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Musical Instrument Sound Morphing Guided by
Perceptually Motivated Features

Marcelo Caetano, Member, IEEE, and Xavier Rodet

Abstract—Sound morphing is a transformation that gradually
blurs the distinction between the source and target sounds. For
musical instrument sounds, the morph must operate across timbre
dimensions to create the auditory illusion of hybrid musical instru-
ments. The ultimate goal of sound morphing is to perform percep-
tually linear transitions, which requires an appropriate model to
represent the sounds being morphed and an interpolation function
to obtain intermediate sounds. Typically, morphing techniques di-
rectly interpolate the parameters of the sound model without con-
sidering the perceptual impact or evaluating the results. Percep-
tual evaluations are cumbersome and not always conclusive. In
this work, we seek parameters of a sound model that favor linear
variation of perceptually motivated temporal and spectral features
used to guide the morph towards more perceptually linear results.
The requirement of linear variation of feature values gives rise to
objective evaluation criteria for sound morphing. We investigate
several spectral envelope morphing techniques to determine which
spectral representation renders the most linear transformation in
the spectral shape feature domain. We found that interpolation of
line spectral frequencies gives the most linear spectral envelope
morphs. Analogously, we study temporal envelope morphing tech-
niques and we concluded that interpolation of cepstral coefficients
results in the most linear temporal envelope morph.

Index Terms—Musical instrument sounds, sound morphing,
source-filter model.

I. INTRODUCTION

S OUND morphing figures prominently among the sound
transformation techniques studied in the literature due to

its great creative potential andmyriad possible outcomes. Sound
morphing has been used in music compositions [1]–[3], sound
synthesizers [4], and even in psychoacoustic experiments, no-
tably to study timbre spaces [5]. However, there seems to be
no consensus in the literature on which transformations fall into
the category of sound morphing and there certainly is no widely
accepted definition of the morphing process for sounds. Most
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Fig. 1. Depiction of image morphing to exemplify the aim of sound morphing.
Foundonlineat http://tinypic.com/images/404.gif, currentlypubliclyavailable at
http://paulbakaus.com/wp-content/uploads/2009/10/bush-obama-morphing.jpg.

authors seem to agree that sound morphing involves the hy-
bridization of two (or more) sounds by blending auditory fea-
tures. One frequent requirement is that the result should fuse
into a single percept, ruling out simply mixing or crossfading
the sounds [4], [6] because the ear is capable of distinguishing
them due to a number of cues and auditory processes. Still, many
different sound transformations are described as morphing, such
as interpolated timbres [4], smooth or seamless transitions be-
tween sounds [7] or cyclostationary morphs [8]. In a previous
work [9], we thoroughly reviewed the different types of sound
transformation that are usually termed morphing and evaluated
how the temporal nature of the morphing transformation (sta-
tionary, dynamic, etc) directly interferes in the requirements of
the process.
When morphing musical instrument sounds, we usually want

to transform across timbre dimensions to create the auditory il-
lusion of hybrid musical instruments, gradually blurring the cat-
egorical distinction between the source and target sounds. Fig. 1
illustrates this effect for images. A challenging aspect of such
transformations is to control the morph on the algorithmic and
perceptual levels with a single coefficient , called morphing
or interpolation factor [9]. Ideally, we would like to obtain a
morphed sound perceptually halfway between source and target
when , and be able to recursively repeat the process
for . Equivalently, linear variation of should lead
to a perceptually linear transformation. The concept of percep-
tual linearity in sound morphing lies at the core of this work,
where we use perceptually motivated features to guide the trans-
formation and evaluate linearity in the feature domain. We as-
sume that linear variation in the feature domain indicates per-
ceptual linearity when the features capture perceptually relevant
information.
Most morphing techniques proposed in the literature directly

apply the interpolation principle without taking perceptual as-
pects into consideration [4], [6], [7], [10]–[15]. In this work,
parameter refers to coefficients fromwhich we can resynthesize
sounds (e.g., spectral peaks), while feature refers to coefficients
used to describe or identify a particular aspect of a sound (e.g.,
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Fig. 2. Depiction of the classic morphing scheme using the interpolation prin-
ciple, which assumes that perceptually intermediate representations possess in-
termediate parameter values.

