
OpenMusic

Visual Programming Environment for Music Composition, Analysis and Research

Jean Bresson
STMS: IRCAM-CNRS-UPMC

1, place I. Stravinsky
75004 Paris, France
bresson@ircam.fr

Carlos Agon
STMS: IRCAM-CNRS-UPMC

1, place I. Stravinsky
75004 Paris, France
agon@ircam.fr

Gérard Assayag
STMS: IRCAM-CNRS-UPMC

1, place I. Stravinsky
75004 Paris, France

assayag@ircam.fr

ABSTRACT
OpenMusic is an open source environment dedicated to mu-
sic composition. The core of this environment is a full-
featured visual programming language based on Common
Lisp and CLOS (Common Lisp Object System) allowing to
design processes for the generation or manipulation of musi-
cal material. This language can also be used for general pur-
pose visual programming and other (possibly extra-musical)
applications.

Categories and Subject Descriptors
D.1.7 [Software]: Programming Techniques—Visual Pro-
gramming ; J.5 [Computer Applications]: Arts and Hu-
manities—Music

General Terms
Design, Languages

Keywords
Visual Programming, Music, Computer-Aided Composition.

1. COMPUTER-AIDED COMPOSITION
OpenMusic (OM) is an environment designed for music

composition in the tradition of what is conventionally called
computer-aided composition in the contemporary music and
computer music research communities [9]. The original pur-
pose of computer-aided composition research was to provide
composers with means to develop musical ideas and models
using the computer: In this context, creating compositional
tools in the form of standard applications, as is the case
with most commercial music software, turned out to be too
restrictive from a creative point of view. In order to better
integrate the artistic thought and give musicians full access
to the expressive and computational power of computer tools
and formalisms, computer-aided composition environments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

needed to be more “programmable” and would actually bet-
ter be programming languages than simple programs.

A number of computer music systems have therefore been
developed during the past 20 years, with more or less explicit
programming language features [22, 21, 29]. Some of them
are open source and quite widely used software [27, 30].

While most “musical programming languages” principally
deal with signal processing and sound synthesis, an orig-
inal approach adopted by the IRCAM Music Representa-
tion team in the late 80s had the particularity to focus
on symbolic musical structures and processes, that is, on
compositional aspects traditionally ignored or carried out
outside computer environments [11]. In this context and
as far as they relate to formalisation and/or calculus, the
design of compositional processes using programming lan-
guages and environments allows to better understand, ex-
plore and develop these processes than with other tradi-
tional or more specific media and applications. Fewer of
such “symbolic” programming/computer-aided composition
environments exist. Most of them are based on Common
Lisp or other Lisp dialects (see for instance [33]).

OpenMusic [12] is one of the few visual programming en-
vironments existing to date for symbolic music processing
(see also [26]). Initiated in 1997, this open source project de-
rived from the PatchWork environment [25] and constitutes
a complete visual language including powerful programming
features, mostly inherited and adapted from Common Lisp,
its underlying implementation language, and CLOS (Com-
mon Lisp Object System [24]).

2. BASIC DESCRIPTION
Visual programs in OpenMusic are created in patch ed-

itors, and are mainly compound of boxes and connections
(see Figure 1). Each box represents a functional element in
the program: generally, a function (e.g. om-random, repeat-
n, bpf-sample... in Figure 1) or a class factory (boxes gener-
ating instances of a given class—e.g. the curve at the top or
the score object at the bottom of Figure 1). The contents of
the factory boxes can be edited thanks to specific graphical
editors like score editors, sound editors, break-points func-
tion or 2D/3D editors etc., which leaves a significant freedom
to the user regarding the algorithmic vs. manual/intuitive
parts of his/her work.

The boxes in OpenMusic visual programs have inputs and
outputs (represented by small round inlets and outlets re-
spectively at the top and at the bottom of the box icons)
which allow to connect them together: at evaluation, a box
performs a call to its internal functional reference using the

Figure 1: A patch or basic visual program editor in
OpenMusic.

result of the boxes connected to its inputs as parameters (or
arguments). A recursive “bottom-up” function call therefore
occurs in the visual program graph, which corresponds to
the execution of a program in a very similar way as would
be interpreted and evaluated a Lisp expression.1

The boxes can actually refer either to in-built OpenMu-
sic functions or classes, or to programming elements (func-
tions, programs, classes) designed by the user graphically
or in Lisp. A close and transparent relation exists between
the visual and underlying text-based programming environ-
ments, which makes it possible to use together any kind of
element in visual or Lisp programs.

