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ABSTRACT

We propose a new statistical model of musical timbre that han-
dles the different segments of the temporal envelope (attack, sus-
tain and release) separately in order to account for their differ-
ent spectral and temporal behaviors. The model is based on a
reduced-dimensionality representation of the spectro-temporal en-
velope. Temporal coefficients corresponding to the attack and re-
lease segments are subjected to explicit trajectory modeling based
on a non-stationary Gaussian Process. Coefficients correspond-
ing to the sustain phase are modeled as a multivariate Gaussian. A
compound similarity measure associated with the segmental model
is proposed and successfully tested in instrument classification ex-
periments. Apart from its use in a statistical framework, the mod-
eling method allows intuitive and informative visualizations of the
characteristics of musical timbre.

1. INTRODUCTION

Our goal is to develop a computational model of musical instru-
ment sounds that is accurate and flexible enough for several sound
processing and content analysis applications. We seek a compact
representation of both temporal and spectral characteristics, dis-
tinctive for each instrument, that is able to describe or predict the
essential time-frequency behaviours of a range of isolated notes of
a particular instrument. We formulate the problem as a supervised
learning task, based on a labeled training database, that estimates
a statistical model.

We put special emphasis on the temporal aspect: since the
early studies by Helmholtz, it is well-known that not only the spec-
tral shape, but also its evolution in time plays a crucial role in
the distinction between instruments, i.e. in our perception of tim-
bre. However, when it comes to computational modeling of music
for analysis or synthesis purposes, research has traditionally given
more importance to the spectral aspect. This is true for the two
research fields of relevance here: music content analysis (or infor-
mation retrieval) and music sound transformation and synthesis.

In music information retrieval, in which pattern recognition
algorithms are applied for classification or search by similarity,
the predominant architecture is to extract a set of short-time fea-
tures that roughly describe the spectral shape, followed by a simple
temporal modeling consisting of a statistical measure of their evo-
lution across a certain fixed-length temporal segment. Common
features range from low-level measures, describing the spectral
shape with a scalar (such as spectral centroid, flatness, kurtosis,
etc.) to mid-level multidimensional features including a moderate
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level of auditory modeling, such as Mel Frequency Cepstral Co-
efficients (MFCC) or auditory filter banks. Examples of temporal
modeling approaches include computing velocity and acceleration
coefficients, measuring statistical moments across a mid- to long-
term window or using autoregressive models [1]. Feature extrac-
tion is typically followed by a statistical classification model that
either completely ignores the temporal sequence of the features,
such as Gaussian Mixture Models (GMM) or Support Vector Ma-
chines (SVM), or reduces it to a discrete sequence of states, such
as Hidden Markov Models (HMM). Only recently, more detailed
temporal models have been proposed in this context. As an exam-
ple, we cite the work by Joder et al.[2], where alignment kernels
are studied as a replacement of traditional static kernels for SVM
classification. It should be noted that the adequate level of spectral
and temporal accuracy of the model will strongly depend on the ex-
act application context. When analyzing full music tracks, it will
be unhelpful to attempt a highly accurate extraction of both spec-
tral and temporal envelopes, due to the huge variability they will
present in the training database. However, if the goal is to analyze
or classify isolated instrumental sounds (as it is in the present con-
tribution), both spectral and temporal characteristics will be highly
structured and can thus be exploited by a more accurate model.
The high variability and unpredictability of full music tracks is
also the reason why the music analysis community has focused
less on temporal structure than the speech analysis community.

Concerning sound transformation and synthesis, much atten-
tion has been given to the accurate estimation of the spectral enve-
lope [3], and to the study of the corresponding formant structures.
When signal reconstruction is needed (sound transformation, syn-
thesis, source separation), source models have to be far more ac-
curate than in information retrieval applications. Thus, more so-
phisticated models are typical in this area, such as spectral basis
decompositions [4] or models based on sinusoidal modeling [5].
Still, when it comes to statistical learning, the temporal evolution
is also often ignored, or approximated by simple temporal smooth-
ness constraints. For instance, Virtanen [5] and Kameoka et al. [6]
both model temporal smoothness as a superposition of temporal
windows, and in [7] a Markov chain prior is imposed on the tem-
poral coefficients controlling the superposition of a set of spectral
bases. Bloit et al. [8] use a more explicit modeling of feature tra-
jectories by a generalization of HMM in which the static distribu-
tions of the states are replaced by a collection of curve primitives
that represent basic trajectory segment shapes.