spectral centroid). Features are commonly related to sound per-
ception, so it is usually not possible to resynthesize sounds di-
rectly from feature values. The interpolation principle, depicted
in Fig. 2, supposes that if we can represent different sounds by
simply adjusting the parameters of a model, we should obtain
a somewhat smooth transition between two sounds by interpo-
lating the parameter values of their representations.
Interpolation of sinusoidal models [16], [17] is among the

most common approaches to sound morphing [4], [6], [11],
[13]–[15], [18], [19]. In what is perhaps the first major work
devoted specifically to morphing, Tellman et al. [4] proposed to
interpolate the amplitude and frequency values resulting from
the sinusoidal model dubbed Lemur [6]. Their focus is synthe-
sizers and how to produce sounds with intermediate features
such as loudness and vibrato from pre-recorded sounds. Their
morphing scheme involves time-scale modification to morph
between different attack and vibrato rates.
More recently, Fitz et al. [10] presented amorphing technique

using the enhanced-bandwidth sinusoidal modeling called Loris
[10], andmorphing is achieved again by simply interpolating the
parameters of the model. They recognize the need to temporally
align the sounds to be morphed. However, they do not have an
automatic procedure to do so, rather, they annotate by hand what
they consider to be the perceptually relevant temporal cues, such
as start and end of attack.
Hope and Furlong [20], [21] prefer to interpolate the parame-

ters of a Wigner distribution analysis. Boccardi and Drioli [11],
in turn, used Gaussian mixture models to interpolate between si-
nusoidal modeling parameters [16], [17]. Röbel [22] proposed
to model sounds as dynamical systems with artificial neural net-
works and to morph them by interpolating the corresponding at-
tractors. Ahmad et al. [7] applied a discrete wavelet transform
and singular value decomposition to morph between transient
sounds. They interpolate linearly between the parameters and
state that other interpolation strategies with a better perceptual
correlation should be studied.
A few authors have proposed to detach the amplitude from

the frequency of the partials with spectral envelopes and morph
them separately [7], [8], [23]–[27]. Slaney et al. [8] proposed to
morph spectral envelopes by cross-fading (time-varying inter-
polation) between the mel-frequency cepstral coefficients [28]
that represent each spectral envelope, focusing on dynamically
varying sounds such as words. First of all, they use the widely
known dynamic time warping (DTW) algorithm to align tem-
poral events in the sounds. Their conclusion is that the method
should be improved with more perceptually optimal interpola-
tion functions. Pfitzinger [23] used dynamic frequency warping
(DFW), a frequency domain counterpart of DTW, in a spectral
smoothing approach applied to concatenative speech synthesis.

Fig. 3. Depiction of the morphing by feature interpolation principle adopted
in this work, which advocates that perceptually intermediate representations
present intermediate feature values rather than intermediate parameter values.
Notice that the step represented by the grey arrow implies retrieving parameters
from features.

Ezzat et al. [24] studied the use of DFW to morph spectral
envelopes in the context of musical sounds, analyzing soberly
the problem of interpolating spectral envelopes and arguing that
the spectral envelope morphing technique should shift the peaks
of the spectral envelope (also called formant peaks) between
source and target. They acknowledge that simply interpolating
the envelope curve does not account for proper formant shifting,
which is where direct interpolation of the amplitudes of a sinu-
soidal model commonly fails to render more perceptually linear
results. Then, they state that interpolating alternative represen-
tations of the envelopes, such as linear prediction or cepstral co-
efficients, also poses problems and propose to use DFW instead.
However, formant shifting alone does not guarantee perceptual
linearity.
In most proposed models, linear variation of interpolation pa-

rameters does not produce perceptually linear morphs [12], so,
recently, authors have started to study the perceptual impact of
their models and how to interpolate the parameters so that the
results vary roughly linearly on the perceptual sphere. Williams
and Brookes [14], [15] studied a perceptually-motivated tech-
nique to morph simple synthetic sounds guided by the spec-
tral centroid. Hikichi [12] usedmultidimensional scaling (MDS)
spaces [29], [30] constructed from the sources and morphed
sounds to figure out how to warp the interpolation factor in the
parameter space so that it will linearly morph in the perceptual
domain. In [26], [27], we proposed to morph spectral envelopes
guided by features controlling the spectral shape by changing
the parameters of the spectral envelope model with the aid of a
genetic algorithm.
Sound transformations that use features to control perceptu-

ally related aspects such as pitch, loudness, or brightness are
called content-based transformations [31] or adaptive sound ef-
fects [32] in the literature. The aim of such transformations is
to use the feature values to control the result perceptually. For
instance, doubling the value of the spectral centroid to obtain
a sound that is twice as bright. In [9], [25], we introduced the
concept of sound morphing by feature interpolation, illustrated
in Fig. 3, as an alternative to directly interpolating parameters
of a sound representation. In this article, we present an in-depth
study of musical instrument sound morphing using the feature
values as objective measure of linearity, followed by a listening
test to cross-evaluate the results perceptually.
Morphing by feature interpolation advances that sounds with

intermediate values of features are perceptually intermediate
when the features capture perceptually relevant information.
Therefore, we should extract features from these parameters,
interpolate the feature values, and retrieve the set of parameter
values that correspond to the interpolated feature values. How-
ever, the step represented by the grey arrow in Fig. 3 would



