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Dynamic Spectral Envelope Modeling
for the Analysis of Musical Instrument Sounds

Juan José Burred, Axel Röbel and Thomas Sikora

Abstract—We present a computational model of musical instru-
ment sounds that focuses on capturing the dynamic behaviour
of the spectral envelope. A set of spectro-temporal envelopes
belonging to different notes of each instrument are extracted
by means of sinusoidal modeling and subsequent frequency
interpolation, before being subjected to Principal Component
Analysis. The prototypical evolution of the envelopes in the ob-
tained reduced-dimensional space is modeled as a nonstationary
Gaussian Process. This results in a compact representation in the
form of a set of prototype curves in feature space, or equivalently
of prototype spectro-temporal envelopes in the time-frequency
domain. Finally, the obtained models are successfully evaluated
in the context of two music content analysis tasks: classification
of instrument samples and detection of instruments in monaural
polyphonic mixtures.

Index Terms—Timbre model, sinusoidal modeling, spectral
envelope, Music Information Retrieval, Gaussian Processes.

I. INTRODUCTION

We address the development of a novel computational
modeling approach for musical instrument sounds focused on
capturing the temporal evolution of the spectral envelope. We
intend the models to be used not only as a mid-level feature in
classification tasks, but also as source of a priori knowledge
in applications requiring not only model discrimination, but
also a reasonable degree of model accuracy, such as detection
of instruments in a mixture, source separation and synthesis
applications. In this contribution, we present in detail the
design guidelines and evaluation procedures used during the
development of such a modeling approach, as well as per-
formance evaluations of its application to the classification
of individual instrumental samples and to the recognition of
instruments in monaural (single-channel) polyphonic mixtures.

The temporal and spectral envelopes are two of the most
important factors contributing to the perception of timbre [1].
The temporal envelope, usually divided into Attack, Decay,
Sustain and Release (ADSR) phases, is a valuable feature to
distinguish, for instance, between sustained (bowed strings,
winds) and constantly decaying instruments (plucked or struck
strings). The spectral envelope can be defined as a smooth
function of frequency that approximately matches the indi-
vidual partial peaks of each spectral frame. The global shape
of the frame-wise evolution of the individual partial ampli-
tudes (and consequently of the spectral envelope) corresponds
approximately to the global shape of the temporal envelope.
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Thus, considering the spectral envelope and its temporal evo-
lution makes it unnecessary to consider the temporal envelope
as a separate entity. We will use the term “spectro-temporal
envelope” to globally denote both the frame-wise spectral
envelope and its evolution in time. We emphasize that the
present method considers timbre (a perceptual sensation) to be
mainly affected by the spectro-temporal envelope (a physical
aspect). It should be noted, however, that there are other
factors that can have an important influence on timbre, such
as harmonicity, noise contents, transients, masking effects, and
auditory and neural processes.

An early work thoroughly and systematically assessing
the factors that contribute to timbre was the 1977 work by
Grey [2]. He conducted listening tests to judge perceptual
similarity between pairs of instrumental sounds, and applied
Multidimensional Scaling (MDS) to the results for reducing
the dimensionality. In the cited work, MDS was used to
produce a three-dimensional timbre space where the individual
instruments clustered according to the evaluated similarity.

In later works, similar results were obtained by substituting
the listening tests by objectively measured sound parameters.
Hourdin, Charbonneau and Moussa [3] applied MDS to obtain
a similar timbral characterization from the parameters obtained
from sinusoidal modeling. They represented trajectories in tim-
bre space corresponding to individual notes, and resynthesized
them to evaluate the sound quality. Similarly, Sandell and
Martens [4] used Principal Component Analysis (PCA) as a
method for data reduction of sinusoidal modeling parameters.

De Poli and Prandoni [5] proposed their sonological models
for timbre characterization, which were based on applying
either PCA or Self Organizing Maps (SOM) to a description
of the spectral envelope based on Mel Frequency Cepstral Co-
efficients (MFCC). A similar procedure by Loureiro, de Paula
and Yehia [6] has recently been used to perform clustering
based on timbre similarity.

Jensen [7] developed a sophisticated framework for the
perceptually meaningful parametrization of sinusoidal model-
ing parameters. Different sets of parameters were intended to
describe in detail the spectral envelope, the mean frequencies,
the ADSR envelopes with an additional “End” segment, and
amplitude and frequency irregularities.

In Leveau et al. [8], timbre analysis is addressed from
the perspective of sparse signal decomposition. A musical
sound is approximated as a linear combination of harmonic
atoms, where each atom is a sum of harmonic partials whose
amplitudes are learned a priori on a per-instrument basis. A
modified version of the Matching Pursuit (MP) algorithm is
then used in the detection stage to select the atoms that best
describe the observed signal, which allows single-voice and
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polyphonic instrument recognition.
A great variety of spectral features have been proposed in

the context of audio content analysis, first in fields such as
Automatic Speech Recognition (ASR) or sound analysis and
synthesis, later in Music Information Retrieval (MIR). Most
of them are basic measures of the spectral shape (centroid,
flatness, rolloff, etc.), and are too simple to be considered full
models of timbre. More sophisticated measures make use of
psychoacoustical knowledge to produce a compact description
of spectral shape. This is the case of the very popular MFCCs
[9], which are based on a mel-warped filter bank and a
cepstral smoothing and energy compaction stage achieved by a
Discrete Cosine Transform (DCT). However, MFCCs provide
a rough description of spectral shape and are thus unsuitable
for applications requiring a high level of accuracy.

The MPEG-7 standard includes spectral basis decomposi-
tion as feature extraction [10]. The extraction is based on
an estimation of a rough overall spectral shape, defined as a
set of energies in fixed frequency bands. Although this shape
feature is called Audio Spectrum Envelope, it is not a spectral
envelope in the stricter sense of matching the partial peaks.