Our main motivation is to model temporal evolution at a still
higher degree of accuracy. As will be seen, in some cases we avoid
temporal discretization altogether and attempt to explicitly model
the trajectories in feature space. Such a model was presented in our
previous works [9, 10], and will be briefly summarized in Sect. 2.
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In short, our previous model extracts a set of dimension-reduced
coefficients describing the spectral envelope, while keeping their
temporal ordering. Then, all coefficient trajectories for each in-
strument class are collapsed into a prototype trajectory that corre-
sponds to a Gaussian Process (GP) with varying mean and covari-
ance.

The fact that our previous model used a single GP prototype
trajectory per instrument gave rise to important limitations, as will
be described. This contribution builds on those works by replacing
the single-GP model with a compound model in which the attack,
sustain and release segments of the temporal envelope are modeled
separately. This solves two important drawbacks of the GP model.
First, it allows using different statistical models for different seg-
ments, thus accounting for their possibly very different behaviours
at the feature level. As will be seen, the shapes of feature trajecto-
ries are very descriptive in the transient phases (attack and release),
but, as can be expected, they will vary less in sustained regions. In
the latter case, a cluster model will be more appropriate than an ex-
plicit trajectory. And second, it avoids the implicit time-stretching
of the attack and release phases that was needed when learning
the GP model. This issue will be better understood when we will
address it in more detail in the next section.

We will begin our presentation with a brief summary of our
previous GP-based modeling approach (Sect. 2). Sect. 3 will
introduce the assumptions and methods we use for the segmenta-
tion of the temporal envelope. The new spectro-temporal segmen-
tal model will be presented in detail in Sect. 4. Finally, we will
present two applications of the segmental model: to classification
of isolated samples (Sect. 6), where an increase of performance
compared to the GP model is reported, and to timbre visualization
(Sect. 5).

2. DYNAMIC SPECTRAL ENVELOPE MODELING

We aim at modeling the spectral envelope and its evolution in time,
to which we will jointly refer as spectro-temporal envelope. Since
our previous approach to that end has been described and evaluated
in detail in our previous works [9, 10], we will only present it here
very briefly.

The first step is to extract the spectro-temporal envelopes from
a large set of files belonging to a training database. To that end, we
perform sinusoidal modeling (i.e., peak picking and partial track-
ing) on the individual notes, followed by an inter-peak interpola-
tion in frequency to obtain a smooth spectral shape. Then, dimen-
sionality reduction is performed via Principal Component Analysis
(PCA). All the spectro-temporal envelopes need thus to be orga-
nized into a rectangular data matrix X that will be subjected to a
factorization of the form

X = PY, (1)

where P is a K ×K matrix of spectral bases and Y is a K × T
matrix of temporal coefficients (K is the frequency bin index and
T is the time frame index). To accommodate the envelopes into
X while keeping formants aligned in frequency, the envelopes are
sampled at a regular frequency grid defined by k = 1, . . . , K. The
reduced-dimensional PCA projection of size D × T with D < K
is then given by

Yρ = Λ−1/2
ρ PT

ρ (X− E{X}), (2)

Figure 1: First three dimensions of the prototype tubes correspond-
ing to a set of 5 Gaussian Process (GP) timbre models.

where Λρ = diag(λ1, . . . , λD) and λd are the D largest eigen-
values of the covariance matrix

ΣX = E{(X− E{X})(X− E{X})T }. (3)

Each point in the PCA space defined by the above equations
will correspond to a spectral envelope shape, and a trajectory will
correspond to a variation in time of the spectral envelope, i.e., to a
spectro-temporal envelope in the time-frequency domain.