1668 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2013

require retrieving parameter values from feature values, a no-
toriously difficult problem [32]. Instead, in this work, we seek
to interpolate parameters of a sound model to obtain morphed
sounds whose values of features are as close as possible to the
interpolated feature values. We propose to use the feature values
as objective measure of the perceptual impact of the morphing
transformation, requiring the features to vary in a straight line
when changes in equal steps (linearly).
Section II introduces the features used in this work along with

their psychoacoustic background from MDS studies. Then, we
present an overview of the proposed musical instrument mor-
phing procedure and the temporal and spectral models used.
Next, we discuss morphing the spectral and temporal envelopes
guided by the features, followed by the evaluation of linearity
in the feature domain. Finally, we conclude and discuss future
perspectives.

II. THE FEATURES USED AS GUIDES

The features used in this work are derived from the acoustic
correlates of timbre spaces from multidimensional scaling
(MDS) studies of timbre perception. We include temporal
and spectral features to capture the most perceptually salient
dimensions of timbre perception, namely, the attack time and
the distribution of spectral energy. The temporal features we
use are the log attack time and the temporal centroid. The spec-
tral shape features spectral centroid, spectral spread, spectral
skewness, and spectral kurtosis we use are a measure of the
balance of spectral energy.

A. Acoustic Correlates of Timbre Spaces

MDS techniques figure among the most prominent when
trying to quantitatively describe timbre. The MDS algorithm
maps subjective distances (perceptual dissimilarity between
musical instrument sounds) into an orthogonal metric space
which has the number of dimensions specified by the investi-
gator. McAdams [29] and Handel [33] independently propose
comprehensive reviews of the early timbre space studies. Grey
[30] investigated the multidimensional nature of the perception
of musical instrument timbre, constructed a three-dimensional
timbre space, and proposed acoustic correlates for each di-
mension. He concluded that the first dimension corresponded
to spectral energy distribution (spectral centroid), the second
and third dimensions were related to the temporal variation
of the partials (onset synchronicity and spectral fluctuation).
Krumhansl [34] conducted a similar study using synthesized
sounds and also found three dimensions related to attack,
synchronicity and brightness. Krimphoff [35] studied acoustic
correlates of timbre spaces and concluded that brightness is
correlated with the spectral centroid and rapidity of attack
with rise time in a logarithmic scale. McAdams [29] conducted
similar experiments with synthesized musical instrument tim-
bres and concluded that the most salient dimensions were log
rise time, spectral centroid and degree of spectral variation.
More recently, Caclin [36] studied the perceptual relevance of a
number of acoustic correlates of timbre-space dimensions with
MDS techniques and concluded that listeners use attack time,
spectral centroid and spectrum fine structure in dissimilarity
rating experiments.

In timbre spaces obtained with MDS, the distances between
pairs of instruments represent the perceptual dissimilarity be-
tween them. Timbre space representations are essentially sparse
in nature. The space is mostly void and the musical instruments
occupy non-overlapping areas. When the morphed sound is per-
ceptually intermediate between two musical instrument sounds,
it would be placed between them in the underlying timbre space,
“filling” the voids and allowing exploration of the sonic con-
tinuum. When the features guiding the morph are acoustic cor-
relates of timbre dimensions, intermediate feature values would
correspond to intermediate positions in the timbre space.

B. Temporal Features

The attack is the beginning of the acoustic stimulus, present
in all sounds. Psychoacoustic (dis)similarity studies [29], [30],
[33]–[37] discovered that the attack is among themost perceptu-
ally salient features of musical instrument sounds. These studies
have shown that the attack time is perceived roughly on a loga-
rithmic scale.
The log attack time is calculated as shown in (1), where

stands for the beginning of the attack and for the end (see
Fig. 5). The temporal centroid is the measure of the balance of
energy distribution along the course of a sound and is calculated
as in (2), where represents the temporal centroid, is time,
and is the value of the temporal envelope for time . The
temporal centroid has been shown [38] to be especially impor-
tant when comparing percussive and sustained sounds because
that is when it varies more significantly, allowing us to distin-
guish between the two classes. Still, in the context of strictly
sustained sounds, the attack times and temporal centroids vary
significantly enough to be relevant.