Our approach aims at combining an accurate spectral fea-
ture extraction front-end with a statistical learning procedure
that faithfully captures dynamic behavior. To that end, we
first discuss the general criteria that guided the design of
the modeling approach (Section II). The main part of the
article (Sections III and IV) is a detailed description of the
proposed sound modeling method, which is divided into two
main blocks: the representation stage and the prototyping
stage. The representation stage (Section III) corresponds to
what, in the Pattern Recognition community, is called the
feature extraction stage. It describes how the spectro-temporal
envelopes are estimated from the training samples by means
of sinusoidal modeling and subsequent frequency interpolation
and dimensionality reduction via PCA, and places special
emphasis on discussing the formant alignment issues that
arise when using notes of different pitches for the training.
This section includes the description of a set of experiments
(Section III-D) aimed at evaluating the appropriateness of the
chosen spectral front-end. The prototyping stage (Section IV)
aims at learning statistical models (one model per instrument)
out of the dimension-reduced coefficients generated in the
representation stage. In order to reflect the temporal evolution
in detail, the projected coefficient trajectories are modeled
as a set of Gaussian Processes (GP) with changing means
and variances. This offers possibilities for visualization and
objective timbre characterization, as will be discussed in detail.
Finally, the application of the trained models in two MIR tasks
will be presented: Section V addresses the classification of
isolated musical instrument samples and Section VI the more
demanding task of detecting which instruments are present on
a single-channel mixture of up to 4 instruments. Conclusions
are summarized in Section VII, together with several possible
directions for future research.

The modeling method presented here was first introduced in
[11]. That work addressed the evaluation of the representation
stage, but it lacked detail about the sinusoidal modeling and
basis decomposition procedures and, most importantly, it only

provided a very brief mention of the prototyping stage (i.e.,
the temporal modeling as Gaussian Processes), without any
formalized presentation. The present contribution provides all
missing details and contains a full presentation and discussion
of the prototyping stage, together with new experiments and
observations concerning the interpretation of the obtained
prototypical spectral shapes. More specifically, it addresses
the influence of the extracted timbre axes (introduced later)
on the spectral shape, the observation of formants (Section
IV), and the influence of the frequency alignment procedure
on the inter-instrument classification confusion (Section V).
The application of the models for polyphonic instrument
recognition has been presented more extensively in [12].
Since the main focus here was the design of the modeling
approach, we only provide a brief presentation thereof in
Section VI, and we refer the reader to that work for further
details concerning that particular application. Finally, another
related article is [13], where the models were used for source
separation purposes. In particular, source separation is based
on extending the polyphonic recognition procedure of Section
VI to recover missing or overlapping partials by interpolating
the prototypical time-frequency templates. However, since the
emphasis here was on sound analysis, such a topic is not
covered here.

II. DESIGN CRITERIA

In benefit of the desired multi-purpose nature of the models,
the following three design criteria were followed and evaluated
during the development process: representativeness, compact-
ness and accuracy. The above mentioned methods fulfill some
of the criteria, but do not meet the three conditions at the same
time. The present work was motivated by the goal of combin-
ing all three advantages into a single algorithm. Each criterion
has an associated objective measure that will be defined later
(Section III-D). It should be noted that these measures were
selected according to their appropriateness within the context
of the signal processing methods used here, and they should
be considered only an approximation to the sometimes fairly
abstract criteria (e.g. representativeness) they are intended
to quantify. Another simplification of this approach worth
mentioning is that the criteria are considered independent
from each other, while dependencies do certainly exist. What
follows is a detailed discussion of how the approaches from
the literature reviewed above meet or fail to meet the criteria,
and how those limitations are proposed to be overcome.

A. Representativeness

An instrument model should be able to reflect the essential
timbral characteristics of any exemplar of that instrument (e.g.,
the piano model should approximate the timbre of any model
and type of piano), and be valid for notes of different pitches,
lengths, dynamics and playing styles. We will refer to this
requirement as the representativeness criterion. This requires
using a training database containing samples with a variety of
those factors, and a consequent extraction of prototypes.

Many of the above mentioned methods focus on the auto-
matic generation of timbre spaces for the subsequent timbral
characterization of individual notes, rather than on training
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representative instrument models valid for a certain range of
pitches, dynamics, etc. For instance in [3], [4], [6], several
notes are concatenated to obtain common bases for generating
the timbre spaces; there is however no statistical learning of
the notes’ projections from each instrument into a parametric
model. In [5], a static Gaussian modeling approach is proposed
for the clusters formed by the projected coefficients. MFCCs
and the MPEG-7 approach are indeed intended for large-scale
training with common pattern recognition methods, but as
mentioned they do not meet the requirement of accuracy of
the envelope description. In the present work we propose a
training procedure consisting of extracting common spectral
bases from a set of notes of different pitches and dynamics,
followed by the description of each instrument’s training set
as a Gaussian Process. Only one playing style per instrument
has been considered (i.e., no pizzicati, stacatti or other articu-
lations). It can be strongly assumed that such special playing
styles would require additional specific models, since they
heavily change the spectro-temporal behavior.

It should be noted that, while there have been several works
dealing with an explicit modeling of the dependency of timbre
on the fundamental frequency (f0) or on the dynamics (see
e.g. the work by Kitahara et al. [14] and Jensen’s Instrument
Definition Attributes model in [15]), that was not our goal
here. Specifically, we address f0-dependency from a different
perspective: instead of seeking an f0-dependent model, we
accommodate the representation stage such that the modeling
error produced by considering notes of different pitches is
minimized. In other words, we seek prototypical spectro-
temporal shapes that remain reasonably valid for a range
of pitches. This allows avoiding a preliminary multipitch
extraction stage in applications involving polyphonic mixtures,
such as polyphonic instrument detection (Section VI) or source
separation [13]. This important characteristic of the model will
be discussed in detail in the next section.

In our experiments, we measure representativeness by the
averaged distance in feature space between all samples be-
longing to the training database and all samples belonging to
the test database. A high similarity between both data clouds
(both in distance and in shape) indicates that the model has
managed to capture essential and representative features of the
instrument. The significance of such a measure, like in many
other Pattern Recognition tasks, will benefit from a good-
quality and well-populated database.