2.1. Gaussian Process Model

The projected coefficients Yρ are considered the features that will
be subjected to statistical learning. Each training sample will re-
sult in a feature trajectory in PCA space. The aim of the learning
stage of the GP model is to collapse all individual training trajec-
tories into a prototype curve, one for each instrument class. To that
end, the following steps are taken. First, all trajectories are inter-
polated in time using the underlying time scales in order to obtain
the same number of points. Then, each point of index r in the
resulting prototype curve for instrument i is considered to be a D-
dimensional Gaussian random variable pir ∼ N (µir,Σir) with
empirical mean µir and empirical covariance matrix Σir . A pro-
totype curve can be thus interpreted as a D-dimensional, nonsta-
tionary GP with time-varying means and covariances parametrized
by the frame index r:

Mi ∼ GP (µi(r),Σi(r)) . (4)

Rather than prototype curves (corresponding to the means µi(r)),
the resulting models in PCA space have the shape of prototype
tubes with varying widths proportional to the covariance Σi(r).
Figure 1 shows the representation in the first 3 dimensions of PCA
space of a set of 5 GP models learnt from a database of 174 audio
samples. The used samples are a subset of the RWC database [11].
As measured in [10] in terms of explained variance, the first 3
principal components already contain around 90% of information.
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Figure 2: Example of attack, sustain and decay/release segments in
PCA space: 2 clarinet and 2 piano notes from the training database.

2.2. Limitations of the GP Model

GP models of the spectro-temporal envelope, and their correspond-
ing visualization as prototype tubes, are adequate for trajectories
with a slowly evolving gradient (i.e., not changing direction too
often). As was observed with individual training samples, this is
the case for the attack, release and decay sections of the notes. In
sustained segments, the spectral envelope stays relatively constant
and thus the corresponding feature trajectory will oscillate inside a
small region of space, with little or no net displacement, suggest-
ing a cluster rather than a trajectory. Interpolating and keeping the
time alignment to learn a GP in such segments will mostly lead to
complicated and highly random trajectories that can hinder both
classification performance and generalization.

A graphical example of this observation is shown in Fig. 2.
Four coefficient trajectories corresponding to four individual train-
ing samples (two clarinet notes, in blue, and two piano notes, in
gray) are shown in their projection onto the first two dimensions
of PCA space. The trajectory curves are superimposed by circles
in the attack segments and by squares in the release/decay seg-
ments. The piano notes are non-sustained: their trajectories show
a net displacement across their whole duration. The clarinet notes,
being sustained, show a clearly different graphical behavior. The
sustain part corresponds to the indicated cluster-like area, where
there is little net displacement. The “tails” corresponding to attack
and relase/decay and coming out (or into) the cluster are clearly
recognizable. Although not represented here, the cluster-like be-
havior of the sustain phase is also observable under other space
projections and other dimensions.

Such observations suggest the segmentation of the training
samples into sustained and non-sustained sections before the learn-
ing stage, so that sustained sections can be learnt by cluster-like
models and non-sustained ones by trajectory-like models.

Another limitation of the single-GP approach arises from
the interpolation performed previous to the learning of the time-
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(b) Attack - Decay/Relase.

Figure 3: Simplified temporal segmentation models for sustained
(a) and non-sustained (b) notes.

varying means µi(r) and covariances Σi(r). Interpolating all
curves with the same number of points corresponds to time nor-
malization. Thus, for sustained sounds, this will have the implicit
effect of misaligning the attack and release phases. When align-
ing a short sustained note with a long sustained note of the same
instrument, the attack and release portions of the short note will
be excessively stretched. This results in portions of the attack and
release of some notes being modeled together with sustained por-
tions of other notes, hindering model performance and unnaturally
increasing its variance. Instead, attack and release segments vary
relatively little in duration across notes in similar pitch ranges for a
particular instrument, whereas the sustain segment can have an ar-
bitrary duration. This further motivates the temporal segmentation
of the input signals.

3. TEMPORAL SEGMENTATION

The segmentation of a musical note into its attack, sustain and re-
lease components is usually performed by applying thresholds to
its amplitude or energy temporal envelope. The best known seg-
mentation model, the attack-decay-sustain-release (ADSR) enve-
lope, popularized by early analog synthesizers, is hardly general-
izable to acoustic musical instruments. Instead, we consider two
separate simple segmentation schemes (see Fig. 3), one for sus-
tained sounds (e.g. wind instruments or bowed strings) and one for
non-sustained sounds (e.g. struck or plucked strings, membranes
or bars):

• ASR model (sustained sounds). Consisting of an attack
segment, a sustain segment (of arbitrary length) and a re-
lease segment between the end of the excitation and the end
of the vibrations.