(1)

(2)

C. Spectral Shape Features

The spectral shape features are calculated on every frame,
which permits to follow their temporal variation. The spectral
centroid is one of the most salient features in psychoacoustic
studies [29], [30], [33]–[37] correlated with the verbal attribute
“brightness.” Spectral spread is a measure of the bandwidth
of the spectrum. Spectral skewness and spectral kurtosis were
shown to be significantly correlated with 2 out of 27 dimensions
of 10 timbre spaces tested in a study [37] of acoustic correlates
of timbre dimensions.
The spectral shape features are the first four standardized

moments of the normalized magnitude spectrum viewed
as a probability distribution defined in (3), where is
the magnitude spectrum, the frequencies are the possible out-
comes, and the probabilities to observe them are .

(3)

Following this definition, the spectral shape features are

(4)
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Fig. 4. Depiction of the general steps of the musical instrument sound morphing procedure. There are three distinct parts, temporal processing, spectral processing,
and morphing procedure. Blocks with dark grey background represent waveforms, blocks with light grey background represent temporal feature extraction and
processing, and blocks with white background represent spectral feature extraction and processing.

(5)

(6)

(7)

The spectral centroid is the mean of and the spectral
spread is the variance around the mean, shown respectively
in (4) and (5). The spectral skewness , shown in (6), measures
the asymmetry of around the spectral centroid, while spec-
tral kurtosis, shown in (7), is a measure of the peakedness of

relative to the normal distribution.
Notice that the spectral shape features have different units.

The spectral centroid is measured in Hertz, the spectral
spread in Hertz squared, and both the spectral skewness
and spectral kurtosis are dimensionless. Furthermore, we can
use different frequency and amplitude scales when calculating
the spectral shape features to better approximate the spectral
information that reaches the ear. In this work, we use the mel
scale [39] to warp the frequency axis and logarithmic amplitude
to better represent loudness perception.

III. MODELING MUSICAL INSTRUMENT SOUNDS

The morphing technique we developed comprises three steps,
temporal processing, spectral processing, and the morphing
procedure. Fig. 4 illustrates each step. The blocks represent
modeling and processing operations, and the arrows indicate
the order in which they are applied. Blocks with dark gray
background represent waveforms, light gray background repre-
sents temporal modeling or processing, and white background
is spectral modeling or processing. The temporal processing
step consists of temporal segmentation, temporal alignment,
and temporal envelope estimation. The spectral processing step
comprises sinusoidal plus residual decomposition followed
by source-filter modeling of both the sinusoidal and residual
components, which are morphed separately and then mixed
back together.

A. Temporal Segmentation

Temporal segmentation consists in estimating the boundaries
of four perceptually important regions, namely, attack, transi-
tion, sustain, and release. Naturally, the sounds can be annotated
by hand [4], [10], but in this work we want to automatically seg-
ment the sounds. Ideally, morphing algorithms should take two

Fig. 5. Amplitude/Centroid Trajectory (ACT) model used in the automatic
temporal segmentation of musical instrument sounds. The solid line represents
the temporal envelope and the dashed line is the spectral centroid. The numbers
stand for the boundaries of the perceptually salient regions, represented by the
letters.

(or more) sounds as input and automatically output the morphed
sound according to the value of .
The automatic segmentation technique we proposed else-

where [40] uses the Amplitude/Centroid Trajectory (ACT)
model [41] depicted in Fig. 5, where stands for attack, is
transition, is sustain, is release, and is background
noise. The ACT uses the temporal envelope and the spectral
centroid to estimate the boundaries (numbered lambdas) of
the regions (letters). From these estimations, we calculate the
length of each region.

B. Temporal Alignment

The attack is characterized by fast transients, and the sustain
part is much more stable. Therefore, if we combine a sound that
has a long attack with another sound with a short one without
prior temporal alignment, the region where attack transients are
combined with more stable partials would not sound natural.
To achieve a more perceptually seamless morph, we need to
temporally align these regions so that their boundaries coincide
before combining them.
The temporal alignment procedure makes sure that the dif-

ferent regions , , , and are synchronized for the sounds
being morphed. Algorithmically, temporal alignment means
aligning the numbered lambdas from the ACT model as
follows. For each sound, we measure the length of each region
(labeled with letters) by computing the time difference using
the markers (numbered lambdas). Then, we interpolate be-
tween the lengths of the regions according to (8) to obtain their
corresponding lengths in the morphed sound. For the attack
we interpolate from (1) instead. The interpolated lengths are
represented by a letter that stands for the region and subscripts
indicating both sounds, e.g., for the sustain as shown in (8)

(8)
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Fig. 6. Comparison between the spectro-temporal view of the sinusoidal and
SF representations. Part a) shows the waveform (top) and spectrogram (bottom).
Part b) shows the source (top) and filter (bottom). The source is represented as
the temporal variation of the frequencies of the partials, while the filter is a
time-varying spectral envelope. (a) Waveform and spectrogram and (b) source
and filter

where represents the length of the sustain of the first sound
and of the second. The stretch/compress factors and
applied on the first and second sounds respectively are calcu-
lated as in (9)

(9)

Finally, we simply time stretch/compress each region by the
corresponding ratio, for instance, by , etc. After temporal
alignment, both musical instrument sounds are ready to be mor-
phed in the spectral domain.