B. Compactness

Compactness refers to the ability to include as much infor-
mation (variance, entropy) in models as simple as possible.
It does not only result in more efficient computation, storage
and retrieval but, together with representativeness, implies that
the model has captured the essential characteristics of the
source. In [4], compactness was considered one of the goals,
but no training was performed. MFCCs are highly compact
but, again, inaccurate. This work will use PCA spectral basis
decomposition to attain compactness. In such a context, the
natural measure of compactness is the variance explained by
the retained PCA eigenvalues.

C. Accuracy

Some applications require a high representation accuracy.
As an example, in a polyphonic detection task, the purpose
of the models is to serve as a template guiding the separate
detection of the individual overlapping partials. The same is
valid if the templates are used to generate a set of partial tracks
for synthesis. Model accuracy is a demanding requirement
that is not always necessary in classification or retrieval by
similarity, where the goal is to extract global, discriminative
features. Many approaches relying on sinusoidal modeling [3],
[6], [5], [4] are based on highly accurate spectral descriptions,
but fail to fulfill either compactness or representativeness.
The model used here relies on an accurate description of
the spectral envelope by means of sinusoidal-modeling-based
interpolation. In the present context, accuracy is measured by
the averaged amplitude error between the original spectro-
temporal envelope and the spectro-temporal envelope retrieved
and reconstructed from the models.

III. REPRESENTATION STAGE

The aim of the representation stage is to produce a set
of coefficients describing the individual training samples.
The process of summarizing all the coefficients belonging to
an instrument into a prototype subset representative of that
particular instrument will be the goal of the prototyping stage.

A. Envelope estimation through sinusoidal modeling

The first step of the training consists in extracting the
spectro-temporal envelope of each individual sound sample
of the training database. For its effectiveness, simplicity and
flexibility, we chose the interpolation approach to envelope
estimation. It consists in frame-wise selecting the promi-
nent sinusoidal peaks extracted with sinusoidal modeling and
defining a function between them by interpolation. Linear
interpolation results in a piecewise linear envelope containing
edges. In spite of its simplicity, it has proven adequate for sev-
eral applications [16]. Cubic interpolation results in smoother
curves, but is more computationally expensive.

Sinusoidal modeling [16], also called additive analysis,
performs a frame-wise approximation of amplitude, frequency
and phase parameter triplets ŝpr = (Âpr, f̂pr, θ̂pr). Here, p is
the partial index and r is the frame (time) index. Throughout
this work, logarithmic amplitudes will be used. The set of
frequency points f̂pr for all partials during a given number of
frames is called frequency support. In this work, the phases
θ̂pr will be ignored.

To perform the frame-wise approximations ŝpr, sinusoidal
modeling implements the consecutive stages of peak pick-
ing and partial tracking. A sinusoidal track is the trajectory
described by the amplitudes and frequencies of a sinusoidal
peak across consecutive frames. To denote a track tt, the
following notation will be used: tt = {ŝptr|R0

t ≤ r ≤ RLt },
where pt is the partial index associated with the track and
R0
t and RLt are, respectively, its first and last frames. These

stages have two possible modes of operation: harmonic and
inharmonic. The harmonic mode is used whenever the f0
is known beforehand. It is more robust since the algorithm



4 IEEE TRANS. ACOUST., SPEECH, SIGNAL PROCESS., VOL. X, NO. X, X 2009

can guess that the partials will be positioned close to integer
multiples of f0, and also because the analysis parameters can
be adapted accordingly. In this work, harmonic sinusoidal
modeling is used for the representation stage experiments
(Section III-D) and for training the models for the classi-
fication and polyphonic detection applications (Sections V
and VI). Inharmonic mode will be used when analyzing the
mixtures for polyphonic instrument detection (Section VI). In
harmonic mode, a Blackmann window of size W = 5f0 and a
hop size of W/4 were used, with a sampling rate of fs = 44.1
kHz. In inharmonic mode, a Blackmann window of fixed size
W = 8192 samples was used, with a hop size of 2048 samples
and the same fs.

Given a set of additive analysis parameters, the spectral
envelope can finally be estimated by frame-wise interpolating
the amplitudes Âpr at frequencies f̂pr for p = 1, . . . , Pr.

B. Spectral basis decomposition

Spectral basis decomposition [10] consists of performing
a factorization of the form X = PY, where X is the data
matrix containing a time-frequency (t-f) representation with
K spectral bands and R time frames (usually R � K), P
is the transformation basis whose columns pi are the basis
vectors, and Y is the projected coefficient matrix. If the data
matrix is in temporal orientation (i.e., it is a R × K matrix
X(r, k)), a temporal R×R basis matrix P is obtained. If it is
in spectral orientation (K × R matrix X(k, r)), the result is
a spectral basis of size K ×K. Having as goal the extraction
of spectral features, the latter case is of interest here.

PCA realizes such a factorization under the constraint that
the variance is concentrated as compactly as possible in a few
of the transformed dimensions. It meets our need for compact-
ness and was thus chosen for the basis decomposition stage.
After centering (i.e., removing the mean) and whitening (i.e.,
normalizing the dimensions by their respective variances), the
final projection of reduced dimensionality D < K is given by

Yρ = Λ−1/2
ρ PT

ρ (X− E{X}), (1)

where Λ = diag(λ1, . . . , λD) and λd are the D largest
eigenvalues of the covariance matrix Σx, whose corresponding
eigenvectors are the columns of Pρ. The ρ subscript de-
notes dimensionality reduction and indicates the mentioned
eigenvalue and eigenvector selection. The truncated model
reconstruction would then yield the approximation

X̂ = PρΛ1/2
ρ Yρ + E{X}. (2)

C. Frequency alignment

To approach the design criterion of representativeness we
need to consider notes of different instrument exemplars,
dynamics and pitches into the training set. More specifically,
we concatenate in time the spectro-temporal envelopes of
different exemplars, dynamics and pitches into a single input
data matrix, and extract the common PCA bases. However,
since the spectro-temporal envelope can greatly vary between
pitches, concatenating the whole pitch range of a given in-
strument can produce excessively flat common bases, thus
resulting in a poor timbral characterization. On the other hand,

it can be expected that the changes in envelope shape will be
minor for notes that are consecutive in the chromatic scale. It
was thus necessary to find an appropriate trade-off and choose
a moderate range of consecutive semitones for the training.
After preliminary tests, a range between one and two octaves
was deemed appropriate for our purposes.