• AD/R model (non-sustained sounds). Consisting of an at-
tack segment and a “rest” segment that can be interpreted as
either decay D or release R. This is to account for the fact
that some authors call the rest segment “decay” (the energy
is freely decaying), while others call the rest segment “re-
lease” (the excitation has been released).

We use the automatic segmentation method proposed in [12], based
on measuring the change rate of the slopes of the energy envelope
and using adaptive thresholds. In spite of the simplicity of the
segmentation scheme used, it has proven adequate enough for our
purposes. Of course, the modeling process will benefit from other,
more sophisticated, temporal segmentation methods. For exam-
ple, automatic segmentation should also take spectral cues into ac-
count, as suggested in [13].
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(a) Comparison of a sustained instrument with a non-sustained instru-
ment. The arrows indicate the starting points of the models.

(b) Segmental version of Fig. 1.

(c) Non-sustained struck strings (piano) vs. non-sustained struck bars
(tubular bells) vs. sustained woodwind (alto sax).

(d) Comparison of instruments from the same family (bowed strings).

Figure 4: Examples of timbre visualizations with segmental spectro-temporal models.

4. SEGMENTAL SPECTRO-TEMPORAL MODEL

Following the previous observations, we propose to replace the
GP model with a compound model with heterogeneous models for
each segment of the temporal envelope, which we call the seg-
mental spectro-temporal model (SST). Attack and release/decay
segments will be modeled by trajectory-like models, for which we
use the interpolated GP approach that was applied in Sect. 2.1 to
the trajectory as a whole, giving rise to the, respectively, attack and

release/decay tubes with the following probability distributions:

pA
i (x) = GP

“
x

˛̨
˛µA

i (r),ΣA
i (r), r ∈ RA

i

”
(5)

pD/R
i (x) = GP

“
x

˛̨
˛µD/R

i (r),ΣD/R
i (r), r ∈ RD/R

i

”
(6)

where RA
i and RD/R

i are, respectively, the index sets for the A
and D/R segments after interpolation. Note that interpolation (with
implicit time normalization) is now only performed on the corre-
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sponding subset of indices, avoiding excessive time stretching due
to the influence of the sustain segment.

Sustain is modeled by a multivariate Gaussian cluster with full
covariance matrix:

pS
i (x) = N

“
x

˛̨
˛µS

i ,ΣS
i

”
. (7)

Note that, for the A and D/R segments, we have used the notation
(r) to denote explicit temporal dependence, whereas for the S seg-
ment, the notation denotes a static model in which the individual
samples are statistically independent from each other.

We thus obtain the following compound mixture models for,
respectively, sustained and non-sustained sounds:

psust
i (x) = pA

i (x) + pS
i (x) + pD/R

i (x) (8)

pn.sust
i (x) = pA

i (x) + pD/R
i (x). (9)

5. APPLICATION TO TIMBRE VISUALIZATION

The segmental modeling method is highly appropriate for the
graphical representation of timbre characteristics. The use of
dimension reduction via PCA implies that most information (in
terms of variance) will be concentrated in the first few dimensions,
and thus 2-D or 3-D representations of the feature space will be
highly illustrative of the essential timbral features. Also, since a
common set of bases is used for the entire training set, it is pos-
sible to visually assess the timbre similarities and dissimilarities
between different instruments through the distance of their mod-
els in space. Finally, the use of compound models allows the use
of different geometrical objects for a visually appealing presen-
tation and fast assessment of spectro-temporal behavior. Sustain
segments correspond to ellipsoids, from which variable-diameter
tubes arise that correspond to attack and decay/release phases. The
length of the ellipsoid axes and the variable widths of the tubes
are proportional to the model covariances, with the proportionality
factor selected for an adequate visual characterization.

Several graphical examples of timbre visualizations based on
SST models are presented in Fig. 4. Fig. 4(a) shows the visual
comparison between a sustained (violin) and a non-sustained in-
strument (piano). This figure corresponds to a training database of
171 samples. The sustain segment of the violin is represented as an
ellipsoid described by the covariance of its Gaussian distribution.
The attack segment of the piano shows a greater variance than the
decay segment. Fig. 4(b) is the segmental counterpart of Fig. 1,
showing the resulting SST models from the exact same database
of 5 instruments.