The musical focus of the environment also led the authors
to design advanced programming interfaces including a tem-
poral dimension [1]. In the maquette (a“temporal”extension
of the OpenMusic patch), time is considered as a structural
dimension in both the visual program layout and execution,
which allows to develop compositional processes integrated
in an overall temporal context.

3. VISUAL PROGRAMMING FEATURES
OpenMusic provides a visual semantics implementing most

functional and object-oriented features available in Common
Lisp and CLOS. Abstraction, application, iterations and
control structures are basics of most modern programming
languages, although not always straightforward to represent
in a visual language. Recursion, higher-level programming
are examples of more advanced concepts also implemented

1The execution model in OpenMusic is called “demand-
driven”, as opposed to the “data-driven” model generally
implemented in similar visual (graph-based) programming
languages.

in OpenMusic, which proved to be useful and pertinent in
compositional situations and musical problems solving. Im-
plementation details on these programming aspects are given
in [19].

Visual object-oriented programming is another specificity
of OpenMusic [1]. It is possible to define and instantiate
classes graphically, but also to benefit from other CLOS fea-
tures such as multiple inheritance or generic function and
method definition, including multiple dispatch and standard
method combination systems. The CLOS meta-object pro-
tocol (MOP) is another powerful feature making the basic
language elements used in the Lisp program design (func-
tions, methods, classes, etc.) instance of meta-object classes
which can be manipulated, modified or extended at runtime
by the same programs. The OpenMusic visual MOP de-
scribed in [3] is an original extension of this system to the
visual programming language.

The programming features and possibilities mentioned in
this section often go far beyond the use of music composers,
and extend the scope of the environment to a general new
approach to programming using graphical interfaces.

4. A PLATFORM FOR COMPUTER MUSIC
RESEARCH

Research in varied computer music areas have been car-
ried out in or using OpenMusic, generally in the context
of Master’s or PhD theses, or in other types of institutional
projects. Music notation and editors [17], quantification and
representation of rhythmic structures [23, 5], style model-
ing and pattern recognition [10, 28], constraint program-
ming and solving systems [31, 34] or sound synthesis and
representation in music [6, 14] are example of such areas
and projects. OpenMusic is also an important platform for
computer-aided music analysis, allowing to carry out exper-
iments and modeling processes leading to a new conception
of “computational musicology” [8, 7, 2].

The output of these projects, as well as other more specific
works carried out by composers, are generally integrated in
the OpenMusic environment or made available to the user
community as external, dynamically loadable libraries.

The latest developments in OpenMusic particularly aimed
to extend the scope of its applications toward signal process-
ing, for instance with a number of new libraries and tools
dedicated to sound analysis, synthesis, and to the manip-
ulation of audio and other low-level description data using
the symbolic visual programming framework [16, 13, 18].
Spatial sound and the conception of new ways to represent
and generate sound in space and/or using spatial rendering
technologies is another currently active area of research and
development in the environment [32, 20].

Different works have also been carried out using Open-
Music for extra-musical purposes. A recent example is the
Pixels project, a library for the generation and processing of
pixel arrays combined algorithmically to create pictures and
graphics (see Figure 2).2

2Pixels has been developed and used for Skyline, by Shanta
Rao (installation with computer-generated video, Belleville
Biennale / Nuit Blanche, Paris, 2010).

Figure 2: Algorithmic generation and processing of
pixel arrays and in OpenMusic with the Pixels library
(An example of extra-musical application).

5. APPLICATIONS AND USERS
The references provided in the previous section aim to

illustrate the diversity of applications of OpenMusic in com-
puter music research. The OM Composer’s Books [4] can
provide a relatively complete and rich overview of real musi-
cal applications of the visual programming environment by
composers.

OpenMusic is taught in composition classes in many dif-
ferent institution around the world, such as the national
conservatoires of Paris (CNSMDP) or Lyon in France, but
also different Musikschulen in Germany (Stuttgart, Berlin)
and universities in North America (Departments of Mu-
sic in Columbia, Harvard, Stanford universities, UC San
Diego, Université de Montréal, McGill University...) It is
also used as a support in computer music or visual program-
ming classes and workshops given at IRCAM or in several
Master’s program in French universities.

OpenMusic was also used as underlying kernel for the de-
sign and development of Musique Lab 2 [15], an environment
dedicated to music education now used and distributed by
the French Ministry of Education.