In Casey’s original proposal [10] and related works, basis
decomposition is performed upon the Short-Time Fourier
Transform (STFT) spectrogram, with fixed frequency posi-
tions given by the regular frequency-domain sampling of
the DFT. In contrast, here the decomposition is performed
on the spectro-temporal envelope, which we defined as a
set of partials with varying frequencies plus an interpolation
function. Thus, when concatenating notes of different pitches,
the arrangement into the data matrix is less straightforward.

The simplest solution is to ignore interpolation and use
directly the sinusoidal amplitude parameters as the elements
of the data matrix. In this case, the number of partials to
be extracted for each note is fixed and the partial index p
is used as frequency index, obtaining X(p, r) with elements
xpr = Âpr. We will refer to this as Partial Indexing (PI).

The PI approach is simple and appropriate in some contexts
([3], [4]), but when concatenating notes of different pitches,
several additional considerations have to be taken into account.
These concern the formant- or resonance-like spectral features,
that can either lie at the same frequency, irrespective of the
pitch, or be correlated with the fundamental frequency. In this
work, the former will be referred to as f0-invariant features,
and the latter as f0-correlated features. When concatenating
notes of different pitches for the training, their frequency
support will change logarithmically. If the PI arrangement is
used, this has the effect of misaligning the f0-invariant features
in the data matrix. On the contrary, possible features that
follow the logarithmic evolution of f0 will become aligned.

An alternative to PI is to interpolate between partial am-
plitudes to approximate the spectral envelope, and to sample
the resulting function at a regular grid of G points uniformly
spaced within a given frequency range fg = fmax

G g. The
spectral matrix is now defined by X(g, r), where g = 1, . . . , G
is the grid index and r the frame index. Its elements will be
denoted by xgr = Agr. This approach shall be referred to
as Envelope Interpolation (EI). This strategy does not change
formant alignments, but introduces an interpolation error.

In general, frequency alignment is desirable for the present
modeling approach because, if subsequent training samples
share more common characteristics, prototype spectral shapes
will be learned more effectively. In other words, the data
matrix will be more correlated and thus PCA will be able
to obtain a better compression. In this context, the question
arises of which one of the alternative preprocessing methods
—PI (aligning f0-correlated features) or EI (aligning f0-
invariant features)— is more appropriate. In order to answer
that question, the experiments outlined in the next section were
performed.

D. Evaluation of the representation stage
A cross-validated experimental framework was imple-

mented to test the validity of the representation stage and
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(a) Piano: train/test cluster distance
(representativeness criterion)
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(b) Piano: explained variance (com-
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(c) Piano: Relative Spectral Error
(RSE) (accuracy criterion)
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(d) Violin: train/test cluster distance
(representativeness criterion)
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(e) Violin: explained variance (com-
pactness criterion)
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(f) Violin: Relative Spectral Error
(RSE) (accuracy criterion)

Fig. 1. Evaluation of the representation stage: results for the piano (Figs. 1(b)-1(a)) and the violin (Figs. 1(e)-1(d)). Note that the y-axes of the explained
variance graphs have been inverted so that for all measures, “better” means downwards.

to evaluate the influence of the PI, linear EI and cubic EI
methods. Here, some experimental results will be presented.
Further results and evaluation details can be found in [11].

The used samples are part of the RWC database [17]. One
octave (C4 to B4) of two exemplars from each instrument type
was trained. As test set, the same octave from a third exemplar
from the database was used. All sound samples belonging to
each set were subjected to sinusoidal modeling, concatenated
in time and arranged into a data matrix using either the PI
or the EI method. For the PI method, P = 20 partials were
extracted. For the EI method, fmax was set as the frequency of
the 20th partial of the highest note present in the database, so
that both methods span the same maximum frequency range,
and a frequency grid of G = 40 points was defined.

As mentioned earlier, representativeness was measured in
terms of the global distance between the training and testing
coefficients. We avoid probabilistic distances that rely on the
assumption of a certain probability distribution, which would
yield inaccurate results for data not matching that distribution.
Instead, average point-to-point distances were used. In partic-
ular, the averaged minimum distance between point clouds,
normalized by the number of dimensions, was computed:

∆D(ω1, ω2) =
1
D

{
1
n1

n1∑
i=1

min
yj∈ω2

{d(yi,yj)}

+
1
n2

n2∑
j=1

min
yi∈ω1

{d(yi,yj)}

 , (3)

where ω1 and ω2 denote the two clusters, n1 and n2 are the
number of points in each cluster, yi are the PCA coefficients,

and d(·) denotes the Mahalanobis distance:

d(y0,y1) =
√

(y0 − y1)TΣ−1
Y (y0 − y1), (4)

where ΣY is the global covariance matrix.
Compactness was measured by the explained variance (EV)

of the PCA eigenvalues λi:

EV (D) = 100
∑D
i λi∑K
i λi

. (5)

Accuracy was defined in terms of the reconstruction error
between the truncated t-f reconstruction of Eq. 2 and the
original data matrix. To that end, the Relative Spectral Error
(RSE)[18] was measured:

RSE =
1
R

R∑
r=1

√√√√∑Pr

p=1(Apr − Ãpr)2∑Pr

p=1A
2
pr

, (6)

where Ãpr is the reconstructed amplitude at support point
(p, r) and R is the total number of frames. In order to
measure the RSE, the envelopes must be compared at the
points of the original frequency support. This means that,
in the case of the EI method, the back-projected envelopes
must be reinterpolated using the original frequency informa-
tion. As a consequence, the RSE accounts not only for the
errors introduced by the dimension reduction, but also for the
interpolation error itself, inherent to EI.