Figure 4(c) shows the comparison between a struck bar per-
cussion instrument (tubular bells), a struck string instrument (pi-
ano) and a sustained woodwind instrument (alto saxophone). No-
table in this figure is the great spectral variability of the bells: their
prototype curve traverses more regions in space than the other
models. It should be recalled at this point that longer curves in
PCA space do not correspond to longer notes, since time has been
normalized by interpolation. Longer curves in space correspond to
a greater variability of spectral envelope shape.

Finally, Fig. 4(d) shows the timbre comparison between
two instruments (violin and cello) from the same family (bowed
strings), and playing the same range of notes. It can be observed
that the general shape of the model is similar, suggesting a similar-
ity in timbre. From the third dimension on, however, the models

are indeed shifted from each other. Also notable in this case is the
much higher variance of the cello in the release phase.

Since it is difficult to find one particular projection that high-
lights the important features for all instruments at the same time,
a better visualization can be achieved by letting the user rotate the
figures on a computer.

6. APPLICATION TO CLASSIFICATION

An example of application of the models to the field of information
retrieval is the classification of isolated musical samples. An eval-
uation of the models in such a task also helps assessing their dis-
criminative power. Classification can be performed by projecting
an unknown sound into feature space and defining a global dis-
tance or likelihood between the projected interpolated unknown
trajectory Ŭ and the stored compound models. In our previous
work based on instrument-wise GP modeling [10], such distance
was simply the average Euclidean distance between the input tra-
jectory and each one of the stored prototype curves:

d(Ŭ ,Mi) =
1

Rmax

RmaxX

r=1

vuut
DX

k=1

(ŭrk − µirk)2, (10)

where Rmax denotes the maximum number of frames among the
stored models and the˘symbol denotes interpolation. In order to
also take into account the variance of the prototypes, classification
based on GP models can be instead reformulated as a maximum
likelihood problem based on the following point-to-point likeli-
hood:

L(Ŭ |µi(r),Σi(r)) =
RmaxY

r=1

N (ŭ(r)|µi(r),Σi(r)) . (11)

For the SST model, the different model types call for the use
of hybrid distance measures. The first step is to segment the in-
coming signal following the method of Sect. 3. Afterwards, the
sound is identified as either sustained or non-sustained. This will
be necessary for the later choice of appropriate distance measure.
This detection is performed here with the following simple but ef-
ficient rule: a sound is classified as non-sustained if the beginning
of the release/decay segment is detected before half the duration
of the sound. Once the input sound has been segmented, for com-
parison of the A and D/R segments, the GP likelihood definition of
Eq. 11 will be used, after replacing the parameters with the ones
corresponding to either segment.

For the S segment, a different type of similarity measure is
needed, without the explicit temporal ordering of Eq. 11. We wish
to compare the Gaussian clusters of the sustain models (pS

i ) with
a Gaussian cluster of the data points belonging to the sustain part
of the unknown input sound, denoted here as pS

ŭ . The Kullback-
Leibler (KL) divergence is thus an appropriate choice:

DKL(pS
ŭ�pS

i ) =
X

x

pS
ŭ(x) log

pS
ŭ(x)

pS
i (x)

(12)

which in the case of multivariate Gaussian distributions has the
following analytic expression:

DKL(pS
ŭ�pS

i ) =
1
2

„
log

„
detΣS

i

detΣS
ŭ

«
+ tr((ΣS

i )−1ΣS
ŭ)

+ (µS
i − µS

ŭ)T (ΣS
i )−1(µS

i − µS
ŭ)−D

”
,
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Model Measure 5 dimensions 10 dimensions

GP Euclidean 88.26 ±3.02 92.94 ± 2.12
GP Likelihood 90.64 ±3.51 94.59 ± 2.46
SST Likelihood 93.67 ±1.70 95.41 ± 2.16
SST Likel. + KL 94.40 ± 2.00 96.61 ± 1.94

Table 1: Classification results (mean classification accuracy % ±
standard deviation across cross-valiation folds).

where (µS
ŭ ,ΣS

ŭ) are the parameters of the sustain part of the input
trajectory and D is the number of dimensions.