6. REFERENCES
[1] C. Agon. OpenMusic : Un langage visuel pour la

composition musicale assistée par ordinateur. PhD
thesis, Université Pierre et Marie Curie, Paris, France,
1998.

[2] C. Agon, M. Andreatta, G. Assayag, and S. Schaub.
Formal Aspects of Iannis Xenakis’ “Symbolic Music”:
A Computer-Aided Exploration of Compositional
Processes. Journal of New Music Research, 33(2),
2004.

[3] C. Agon and G. Assayag. OM: A Graphical Extension
of CLOS using the MOP. In Proceedings of ICL’03,
New York, USA, 2003.

[4] C. Agon, G. Assayag, and J. Bresson, editors. The
OM Composer’s Book (2 volumes). Editions Delatour
/ IRCAM, 2006-2008.

[5] C. Agon, K. Haddad, and G. Assayag. Representation
and Rendering of Rhythmic Structures. In
WedelMusic, Darmstadt, Germany, 2002.

[6] C. Agon, M. Stroppa, and G. Assayag. High Level
Musical Control of Sound Synthesis in OpenMusic. In
Proceedings of the International Computer Music
Conference, Berlin, Germany, 2003.

[7] M. Andreatta and C. Agon. Implementing Algebraic
Methods in OpenMusic. In Proceedings of the
International Computer Music Conference,
Singaphore, 2003.

[8] M. Andreatta, T. Noll, C. Agon, and G. Assayag. The
Geometrical Groove: Rhythmic Canons between
Theory, Implementation and Musical Experiments. In
Actes des Journées d’Informatique Musicale, Bourges,
France, 2001.

[9] G. Assayag. Computer Assisted Composition today. In
1st symposium on music and computers, Corfu,
Greece, 1998.

[10] G. Assayag, S. Dubnov, O. Lartillot, and G. Bejerano.
Using Machine-Learning Methods for Musical Style
Modeling. Computer, 36(10), 2003.

[11] G. Assayag and C. Rueda. The Music Representation
Project at IRCAM. In Proceedings of the International
Computer Music Conference, Tokyo, Japan, 1998.

[12] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue. Computer Assisted Composition at
IRCAM: From PatchWork to OpenMusic. Computer
Music Journal, 23(3), 1999.

[13] J. Bresson. Sound Processing in OpenMusic. In
Proceedings of the International Conference on Digital
Audio Effects, Montréal, QC, Canada, 2006.

[14] J. Bresson. La synthèse sonore en composition
musicale assistée par ordinateur : Modélisation et
écriture du son. PhD thesis, Université Pierre et Marie
Curie, Paris, France, 2007.

[15] J. Bresson. ML-Maquette / Musique Lab 2. In
Proceedings of the International Computer Music
Conference, New York City / Stony Brook, USA, 2010.

[16] J. Bresson and C. Agon. Musical Representation of
Sound in Computer-Aided Composition : A Visual
Programming Framework. Journal of New Music
Research, 36(4), 2007.

[17] J. Bresson and C. Agon. Scores, Programs and Time
Representations: The Sheet Object in OpenMusic.
Computer Music Journal, 32(4), 2008.

[18] J. Bresson and C. Agon. Processing Sound and Music
Description Data Using OpenMusic. In Proceedings of
the International Computer Music Conference, New
York City / Stony Brook, USA, 2010.

[19] J. Bresson, C. Agon, and G. Assayag. Visual
Lisp/CLOS Programming in OpenMusic.
Higher-Order and Symbolic Computation, 22(1), 2009.

[20] J. Bresson and M. Schumacher. Representation and
Interchange of Sound Spatialization Data for

Compositional Applications. In Proceedings of the
International Computer Music Conference,
Huddersfield, UK, 2011.

[21] R. B. Dannenberg, P. Desain, and H. Honing.
Programming Language Design for Music. In
C. Roads, S. T. Pope, A. Piccialli, and G. DePoli,
editors, Musical Signal Processing. Swets and
Zeitlinger, 1997.

[22] R. B. Dannenberg, P. McAvinney, and D. Rubine.
Arctic : A Functional Language for Real-Time
Systems. Computer Music Journal, 10(4), 1986.

[23] O. Delerue, G. Assayag, and C. Agon. Etude et
réalisation d’opérateurs rythmiques dans OpenMusic,
un environnement de programmation appliqué à la
composition musicale. In Actes des Journées
d’Informatique Musicale, La Londe les Maures,
France, 1998.

[24] R. P. Gabriel, J. L. White, and D. G. Bobrow. CLOS:
Integration Object-oriented and Functional
Programming. Communications of the ACM, 34(9),
1991.