C. Temporal Envelope Estimation

The amplitudemodulations of musical instrument sounds and
speech are important perceptual cues. Accurate estimation of
the temporal envelope of a complex waveform (such as music
or speech) is not a trivial task. Ideally, the amplitude envelope
should outline the waveform connecting the main peaks and
avoiding over fitting. In this work, temporal envelope estimation
is performed with the true amplitude envelope (TAE) technique
we developed [42], based on cepstral smoothing. TAE gives a
reliable estimation that follows closely sudden variations in am-
plitude and avoids ripples in more stable regions with near op-
timal order selection depending on the fundamental frequency
of the signal.

D. Sinusoidal Plus Residual Decomposition

The aligned musical instrument sounds are decomposed
into a sinusoidal and a residual parts, which are modeled
independently as source and filter. For musical instrument
sounds, the sinusoidal component contains most of the acoustic
energy present in the signal because musical instruments are
designed to have very steady and clear modes of vibration. The
residual component, obtained by subtraction of the sinusoidal
component from the original recording, contains mostly noisy
modulations.

E. The Source-Filter Model

The source-filter (SF) model we developed [43] represents
source and filter independently, as shown in Fig. 6. The sinu-
soidal component comprises a time-varying spectral envelope
(filter) and the time-varying frequency values for the partials

Fig. 7. Spectral view of the source-filter model. Each subfigure shows the tra-
ditional sinusoidal representation at the top and the source-filter representation
at the bottom for one analysis frame.

(source). The residual component is modeled as white noise
(source) driving a time-varying spectral envelope (filter).
The selection of the spectral envelope estimation method for

the sinusoidal and residual components is very important. The
estimation of the spectral envelope is intimately linked to the SF
model because it corresponds to the identification of the param-
eters of the filter. The main goal of this deconvolution between
source and filter by means of spectral envelope estimation is to
eliminate the harmonic structure of the spectrum, which is as-
sociated with the source. Ideally, for the sinusoidal component,
the spectral envelope should be a smooth curve that approxi-
mately matches the peaks of the spectrum. Wen and Sandler
[44] propose to use the channel vocoder to model the filter part.
However, Röbel [45] showed that “true envelope” (TE) outper-
formed the spectral envelope estimation methods tested, mini-
mizing the estimation error for the peaks of the spectrum. Thus
we use TE to estimate the spectral envelope curve of the sinu-
soidal component.
Fig. 7 presents a comparison of the sinusoidal and the SF rep-

resentation of the amplitudes of partials. The top part of each
subfigure shows the original spectrum (solid line) and the par-
tials (vertical spikes), i.e., the spectral peaks selected by the
peak-picking algorithm. At the bottom part, we see the partials
from sinusoidal analysis (vertical spikes) and the spectral enve-
lope curve estimated with “true envelope” (solid curve) repre-
senting the amplitude of the partials. Both representations re-
tain essentially the same information (amplitude and frequency
of partials) in different ways. The frequencies of the partials
are now the values at which we “sample” the spectral envelope
curve. The sinusoidal model has a more accurate representation
of the amplitudes of the partials, while the SF representation
is much more flexible to perform sound transformations [43].
We use linear prediction to estimate the spectral envelope of the
residual component because the envelope curve follows the av-
erage energy of the magnitude spectrum rather than fit the am-
plitudes of the spectral peaks.

IV. MORPHING MUSICAL INSTRUMENT SOUNDS

The morphing steps comprise spectral envelope morphing,
interpolation of frequencies of partials, and temporal envelope
morphing. Each frame is morphed separately in the spectral do-
main. The morphed temporal envelope modulates the morphed
spectral frames upon resynthesis. For each frame, the morphed
spectral envelope gives the amplitude of each partial at the value
of the interpolated frequencies. Sound examples can be found
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on http://recherche.ircam.fr/anasyn/caetano/overview.html.
This section explains thoroughly each morphing step, paying
particular attention to how the selected features guide spectral
and temporal envelope morphs. Linearity in the feature domain
will be used in Section V as objective measure to select a
representation for the spectral and temporal envelope morphing
techniques. Finally, a listening test was performed to validate
the results of the objective evaluation. Section V presents a
systematic evaluation using twenty-six (26) pairs of sounds.