Fig. 1 shows the results for the particular cases of the piano
(as an example of a non-sustained instrument) and of the
violin (as an example of a sustained instrument). Figs. 1(a) and
1(d) demonstrate that EI has managed to reduce the distance
between training and test sets in comparison to PI. Figs. 1(b)
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and 1(e) show that EI achieves a higher compression than
PI for low dimensionalities. A 95% of variance is achieved
already for D = 7 in the case of the piano and of D = 8 in
the case of the violin. Finally, Figs. 1(c) and 1(f) demonstrate
that EI also reduces the reconstruction error in the low-
dimensionality range. The RSE curves for PI and EI must
always cross because of the zero reconstruction error of PI
with D = K and of the reinterpolation error of EI. In general,
cubic and linear interpolation performed very similarly.

IV. PROTOTYPING STAGE

In model space, the projected coefficients must be reduced
into a set of generic models representing the classes. Common
MIR methods include Gaussian Mixture Models (GMM) and
Hidden Markov Models (HMM). Both are based on clustering
the transformed coefficients into a set of densities, either static
(GMM) or linked by transition probabilities (HMM). The
evolution of the envelope in time is either completely ignored
in the former case, or approximated as a sequence of states in
the latter. For a higher degree of accuracy, however, the time
variation of the envelope should be modeled in a more faithful
manner, since it plays an important role when characterizing
timbre. Therefore, the choice here was to always keep the
sequence ordering of the coefficients, and to represent each
class as a trajectory rather than as a cluster. For each class, all
training trajectories are to be collapsed into a single prototype
curve representing that instrument.

To that end, the following steps are taken. Let Ysi de-
note the coefficient trajectory in model space correspond-
ing to training sample s (with s = 1, . . . , Si) belong-
ing to instrument i (with i = 1, . . . , I), of length Rsi
frames: Ysi = (ysi1,ysi2, . . . ,ysiRsi

). First, all trajectories
are interpolated in time using the underlying time scales in
order to obtain the same number of points. In particular, the
longest trajectory, of length Rmax is selected and all the other
ones are interpolated so that they have that length. In the
following, the sign˘will denote interpolation.

Y̆si = interpRmax
{Ysi} = (y̆si1, y̆si1, . . . , y̆siRmax

). (7)

Then, each point in the resulting prototype
curve for instrument i, of length Rmax, denoted
by Ci = (pi1,pi2, . . . ,piRmax), is considered to be a
D-dimensional Gaussian random variable pir ∼ N(µir,Σir)
with empirical mean

µir =
1
Si

Si∑
s=1

y̆sir (8)

and empirical covariance matrix Σir, which for simplicity will
be assumed diagonal, where σ2

ir = diag(Σir) is given by

σ2
ir =

1
Si − 1

Si∑
s=1

(y̆sir − µir)2. (9)

The obtained prototype curve is thus a discrete-temporal
sequence of Gaussian distributions in which means and
covariances change over time. This can be interpreted
as a D-dimensional, nonstationary Gaussian Process (GP)
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Fig. 2. Prototype curves in the first 3 dimensions of model space correspond-
ing to a 5-class training database of 423 sound samples, preprocessed using
linear envelope interpolation. The starting points are denoted by squares.
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Fig. 3. Frequency profile of the prototype envelopes corresponding to two
of the curves on Fig. 2.

parametrized by r (in other words, a collection of Gaussian
distributions indexed by r):

Ci ∼ GP (µi(r),Σi(r)) . (10)

Figure 2 shows an example set of mean prototype curves
corresponding to a training set of 5 classes: piano, clarinet,
oboe, violin and trumpet, in the first three dimensions of the
PCA space. The database consists of three dynamic levels
(piano, mezzoforte and forte) of two to three exemplars of
each instrument type, covering a range of one octave between
C4 and B4. This makes a total of 423 sound files. Here, only
the mean curves formed by the values µir are plotted. It must
be noted, however, that each curve has an “influence area”
around it as determined by their time-varying covariances.

Note that the time normalization defined by Eq. 7 implies
that all sections of the ADSR temporal envelope are interpo-
lated with the same density. This might be disadvantageous
for sustained sounds, in which the length of the sustained part
is arbitrary. For example, comparing a short violin note with
a long violin note will result in the attack part of the first
being excessively stretched and matched with the beginning of
the sustained part of the second. The experiments in the next
section will help to assess the influence of this simplification.

When projected back to the t-f domain, each prototype
trajectory will correspond to a prototype envelope consisting of
a mean surface and a variance surface, which will be denoted
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(b) Trace 2.
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(c) Trace 3.
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(d) Trace 4.
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(e) Trace 5.
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(f) Trace 6.

Fig. 5. Evolution of the spectral envelope alongside the traces on Fig. 4.

by Mi(g, r) and Vi(g, r), respectively, where g = 1, . . . , G
denotes the sample points of the frequency grid and r =
1, . . . Rmax for all the models. Each D-dimensional mean
point µir in model space will correspond to a G-dimensional
vector of mean amplitudes constituting a time frame of the
reconstructed spectro-temporal envelope. Undoing the effects
of whitening and centering, the reconstructed means are

µ̂ir = PρΛ1/2
ρ µir + E{X} (11)

and the corresponding variance vector

σ̂2
ir = diag

(
PρΛ1/2

ρ Σir(PρΛ1/2
ρ )T

)
, (12)

both of G dimensions, which form the columns of Mi(g, r)
and Vi(g, r), respectively.

