes. In the domain of sound syn-
thesis, this is more the question of continuity, of precise, inte-
gral descriptions, including sound signals but also all their ana-
lytic representations, temporal trajectories and evolutions. The
amount of data concerned is also much bigger than when notes
are the smallest compositional primitives.
The new compositional data structures must therefore incorpo-
rate both a symbolic side for the high-level control and setting of
the sound descriptions, and a low-level side where precise sub-
symbolic signal descriptions [4] are dealt with.
Sound synthesis is generally controlled by some sets of punc-
tual data, envelopes (temporal evolutions of some parameters),
or matrices. All these structures, as well as the sound itself, ex-
ist among the OM classes, together with tools for manipulating
them; they are objects which can be created and transformed
in the visual programs, and be part of the symbolic processing
framework.

2.2. Matrices: a Link Between Symbolic and Signal Process-
ing

The matrix is an important class in the OpenMusic sound syn-
thesis tools. It can be constituted of various kinds of data and
behaviours that describe a sound or a part of it. The joint repre-
sentation of these data allow to consider them as a single object



in the computing flows, and especially to consider relations be-
tween them and between their individual evolutions. Figure 2
shows an example of an OM patch in which a sound is speci-
fied in the form of a matrix. This matrix is then converted into a
sound file through a synthesis function.

Figure 2. Using an OM matrix for the control of a sound syn-
thesis process.

Matrices can be set by symbolic means. They are made of a set
of different parameters which can be specified by objects such as
data lists, BPF, or functions. These symbolic data are evaluated
and sampled depending on the pre-specified size of the matrix
in order to fill the numerical values of the array [5]. The sym-
bolic specification is thus dealt with separately from the numeric
values, computed in a latter phase (generally, that of the sound
synthesis process). This allows to keep working in the symbolic
domain while creating the control objects.
Furthermore, the control data can be transformed and completed
dynamically at the time of the synthesis thanks to an optional
user defined function for the initial matrix elements processing.
Programs and data are thus mixed in this matrix object in order to
integrate structural and behavioural properties of the description.

2.3. The SDIF Format: a Generic Support for Sound De-
scriptions

SDIF (Sound Description Interchange Format) [6] is a standard
format for the storage and transfer of sound description data. It is
an open and flexible format, based on a matrix data flow, which
we proposed to use as a generic support for the concept of sound
description in the compositional framework [7]. An SDIF file
concentrates in a standardised way the simultaneous temporal
evolution of different matrices of data, and allows the design of
generic tools for their manipulations. A class represents an SDIF
file in OM, and is assorted with tools for its manipulation either
in the visual programs or using a dedicated editor (see Figure 3).
The use of external files also allows the storage of sound de-
scriptions on the disk, separately from the control level, and thus
to prevent the data to use up too much space in the patches and
processes.

Figure 3. SDIF-Edit [8]: visualization of SDIF sound descrip-
tion files.

3. PROGRAMMING TOOLS

3.1. Low-Level Data Programming

Composers usually do not directly work with low-level data in
CAC systems, but rather deal with high-level symbolic struc-
tures. However, in order to control the deep structure and ren-
dering of music in such a framework, the low-level data manage-
ment must be available in it.
Composers must then be provided with tools for a direct inter-
action with the low-level processing in order to develop creative
paths between symbolic and sound synthesis domains, without
being restricted by predefined tools.
The MIDI toolkit developed in OM [9] was an example in this
perspective: a set of classes and functions representing the ba-
sic MIDI structures and operations, completed with compound
structures, allowed to bridge MIDI and symbolic objects and to
develop visual programs for controlling the low-level MIDI pro-
cessing, communication and rendering.
The SDIF tools now allow for the similar operations with gen-
eralized sound descriptions. Various classes correspond to the
SDIF format specification structures (frames, matrices, streams,
types, etc.) and to manipulate these data in order to build user-
defined structures (see Figure 4), possibly bound to be sent or
transferred to external software tools.

Figure 4. Creating SDIF structures in OpenMusic.

TheSDIFMatrix class is an extension of the OM matrix pre-
sented above, and therefore benefits from the same capabilities
for its symbolic setting and processing.



Files (in ASCII or SDIF formats) can be dynamically handled
in the visual programs using a file stream reader/writer iteration
(see Figure 5).

Figure 5. Example of afile-box program in OM: iterative
writing of SDIF data frames in a file (the file pointer is repre-
sented by thestreamfile box).

3.2. Sound Processing Connection

Csound [10] and Modalys [11] are the most frequently used syn-
thesizers in association with OM. Instruments and scores can be
created for them in visual programs [12] [13], and represent the
specifications of how will the control data be processed in order
to produce the sound.
The sound synthesis, starting from sound descriptions or control
data and synthesis patches, is performed by external tools for
which OM translate these data in the form of parameters files
and/or command lines. Interface functions then allow to run the
corresponding programs from the OM patches an to get back the
resulting sound files.
A set of functions connected to the underlying audio manage-
ment system [14] also allow to perform sound processing opera-
tions on sound files within the visual programs.
In terms of programming, all these sound processing connection
tools allow to incorporate these operations in the functional flow
paradigm of the environment. Further descriptions are given in
[15].

4. SUPPORTS FOR MUSIC WRITING

4.1. Visual Programs

The data structures and programming tools presented above thus
allow the composers to create compositional models extended
from the high-level symbolic domain down to the signal process-
ing part within the OM environment. The functional abstractions
and patch embedding possibilities provided by the programming
environment allow the users to define successive abstraction lev-
els, between which they can translate their work in order to com-

pose simultaneously on the musical forms constructions and on
the sound synthesis processes.
Other writing/programming supports, bound to be used for the
creation and control of sound synthesis processes are currently
studied and developed in this scope. We will briefly present two
of them in the next sections.