A. Spectral Envelope Morphing

The peaks of the spectral envelope are the frequency regions
where spectral energy is concentrated. For musical instruments,
these perceptually important spectral regions are associated
with timbre perception [33]. The spectral envelope morphing
technique must shift in frequency the peaks of the spectral
envelope [24]. Moreover, the amplitudes of these peaks must
also change accordingly to ensure that the transition will be
perceived as smoothly as possible. In other words, the bal-
ance of spectral energy should gradually shift from source to
target when the spectral envelope morph is perceived linearly
[25]. Therefore, in this work, the spectral envelope morphing
technique must satisfy both requirements, namely, spectral
envelope peak shifting, and variation of spectral shape features
as close as possible to a straight line when its parameters are
interpolated in equal steps (i.e., linearly).
Fig. 8 shows an example to illustrate the morph using several

representations proposed in the literature: the envelope curve
(ENV) [4], [6], cepstral coefficients (CC) [8], dynamic fre-
quency warping (DFW) [23], [24], linear prediction coefficients
(LPC) [46], reflection coefficients (RC) [46], and line spectral
frequencies (LSF) [47]–[50]. Fig. 8(a) shows the source and
target envelopes in solid lines and nine intermediate envelopes
in dashed and dotted lines corresponding to linearly varying
the interpolation factor by 0.1 steps. Fig. 8(b) shows the as-
sociated values of the spectral shape descriptors for each step.
We want the technique that properly accounts for peak shifting
and exhibits linearity in the spectral shape feature domain.
Fig. 8 suggests that ENV does not account for peak shifting.

In this case, visually, most spectral shape descriptors change
fairly close to a straight line. Interestingly, Fig. 8 reveals that
the interpolation of CC does not shift the peaks of the spectral
envelope in frequency. In fact, the figure suggests that the result
of interpolating CC is very similar to ENV. The variation of
spectral shape features reveals that these are different transfor-
mations. Fig. 8 shows that DFW results in peak shifting. How-
ever, the spectral shape features do not vary close to a straight
line. Moorer [46] states that LPC do not interpolate well because
they are derived from impulse responses, and therefore too sen-
sitive to changes. Fig. 8 seems to confirm that. In the literature
[46], RC are a more robust alternative representation of LPC.
Fig. 8 reveals that the transformation is smooth. However, the
spectral shape features do not change linearly under interpola-
tion of RC. Itakura [51] proposed LSFs as an attractive alterna-
tive representation for LPC because of several properties [50],
including peak shifting [47]–[49]. The example in Fig. 8 shows

Fig. 8. Spectral envelope morphing guided by spectral shape features. The
figure shows the variation of the values of spectral shape features when mor-
phing spectral envelopes using the main approaches proposed in the literature.
Part a) shows the spectral envelope curves and part b) shows the corresponding
variation of feature values. We want the spectral envelope morphing algorithm
that leads to linear variation of spectral shape features. (a) Spectral envelopes.
(b) Spectral shape features.

that LSF are indeed suitable parameters to represent and inter-
polate the spectral envelopes because the peaks shift properly
and the spectral shape features change rather linearly.
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B. Interpolation of Partials Frequencies

The frequencies of the partials, the source in the SF model,
carry perceptually important information in the form of tem-
poral frequency modulations. For example, when one of the
sounds to be morphed presents vibrato, the transformation
should gradually change between more stable partials and
vibrato modulations. This can be achieved by interpolating the
interval in cents between frequency and frequency as
expressed in (10), where represents the frequency value of
the th partial of the first sound, and the frequency value of
the th partial of the second sound. Equation (11) presents how
to interpolate the interval in cents rather than the frequency
values and directly. We define the frequency with
the aid of (10) as a fraction of the interval in cents and use
the value of as the frequency of the th interpolated partial.

(10)

(11)

The correspondence between the partials should be carefully
considered. Osaka [19] proposed an algorithm to find the op-
timal solution to the problem of correspondence between two
sets of partials derived from sinusoidal analysis by minimizing
the distance between the frequency intervals for all possible
matches of partials (one-by-one). For near harmonic musical
instrument sounds, simply matching the partial number might
be enough. However, one sound might have more partials than
the other, in which case we could simply discard the unmatched
partials. Another possibility is to include a harmonic estimate of
the unmatched partial based on the fundamental frequency
and the harmonic number as . However, this substi-
tution can only be used when both sounds are nearly harmonic.
When there is a slight harmonic deviation (such as piano sounds,
whose upper partials deviate farther and farther from perfectly
harmonic), we must only interpolate the intervals in cents be-
tween pairs of partials that were detected. Alternatively, we can
use a model of the inharmonicity to predict the frequencies of
upper partials that were not detected and therefore do not have a
match. In this work, we empirically verified that discarding un-
matched partials gives better results for the musical instrument
sounds used than including the harmonic estimation.