Analogously as in model space, a prototype envelope can
be interpreted as a GP, but in a slightly different sense. Instead
of being multidimensional, the GP is unidimensional (in am-
plitude), but parametrized with means and variances varying
in the 2-dimensional t-f plane. Such prototype envelopes are
intended to be used as t-f templates that can be interpolated at
any desired t-f point. Thus, the probabilistic parametrization
can be considered continuous, and therefore the indices t and
f will be used, instead of their discrete counterparts r and k.
The prototype envelopes can then be denoted by

Ei ∼ GP
(
µi(t, f), σ2

i (t, f)
)
. (13)

Figure 3 shows the frequency-amplitude projection of the
mean prototype envelopes corresponding to the clarinet and
violin prototype curves of Fig. 2. The shades or colors denote
the different time frames. Note the different formant-like
features in the mid-low frequency areas. On the figures, several
prominent formants are visible, constituting the characteristic
averaged spectral shapes of the respective instruments. Again,
only the mean surfaces are represented, but variance influence
areas are also contained in the model.

The average resonances found with the modeling procedure
presented here are consistent with previous acoustical studies.
As an example, the frequency profile of the clarinet (Fig. 3(a))
shows a spectral hill that corresponds to the first measured
formant, which has its maximum between 1500 Hz and 1700
Hz [19]. Also, the bump around 2000 Hz on the violin profile
(Fig. 3(b)) can be identified as the “bridge hill” observed by
several authors [20], produced by renonances of the bridge.

Depending on the application, it can be more convenient to
perform further processing on the reduced-dimensional PCA
space or back in the t-f domain. When classifying individual
notes, such as introduced in the next section, a distance mea-
sure between unknown trajectories and the prototype curves
in PCA space has proven a successful approach. However,
in applications where the signals to be analyzed are mixtures
of notes, such as polyphonic instrument recognition (Section
VI), the envelopes to be compared to the models can contain
regions of unresolved overlapping partials or outliers, which
can introduce important interpolation errors when adapted to
the frequency grid needed for projection onto the bases. In
those cases, working in the t-f domain will be more convenient.

To gain further insight into the meaning of the timbre axes,
the spectral envelope was evaluated and plotted at different
points of the space. In benefit of clarity, a 2-dimensional
projection of the space onto the first two dimensions was
performed, and several evaluation “traces” were chosen as
indicated by the numbered straight lines on Fig. 4. Figure
5 represents the evolution of the spectral envelope alongside
the traces defined on Fig. 4, sampled uniformly at 10 differ-
ent points. The thicker envelopes correspond to the starting
points on the traces, which are then followed in the direction
marked by the arrows. Each envelope representation on Fig. 5
corresponds to a sample point as indicated by the dots on the
traces of Fig. 4. Traces 1 to 4 are parallel to the axes, thus
illustrating the latter’s individual influence.
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Representation Accuracy STD
PI 74.9% ± 2.8%

Linear EI 94.9% ± 2.1%
Cubic EI 94.6% ± 2.7%
MFCC 60.4% ± 4.1%

TABLE I
MAXIMUM AVERAGED CLASSIFICATION

ACCURACY AND STANDARD DEVIATION (STD).

found
real p c o v t
p 81.40 0.47 2.79 4.19 11.16
c 6.07 86.45 5.14 1.40 0.93
o 1.40 4.20 55.94 12.59 25.87
v 1.87 0.80 11.50 77.54 8.29
t 4.86 0.69 18.75 15.97 59.72

TABLE II
CONFUSION MATRIX FOR THE MAXIMUM

ACCURACY OBTAINED WITH PI (D = 19).

found
real p c o v t
p 95.81 1.40 0.47 0 2.33
c 1.40 92.52 5.14 0.93 0
o 0 2.10 95.10 2.10 0.70
v 1.07 0.53 0 95.45 2.94
t 0 0 0 3.47 96.53

TABLE III
CONFUSION MATRIX FOR THE MAXIMUM

ACCURACY OBTAINED WITH LINEAR EI (D = 20).

From traces 1 and 3 it can be asserted that the first
dimension (axis y1) mostly affects the overall energy and slope
of the spectral envelope. Such slope can be approximated as
the slope of the straight line one would obtain performing
linear regression on the spectral envelope. Along traces 2 and
4 (axis y2), the envelope has the clear behavior of changing
the ratio between low-frequency and high-frequency spectral
content. For decreasing values of y2, high-frequency contents
decreases and low-frequency contents increases, producing
a rotation of the spectral shape around a pivoting point at
approximately 4000 Hz. Traces 5 and 6 travel alongside the
diagonals and represent thus a combination of both behaviors.

V. APPLICATION TO SAMPLE CLASSIFICATION

In the previous sections it has been shown that the proposed
modeling approach is successful in capturing timbral features
of individual instruments. For many applications, however, dis-
similarity between different models is also desired. Therefore,
we evaluate the performance of the model in a classification
context involving solo instrumental samples. Such a classifi-
cation task is a popular application [21], aimed at the efficient
managing and searching of sample databases.

We perform such a classification task extracting a common
basis from the whole training set, computing one prototype
curve for each class and measuring the distance between an
input curve and each prototype curve. Like for prototyping,
the curves must have the same number of points, and thus
the input curve must be interpolated with the number of
points of the densest prototype curve, of length Rmax. The
distance between an interpolated unknown curve Ŭ and the i-
th prototype curve Ci is defined here as the average Euclidean
distance between their mean points:

d(Ŭ , Ci) =
1

Rmax

Rmax∑
r=1

√√√√ D∑
k=1

(ŭrk − µirk)2. (14)

For the experiments, another subset of the same 5 classes
(piano, clarinet, oboe, violin and trumpet) was defined, again
from the RWC database [17], each containing all notes present
in the database for a range of two octaves (C4 to B5), in all
different dynamics (forte, mezzoforte and piano) and normal
playing style, played by 2 to 3 instrument exemplars of each
instrument type. This makes a total of 1098 individual note
files, all sampled at 44,1 kHz. For each method and each
number of dimensions, the experiments were iterated using 10-
fold random cross-validation. The same parameters as in the
representation stage evaluations were used: P = 20 partials
for PI, and a frequency grid of G = 40 points for EI.
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Fig. 6. Classification results: averaged classification accuracy.