The global similarity measure between the unknown input tra-
jectory and a segmental model is finally defined as the following
compound log-likelihood function:

logL(Ŭ |θi) = logL(Ŭ |µA
i (r),ΣA

i (r))

+ logL(Ŭ |µD/R
i (r),ΣD/R

i (r))

− αDKL(pS
ŭ�pS

i ), (13)

where α = 1 if the sound is classified as sustained and α = 0 if the
sound is classified as non-sustained. θi denotes the ensemble of
model parameters. Of course, the models not relevant to the sound
class detected (sustained/non-sustained) need not to be included in
the maximum likelihood evaluation.

For the classification experiments, a database of 5 instrument
classes was used. The database consists of a selection of isolated
samples from the RWC music database [11]. The classes include
4 sustained instruments (clarinet, oboe, violin and trumpet) and
1 non-sustained instrument (piano). Each class contains all notes
for a range of two octaves (C4 to B5), in three different dynam-
ics (forte, mezzoforte and piano) and normal playing style. This
makes a total of 1098 individual note files, all sampled at 44.1
kHz. The experiments were iterated using a random partition into
10 cross-validation training/test sets. The frequency grid was of
K = 40 points, linear interpolation was used for the frequency
interpolation and cubic interpolation was used for the temporal in-
terpolation of the GP curves in PCA space. All experiments were
repeated for two different dimensionalities: D = 5 and D = 10.

The results are shown in Table 1. The first row corresponds
to the GP model evaluated with average Euclidean distances (Eq.
10), as in the previous system presented in [10]. Using the vari-
ance information by means of the likelihood of Eq. 11 improves
the performance, as shown in the second row of the table. The
best results, however, are obtained with the proposed segmental
(SST) model. The full segmental model with the compound like-
lihood/divergence measure of Eq. 13 offers the best performance
at 94.40% mean accuracy for D = 5 dimensions and at 96.61%
mean accuracy for D = 10 dimensions.

We performed an additional experiment for testing the influ-
ence of the sustain segment in the classification. This was done
by always forcing α = 0 in Eq. 13, both for sustained and non-
sustained input sounds. The results are shown in the third row of
the table. Even if, as expected, the performance is lower than with
the complete model, it is a remarkable result that its influence on
the classification performance is rather low. This suggests that Eq.
13 might need the inclusion of different weights for its different
terms, so that the influence of the individual segments are better
balanced. Such a weighting scheme will be explored in the future.

7. CONCLUSIONS AND OUTLOOK

We have presented the segmental spectro-temporal (SST) model
for the statistical characterization and visualization of the timbre
of musical sounds. The model considers the temporal amplitude
segments of each note (attack, sustain, release) separately in or-
der to address their different behaviors in both time and frequency
domains. Feature extraction is based on the estimation of the
spectro-temporal envelope, followed by a dimensionality reduc-
tion step. The portions of the resulting feature trajectories cor-
responding to attack, release and decay segments are modeled as
non-stationary Gaussian Processes with varying mean and covari-
ances. The sustain part is modeled as a multivariate Gaussian.
We proposed a compound similarity measure associated with the
SST model, so that the method can readily be used for classifica-
tion purposes. In particular, classification experiments with iso-
lated samples showed an improved performance (in terms of clas-
sification accuracy) compared to our previously proposed single-
Gaussian-Process model.

Apart from their use in a statistical framework, the model-
ing method allows intuitive and informative visualizations of the
characteristics of musical timbre, including an explicit depiction
of timbre similarity (or dissimilarity) between instruments.

The segmental approach is a flexible strategy that opens in-
teresting research directions. More refined models could be envi-
sioned for the individual segments, or for modeling variations on
the playing styles. For instance, we could analyze how vibrato af-
fects the shape of the sustain cluster, or how articulations such as
stacatto, martelatto, etc., affect the behaviour of the attack trajec-
tory.

There is also a shortcoming that needs to be addressed. Our
feature extraction strategy favours the alignment of formants be-
fore performing dimensionality reduction (this issue was only
briefly mentioned on this contribution, but addressed in detail in
[9]). Unlike formants, other spectral features depend on pitch and
will be lost in the alignment. A notable example is the predomi-
nance of odd partials in the spectra of wind instruments with both
closed tubes and cylindrical bores, such as the clarinet. For such
instruments, an alternative, pitch-dependent representation is de-
sirable. In this context, a related research direction has been started
in which pitch-dependent and pitch-independent features are de-
coupled by means of a source-filter model. This principle could be
combined with the explicit trajectory modeling methods presented
here.
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