C. Temporal Envelope Morphing

In this work, morphing the temporal envelope guided by the
temporal centroid is analogous to morphing the spectral enve-
lope because the same estimation and representation techniques
can be applied [25], leading to similar morphing transforma-
tions. Also, the temporal centroid is the time-domain counter-
part of the spectral centroid , and as such, its values behave in
the same fashion under the same transformations. Analogously
to Fig. 8, Fig. 9(a) shows the source and target temporal enve-
lope curves as solid lines with nine intermediate temporal en-
velope curves corresponding to linearly varying by 0.1 steps.
Fig. 9(b) shows the corresponding variation of the temporal cen-
troid. The temporal envelope morphing techniques considered
are interpolation of the envelope curve (ENV) directly and in-
terpolation of the cepstral coefficients (CC) used to represent

Fig. 9. Temporal envelope morphing guided by perceptually motivated fea-
tures. The figure shows the temporal envelope curves on the left-hand side and
the corresponding variation of the temporal centroid on the right-hand side.
(a) Temporal envelope. (b) Temporal centroid.

it [25]. We discard morphing techniques that shift peaks of the
envelope because this behavior is undesirable for the temporal
envelope.

V. EVALUATION

In total, eighteen (18) musical instrument sounds from the
Vienna Symphonic Lybrary covering the woodwind, brass, and
(plucked and bowed) string musical instrument families were
used in the evaluation. All the sounds used have the same pitch
(C4), duration (2s), and dynamics (forte) and present different
attacks (slow, normal, and staccato). The bowed strings also
have vibrato. The results presented below include a total of
twenty six (26) pairs of sounds from different musical instru-
ments. We chose not to morph between the same musical instru-
ment with different attacks under the hybrid musical instrument
constraint.
The requirement of linearity in the feature domain can be for-

mulated as a minimum squared error and applied both in the
spectral and temporal feature domains. Therefore, the variation
of spectral shape features and the temporal centroid are evalu-
ated. The interpolation of the frequency of the partials, on the
other hand, cannot be formulated or evaluated similarly. The
representation that renders the minimum quadratic error is the
most linear in the feature domain under consideration, and se-
lected as the most appropriate for the morphing scheme.

A. Objective Evaluation

The requirement of linearity of features led to a simple objec-
tive error measure to investigate which spectral envelope rep-
resentation renders the smallest error when interpolated for all
pairs of sounds morphed. Fig. 10 illustrates the error calcula-
tion as the deviations between the calculated feature values
“o” and the interpolated feature values “x” for each normalized
spectral shape feature . The interpolated feature values
“x” are obtained with a straight line connecting the calculated
feature values for the source and target .
The features are all normalized between 0 and 1, so in practice
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Fig. 10. Error calculation. The figure depicts the calculation of the feature in-
terpolation error. The interpolated feature values obtained as a linear re-
gression are represented as “x”, while the calculated feature values are
represented as “o”.

holds for the interpolated features and the calculated
features are represented as .
The error function in (12) is the square root of the sum

of the quadratic deviations between the calculated feature
values and the interpolated feature values for each
normalized spectral shape feature , where is the number of
linear steps between and and the subscript
represents each spectral shape feature.

(12)

For each pair of sounds, the error is evaluated for each
feature for all spectral envelope representations considered,
and then averaged across features to obtain an error estimation

for each spectral envelope morphing method for a given
pair of sounds. Finally, a global error value for each method
is obtained as the average across all pairs of sounds.

B. Linearity of Spectral Envelope Morphing

Fig. 11 shows the error between the interpolated values ( )
and the calculated values ( ) of the spectral shape features
for each spectral envelope representation. Part a) shows the error
for each feature individually for one pair of sounds, and part
b) shows the average error across all twenty-six (26) pairs of
sounds used. Part a) shows for each feature, and on
the right-hand side (marked “Total”), representing the average
performance of each method for each pair of sounds. Notice
that, in practice, is averaged over frames, so Fig. 11
also shows the 95% confidence interval across frames.
Part b) shows the total error for all twenty-six (26) pairs

of sounds tested. The lowest error bar in this plot gives the
most linear spectral envelope morphing method in the spectral
shape feature domain for the musical instrument sounds tested.
Fig. 11 reveals that interpolation of LSFs presented the smallest
quadratic deviation when morphing the spectral envelope.

C. Linearity of Temporal Envelope Morphing

The evaluation of the linearity of temporal envelope mor-
phing representations uses the error function analogously

Fig. 11. Error analysis for spectral envelope morphing. The figure shows the
error between the interpolated values ( ) and the calculated values ( )
for the spectral shape features. Part a) shows the error for each feature indi-
vidually for one pair of sounds, and part b) shows the average error across all
twenty-six (26) pairs of sounds used and the lowest error bar in this plot gives
the most linear spectral envelope morphing method in the spectral shape feature
domain. (a) Single error. (b) Total error.