The obtained classification accuracy curves are shown on
Fig. 6. Note that each data point is the result of averaging the
10 folds of cross-validation. The experiments were iterated up
to a dimensionality of D = 20, which is the full dimensionality
in the PI case. The best classification results are given in
Table I. With PI, a maximal accuracy of 74.9% was obtained.
This was outperformed by around 20 percent units when using
the EI approach, obtaining 94.9% for linear interpolation and
94.6% for cubic interpolation.

To assess instrument-wise performances, two confusion
matrices are shown in Table II (for the best performance
achieved with PI) and in Table III (for the best performance
achieved with linear EI). The initials on the matrices denote:
piano (p), clarinet (c), oboe (o), violin (v) and trumpet (t).
All individual performances are better with EI than with PI,
but the difference in performances between instruments show
a completely different behavior. In particular, note that the
clarinet obtained both the best performance of all instruments
with PI (86.45%) and the worst performance with EI (92.52%).
Recall that PI aligns f0-correlated features and EI aligns
f0-invariant features. The spectrum of the clarinet has the
particularity that the odd partials are predominant. When
estimating the spectral envelope, this produces important inter-
peak valleys that are, in effect, f0-correlated features, which
are thus kept aligned by PI. It follows that for the clarinet,
f0-correlated features predominate over static formants, and
the contrary is valid for the other 4 considered instruments.

Another conclusion that can be drawn from the confusion
matrices is that the piano, the only non-sustained instrument
considered, did not perform significantly better than the sus-
tained instruments. This suggests that the simplicity of the time
normalization process (which, as mentioned above, is uniform
in all phases of the ADSR envelope) has a relatively small
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effect on the performance, at least for this application scenario.
For comparison, the representation stage was replaced with

a standard implementation of MFCCs. Note that MFCCs fol-
low a similar succession of stages than our approach (envelope
estimation followed by compression), but they are expected
to perform worse because the estimation stage delivers a
rougher envelope (based on fixed frequency bands), and the
DCT produces only a suboptimal decorrelation. The MFCC
coefficients were subjected to GP prototyping, and a set of
MFCC prototype curves was thus created. The results are
again shown on Fig. 6 and Table I. The highest achieved
classification rate was only of 60.4% (with D = 13).

The obtained accuracies are comparable to those of other
systems from the literature. A review of approaches can be
found in [21]. As examples of methods with a similar number
of classes, we can cite the work by Brown et al. [22], based on
a Naı̈ve Bayes Classifier and attaining a classification accuracy
of 84% for 4 instrument classes, the work by Kaminskyj and
Materka [23], based on a feedforward Neural Network and
reaching an accuracy of 97% with 4 classes, and the work
by Livshin and Rodet [24], where a k-Nearest Neighbors
algorithm attains a performance of 90.53% for 10 classes,
interestingly using only the sinusoidal part of the signals.

VI. APPLICATION TO POLYPHONIC INSTRUMENT
RECOGNITION

Isolated sample classification, as presented in the previous
section, is useful for applications involving sound databases
intended for professional musicians or sound engineers. A
broader group of users will potentially be more interested in
analysis methods that can handle more realistic and represen-
tative musical data, such as full musical tracks containing mix-
tures of different instruments. While far from being applicable
to a wide range of instrumentations and production styles,
current methods aiming at the detection of instruments in a
polyphonic mixture aim towards that ideal goal of generalized
Auditory Scene Analysis.

Thus, a second, more demanding, analysis application was
selected to test the appropriateness of the models. In particular,
we address the detection of the occurrence of instruments in
single-channel mixtures. The main difficulty of such a task,
compared to the single-voice case, arises from the fact that the
observed partials correspond to overlapping notes of different
timbres, thus not purely following the predicted t-f template
approximations. In such a case it will be more convenient
to work in the t-f domain. Also, since the notes have to
be compared one-by-one to the templates, they must first be
located in the audio stream by means of an onset detection
stage.

Past approaches towards polyphonic timbre detection typi-
cally either consider the mixture as a whole [25] or attempt to
separate the constituent sources with prior knowledge related
to pitch [26]. The method proposed here is based on the
grouping and partial separation of sinusoidal components, but
has the particularity that no harmonicity is assumed, since
classification is solely based on the amplitude of the partials
and their evolution in time. As a result, no pitch-related a

Simple mixtures Sequences
Polyphony 2 3 4 2 3
Euclidean distance 68.48 52.25 41.28 64.66 50.64
Likelihood 73.15 55.56 54.18 63.68 56.40

TABLE IV
EXPERIMENTAL RESULTS: INSTRUMENT DETECTION ACCURACY (%).

priori information or preliminary multipitch detection step are
needed. Also, it has the potential to detect highly inharmonic
instruments, as well as single-instrument chords.

The mixture is first subjected to inharmonic sinusoidal
extraction, followed by a simple onset detection, based on
counting the tracks born at a particular frame. Then, all tracks
tt having its first frame close to a given onset location Lono are
grouped into the set To. A track belonging to this set can be
either non-overlapping (if it corresponds to a new partial not
present in the previous track group To−1) or overlapping with
a partial of the previous track (if its mean frequency is close,
within a narrow margin, to the mean frequency of a partial
from To−1). Due to the fact that no harmonicity is assumed,
it cannot be decided from the temporal information alone if a
partial overlaps with a partial belonging to a note or chord
having the onset within the same analysis window or not.
This is the origin of the current onset separability constraint
on the mixture, which hinders two notes of being individually
detected if their onsets are synchronous. For each track set To,
a reduced set T ′o was created by eliminating all the overlapping
tracks in order to facilitate the matching with the t-f templates.