4.2. Temporal Programs:Maquettes

The maquette[1] is a programming interface provided with a
temporal axis which allows to unfold the musical objects and
processes in a temporal context. This is a powerful tool that
unites temporal and functional properties of a musical structure.
In [17], we proposed an extended model providing a control over
the program semantics of the maquette.
An example is given in Figure 6: the control structures (three
break-point functions) are generated and temporally organised
in the maquette (at the right). This temporal form is then pro-
cessed by an auxiliary program attached to the maquette (at the
left), that specifies its functional semantics. This semantics cor-
responds to a sound synthesis process, so that the result is a
sound file, represented in the bottom-right part of the figure.

Figure 6. Design and control of a sound synthesis process in a
maquette.

We thus retrieve here the distinction between the control level
and the sound processing level; the maquette being the interme-
diate representation providing the user with a high-level access
to the musical form constituted by the control data, and assorted
with a control over the low-level sound processing.
The possibility to embed the maquette one in another addition-
ally enables the construction of hierarchical structures, where
the result of the processing of one hierarchical level becomes a
control primitive in the upper hierarchical level.

4.3. Multi-modal Scores:Sheets

The sheetis another type of document which development is
currently in progress. It will support the joint representation of
heterogeneous objects (voices, sequences, sounds, controllers,
etc.) in a same score-based support. The sheet (see Figure 7) is
organized in tracks; each one contains a set of sequenced objects,
which can be musical objects or control structures, but above all
that can proceed from both musical (e.g. scores) or linear (e.g.
sounds) time representations. In this case, the linear represen-
tation is left down for guarantying the visual alignment of any



Figure 7. A sheet including two tracks. The sound of track 2 is synthesised using some data from the voice in track 1. Both objects
are represented in a common temporal axis: the sound segments (1 second each) are graphically scaled in order to respect the space
distortions created by the score display.

simultaneous objects or object elements (e.g. notes in a voice,
inflexion points of an envelope, markers in a sound, etc.)
Visual programs can also be developed in the sheet, and incorpo-
rate the tracks’ musical objects. This score can thus be evaluated,
making some parts of it depend on other parts while maintaining
a coherent temporal representation.

5. CONCLUSION

In this article we presented some features of the OpenMusic
visual programming environment, that allow the users to work
with sound related data (analysis data, synthesis parameters, or
any personal representation which we group under the term of
sound descriptions), and provide a control over the low-level mu-
sical processes, traditionally delegated to predefined tools.
We also mentioned interfaces for the high-level composition in
this framework, that provide some extended musical representa-
tions and writing supports.
As we explained in the introduction, we believe that one of the
interesting potentialities of computer music is the availability of
both symbolic musical constructions and sound generation and
synthesis means within a same tool (the computer). A full con-
trol of music in this context thus includes these two levels and
must allow for easy and cross connections between them.

6. REFERENCES

[1] C. Agon, OpenMusic : Un langage visuel pour la compo-
sition musicale assiste par ordinateur, Ph.D. thesis, Uni-
versit́e Pierre et Marie Curie (Paris 6), France, 1998.

[2] G. Assayag, C. Agon, J. Fineberg, and P. Hanappe, “An
Object Oriented Visual Environment for Musical Compo-
sition,” in Proceedings ICMC, Thessaloniki, Greece, 1997.

[3] G. Assayag, “Computer Assisted Composition today,” in
1st symposium on music and computers, Corfu, 1998.

[4] M. Leman, “Symbolic and subsymbolic description of mu-
sic,” in Music Processing, G. Haus, Ed. Oxford University
Press, 1993.

[5] C. Agon, M. Stroppa, and G. Assayag, “High Level Con-
trol of Sound Synthesis in OpenMusic,” inProceedings
ICMC, Berlin, Germany, 2000.

[6] M. Wright, A. Chaudhary, A. Freed, D. Wessel, X. Rodet,
D. Virolle, R. Woehrmann, and X. Serra, “New applica-
tions of the Sound Description Interchange Format,” in
Proceedings ICMC, Ann Arbor, USA, 1998.

[7] J. Bresson and C. Agon, “SDIF Sound Description Data
Representation and Manipulation in Computer-Assisted
Composition,” inProceedings ICMC, Miami, USA, 2004.

[8] “SDIF-Edit,” http://recherche.ircam.fr/equipes/repmus
/bresson/sdifedit/sdifedit.html.

[9] J. Bresson, “OpenMusic MIDI Documentation,” Ircam
Software Documentation, 2004.

[10] R. Boulanger, Ed.,The Csound Book, MIT Press, 2000.

[11] N. Ellis, J. Bensoam, and R. Caussé, “Modalys Demon-
stration,” inProceedings ICMC, Barcelona, Spain, 2005.

[12] J. Bresson, M. Stroppa, and C. Agon, “Symbolic Control
of Sound Synthesis in Computer-Assisted Composition,”
in Proceedings ICMC, Barcelona, Spain, 2005.

[13] K. Haddad, “OpenMusic OM2CSound,”Ircam Software
Documentation, 1999.

[14] “LibAudioStream,” http://libaudiostream.sourceforge.net/.

[15] J. Bresson, “Sound Processing in OpenMusic,” inPro-
ceedings of DAFx-06, Montreal, Canada, 2006.

[16] M. Wright and A. Freed, “Open SoundControl : A New
Protocol for Communicating with Sound Synthesizers,” in
Proceedings ICMC, Thessaloniki, Greece, 1997.

[17] J. Bresson and C. Agon, “Temporal Control over Sound
Synthesis Processes,” inProceedings of Sound and Music
Computing Conference - SMC’06, Marseille, France, 2006.