Fig. 12. Error analysis for temporal envelope morphing. The figure shows the
error between the interpolated values ( ) and the calculated values ( )
for the temporal centroid for both temporal envelope morphing methods.

to the spectral counterpart. The feature used is the temporal
centroid , and the temporal envelope morphing methods com-
pared are interpolation of curves (ENV) and cepstral coefficients
(CC) for the same twenty-six (26) pairs of musical instruments.
Fig. 12 shows the comparison of the error values, indicating
that the interpolation of the cepstral coefficient representation
(CC) of the temporal envelope leads to the smallest error. In-
terestingly, simple visual inspection of Fig. 9(a) is not enough
to choose between ENV or CC, showing the need to adopt the
smallest quadratic deviation criterion.

D. Perceptual Comparison of Linearity in Sound Morphing

Finally, we performed a listening test to compare the linearity
of morphing transformations using musical instrument sounds
between the SF model developed and traditional sinusoidal
analysis. The SF model used LSFs to morph the spectral
envelopes, while the sinusoidal morphing used the standard
interpolation of frequency and amplitude values. The temporal
alignment step is the same for both methods, only the spectral
morphing procedure changes. The listening test presented 11
pairs of cyclostationary morphs (with 9 intermediate versions
each) and asked the participants which was “smoother.” The
test is available online (http://recherche.ircam.fr/anasyn/cae-
tano/survey/smoothness.html). Participants could either choose
a method, or have no preference. In total, the results of 58
participants aged between 22 and 53 were used.
The listening test revealed that, in general, linearity depends

on the pair of sounds used. There is no clearly predominant mor-
phing technique. For some pairs, many participants manifested
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no preference. The task was considered very difficult because it
required participants to compare the intervals between the nine
steps of the morph, judging several characteristics of sounds at
the same time and remembering them for comparison across
steps. The big cognitive load of the task compromised the eval-
uations in some cases. The number of steps used was considered
inappropriate because the task relies on memory to perform the
comparison.

VI. CONCLUSION AND FUTURE PERSPECTIVES

In this work, we describe techniques to automatically morph
musical instrument sounds across timbre dimensions guided by
perceptually motivated spectral and temporal features that cap-
ture the most salient dimensions of timbre perception. The tem-
poral features are log attack time and temporal centroid, and the
spectral shape features (a measure of the balance of spectral en-
ergy) are spectral centroid, spectral spread, spectral skewness,
and spectral kurtosis. The concept of morphing by feature inter-
polation adopted in this work considers that sounds with inter-
mediate values of features are perceptually intermediate when
the features capture perceptually relevant information. There-
fore, the values of the features are considered an objective mea-
sure of the perceptual impact of the morphing transformation
and the objective evaluation we adopted requires that the fea-
tures vary in a straight line when the morphing factor used to
control the transformation changes linearly.
We describe the temporal and spectral steps of our morphing

algorithm, along with the models used, which include temporal
segmentation and alignment of perceptually salient regions,
temporal envelope estimation, and source-filter modeling. We
investigate several spectral envelope morphing techniques
previously proposed in the literature, namely the envelope
curve (ENV), cepstral coefficients (CC), dynamic frequency
warping (DFW), linear prediction coefficients (LPC), reflec-
tion coefficients (RC), and line spectral frequencies (LSF), to
determine which representation renders the most linear trans-
formation in the spectral shape feature space. We adopted a
minimum quadratic deviation approach to evaluate the linearity
of the transformations in the feature domain. We found that
interpolation of line spectral frequencies (LSF) gives the most
linear spectral envelope morphs and properly shifts the peaks
of the spectral envelope in frequency. We also investigated
temporal envelope morphing techniques guided by feature
values analogously to the spectral envelope. For the temporal
envelope, we found that cepstral coefficients (CC) give the
most linear transformation without shifting the peaks of the
temporal envelope, which is considered undesirable behavior.
The innovative aspect of the work described here lies in the

adoption of an objective evaluation criterion (linearity in the
feature domain), which resulted in an error measure that allows
comparison across different morphing techniques. Future per-
spectives of this work include investigating the perceptual lin-
earity of the results. This challenging task requires human evalu-
ation in listening tests. However, the investigator would need to
develop a procedure to efficiently evaluate or compare the per-
ceptual linearity of morphing techniques. Nonlinearities play an
important role in musical instruments and their sound produc-
tion mechanism, such as attack transients or a brighter sound

when played louder. Perceptual aspects of nonlinear, nonsta-
tionary, and inharmonic characteristics of musical instrument
sounds certainly constitute an interesting direction to follow the
work towards more gradual morphing transformations.
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