Then, the classification module matches each one of the
track groups T ′o with each one of the prototype envelopes, and
selects the instrument corresponding to the highest match. To
that end, envelope similarity was first defined as the following
optimization problem, based on the total Euclidean distance
between amplitudes:

d(T ′o , M̃io) = min
α,N

∑
t∈T ′

o

Rt∑
r=1

|ANtr + α−Mi(fNtr )|

 , (15)

where Rt is the number of frames in track tt ∈ T ′o , α is
an amplitude scaling parameter and ANtr and fNtr denote the
amplitude and frequency values for a track belonging to a
group that has been stretched so that its last frame is N . The
optimization based on amplitude scaling and track stretching
is necessary to avoid the overall gain and note length having
an effect on the measure. In order to perform the evaluation
M̃io = Mi(Fo) at the frequency support Fo, for each data
point the model frames closest in time to the input frames are
chosen, and the corresponding values for the mean surface are
linearly interpolated from neighboring data points.

To also take into account the variance of the models, a
corresponding likelihood-based problem was defined as

L(T ′o |θi) = max
α,N

∏
t∈T ′

o

Rt∏
r=1

p
(
ANtr + α|Mi(fNtr ),Vi(fNtr )

) ,

where p(x) denotes a unidimensional Gaussian distribution.
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The single-channel mixtures used for the experiments were
generated by linearly mixing samples of isolated notes from
the RWC database [17] with separated onsets. Two different
types of mixtures were generated: simple mixtures consisting
of one single note per instrument and sequences of more
than one note per instrument. A total of 100 mixtures were
generated. The training database consists of the 5 instruments
mentioned before, covering 2 octaves (C4-B5), and contains
1098 samples in total. For the evaluation, the database was
partitioned into separate training (66% of the database) and test
sets (33% of the database). The training set contains samples
from 1 or 2 exemplars, and the test set contains samples from
a further instrument exemplar. More precisely, this means that
66% of the samples were used to train the models, and the
remaining 33% were used to generate the 100 mixtures.

The classification measure chosen was the note-by-note
accuracy, i.e. the percentage of individual notes with correctly
detected onsets that were correctly classified. Table IV shows
the results. The likelihood approach worked better than the
Euclidean distance in all cases, showing the advantage of
taking into account the model variances. Note that these
experiments had the goal of testing the performance of the
spectral matching module alone, and do not take into account
the performance of the onset detection stage.

While a fully significant performance comparison with other
systems is difficult due to the lack of a common database
and evaluation procedure, we can cite the previous work [27],
which used the same timbre modeling procedure and a similar
database (linear mixtures from the RWC samples, albeit 6
instruments are considered, instead of 5). The onset detection
stage and subsequent track grouping heuristics, used here, are
replaced in that work by a graph partitioning algorithm. The
note-by-note classification accuracy was of 65% with 2 voices,
50% with 3 voices and 33% with 4 voices.

VII. CONCLUSIONS AND FUTURE WORK

The task of developing a computational model representing
the dynamic spectral characteristics of musical instruments
has been addressed. The development criteria were chosen
and combined so that such models can be used in a wide
range of MIR applications. To that end, techniques aiming
at compactness (PCA), accuracy of the envelope description
(sinusoidal modeling and spectral interpolation) and statistical
learning (training and prototyping via Gaussian Processes)
were combined into a single framework. The obtained features
were modeled as prototype curves in a reduced-dimensional
space, which can be projected back into the t-f domain to yield
a set of t-f templates called prototype envelopes.

We placed emphasis on the evaluation of the frequency
misalignment effects that occur when notes of different pitches
are used in the same training database. To that end, data
preprocessing methods based on Partial Indexing (PI) and En-
velope Interpolation (EI) were compared in terms of explained
variance, reconstruction error and training/test cluster similar-
ity, with EI being better in most cases for low and moderate
dimensionalities of up to around 1/4 of the full dimensionality.
It follows that the interpolation error introduced by EI was
compensated by the gain in correlation in the training data.

The developed timbre modeling approach was first evaluated
for the task of classification of isolated instrument samples,
consisting in projecting the spectro-temporal envelope of un-
known samples into the PCA space and comparing an average
distance between the resulting trajectory and each one of the
prototype curves. This approach reached a classification accu-
racy of 94.9% with a database of 5 classes, and outperformed
using MFCCs for the representation stage by 34 percent units.

As a second, more demanding application, detection of
instruments in monaural polyphonic mixtures was tested. Such
a task focused on the analysis of the amplitude evolution of
the partials, matching it with the pre-trained t-f templates.
The obtained results show the viability of such a method
without requiring multipitch estimation. Accuracies of 73.15%
for 2 voices, 55.56% for 3 voices and 54.18% for 4 voices
were obtained. To overcome the current constraint on the
separability of the onsets, the design of more robust spectro-
temporal similarity measures will be needed.

A possibility for further research is to separate prototype
curves into segments of the ADSR envelope. This can allow
three enhancements: first, different statistical models can be
more appropriate to describe different segments of the tempo-
ral envelope. Second, such a multi-model description can make
possible a more abstract parametrization at a morphological
level, turning timbre description into the description of geo-
metrical relationships between objects. And finally, it would
allow treating the segments differently when performing time
interpolation for the curve averaging, and time stretching for
maximum-likelihood timbre matching, thus avoiding stretch-
ing the attack time in the same degree than the sustained part.

It is also possible to envision sound-transformation or
synthesis applications involving the generation of dynamic
spectral envelope shapes by navigating through the timbre
space, either by a given set of deterministic functions or
by user interaction. If combined with multi-model extensions
of the prototyping stage, like the ones mentioned above,
this could allow approaches to morphological or object-based
sound synthesis. It can be strongly assumed that for such possi-
ble future applications involving sound resynthesis, perceptual
aspects (such as auditory frequency warpings or masking
effects) will have to be explicitly considered as part of the
models in order to obtain a satisfactory sound quality.

The presented modeling approach is valid for sounds with
predominant partials, both harmonic or inharmonic, and in
polyphonic scenarios it can handle linear mixtures. Thus, a
final evident research goal would be to extend the applicability
of the models to perform with more realistic signals of
higher polyphonies, different mixing model assumptions (e.g.,
delayed or convolutive models due to reverberation) and real
recordings that can contain, e.g., different levels of between-
note articulations (transients), playing modes, or noisy or
percussive sounds.
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