[25] M. Laurson and J. Duthen. Patchwork, a Graphic
Language in PreForm. In Proceedings of the
International Computer Music Conference, Ohio State
University, USA, 1989.

[26] M. Laurson and M. Kuuskankare. PWGL: A Novel
Visual Language Based on Common Lisp, CLOS, and
OpenGL. In Proceedings of the International
Computer Music Conference, Gothenburg, Sweden,
2002.

[27] J. McCartney. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal,
26(4), 1996.

[28] B. Meudic. Détermination automatique de la pulsation
de la métrique et des motifs musicaux dans des
interprétations à tempo variable d œuvres
polyphoniques. PhD thesis, Université Pierre et Marie
Curie, Paris, France, 2004.

[29] M. Puckette. Combining Event and Signal Processing
in the MAX Graphical Programming Environment.
Computer Music Journal, 15(3), 1991.

[30] M. Puckette. Pure Data: Another Integrated
Computer Music Environment. In Proceedings of the
Second Intercollege Computer Music Concerts,
Tachikawa, Japan, 1996.

[31] C. Rueda, M. Laurson, G. Bloch, and G. Assayag.
Integrating Constraint Programming in Visual
Musical Composition Languages. In Proceedings of the
European Conference on Artificial Intelligence,
Brighton, UK, 1998.

[32] M. Schumacher and J. Bresson. Spatial Sound
Synthesis in Computer-Aided Composition. Organised
Sound, 15(3), 2010.

[33] H. Taube. Common Music: A Music Composition
Language in Common Lisp and CLOS. Computer
Music Journal, 15(2), 1991.

[34] C. Truchet, G. Assayag, and P. Codognet. Visual and
Adaptive Constraint Programming in Music. In
Proceedings of the International Computer Music
Conference, La Habana, Cuba, 2001.

APPENDIX
A. BUILD AND COMPILATION

OpenMusic is a Lisp-based system which requires an un-
derlying runtime Lisp environment. It currently uses the
LispWorks3 Common Lisp implementation, which provides
good graphical and GUI toolkits on which most of the low-
level graphical aspects of the visual language rely.

The OpenMusic package therefore contains a pre-built ex-
ecutable running on MacOS X or Windows operating sys-
tems, and the Lisp sources of the software. These sources
can easily be loaded in LispWorks (a free—limited—personal
edition is available on the LispWorks website). All instruc-
tions are detailed in the OpenMusic webpage.4

This is generally not necessary, though, since OpenMu-
sic itself embeds a Lisp interpreter and interface, so that is
is possible to edit, (re)load and evaluate the sources or ad-
ditional Lisp code and commands from within the running
environment.

The limitations of using the OpenMusic in-built Lisp rather
than LispWorks are the impossibility to generate and pack
a new executable image, to compile Lisp files (they are only
evaluated, hence the code is generally less efficient) and the
absence of the LispWorks IDE tools. The OpenMusic exe-
cutable, on the other hand, is easier to launch and to use for
standard (non-programmer) users.

B. LICENCE AND DISTRIBUTION
OpenMusic is an open source project which sources are

distributed under the GNU Public License (GPL). They can
be downloaded from the OpenMusic website and are also dis-
tributed with the software itself. Making the sources avail-
able was for us an opportunity to raise collaborations and
contributions, principally for the realization of specialized
packages or libraries. As mentioned in this paper, OpenMu-
sic modules are linked to the distributed sources so that it is
possible to track and edit them and therefore to dynamically
modify or extend the environment.

IRCAM owns professional LispWorks licenses, which al-
lows us to build and distribute a compiled and packed ap-
plication to the OpenMusic users. Since the beginning of
this year, this released application is available for free and
can also be downloaded from the website,5 which we hope
will consolidate and develop our user community.

IRCAM also commercially distributes a set of specialized
external libraries for OpenMusic.

C. DOCUMENTATION
A set of documentation resources for OpenMusic is main-

tained and published online. This documentation features
a user manual, a quick-start tutorial including a series of
videos, tutorials and a number of additional resources. All
pages and documents of interest are accessible from the
OpenMusic website.6

A developer documentation also allows programmers to
get into the OpenMusic architecture and provides the basics
of programming in the environment.

3http://www.lispworks.com
4http://repmus.ircam.fr/openmusic/sources
5http://repmus.ircam.fr/openmusic/download
6http://repmus.ircam.fr/openmusic/documents

