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Abstract

This article presents a segmentation model applied to musician movements, taking into
account different time structures. In particular we report on ancillary gestures that are not
directly linked to sound production, whilst still being entirely part of the global instrumental
gesture. Precisely, we study movements of the clarinet captured with an optical 3D motion
capture system, analyzing ancillary movements assuming that they can be considered as a
sequence of primitive actions regarded as base shapes. A stochastic model called segmental
hidden Markov model is used. It allows for the representation of a continuous trajectory as a
sequence of primitive temporal profiles taken from a given dictionary. We evaluate the model
using two criteria: the Euclidean norm and the 1g-likelihood. We show that the size of the
dictionary is not a predominant influence in the fitting accuracy and we propose a method
for building a dictionary based on the log-likelihood criterion. Finally, we show that the
sequence of primitive shapes can also be considered as a sequence of symbols enabling us to
interpret the data as symbolic patterns and motifs. Based on this representation, we show that
circular patterns occur in all players’ performances. This symbolic step produces a different
layer of interpretation, linked to a larger time scale, which might not be obvious from a direct
signal representation.

1 Introduction

Physical gestures of a music performance are commonly called instrumental gestures
[7, 29, 16]. In this context, instrumentalists’ gestures that are not directly involved in
sound production (or music production) are usually called accompanying gestures [7]
or ancillary gestures [29]. In this article, we propose a methodology for clarinetist’s an-
cillary gestures segmentation highlighting their inherent multi-level information con-
tent. This work is related to other recent studies on musical gestures, in particular
instrumental gesture modeling ([11, 19, 9, 20, 25]) and computational models for in-
vestigating expressive music performance [32, 33]. This can give important perceptive
insights for the design of virtual instruments, sound installations and sound design ap-
plications.

Ancillary gestures

Ancillary gestures are musical gestures [16] that are not related to sound production but
convey relevant information about the player’s expressivity during a performance. In
[10], the author shows that the expressive intentions of musical performers are carried
most accurately by their movements. This was later shown for the particular case of
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clarinet performance [28]. Vines et al. explore how expressive gestures of a profes-
sional clarinetist contribute to the perception of structural and emotional information
in musical performance. A main result is that the visual component carries much of
the same structural information as the audio. Previously, Wanderley in [30] has in-
vestigated clarinetists’ ancillary gestures providing findings that can be summarized
as follows: the same player performing a musical piece several times tends to use the
same gestures; some gestures related to structural characteristics of the piece tend to be
similar across the performances of different musicians whilst others remain subjective.
These results are specified in [31]. The authors show that clarinetists’ subjective inter-
pretation can be clustered according to which parts of the body are the most involved
in ancillary gestures: some expressed in their knee and others used waist-bending ges-
tures. Moreover, from the clarinetists’ point of view, they show that the players feel
uncomfortable when they try to consciously restrain their gestures whereas most of
them seem to be aware of their expressive movements but not conscious of the gesture
details. A recent study by Teixeira et al. [26] has highlighted movement patterns in the
clarinetists’ head by an empirical analysis and a qualitative segmentation. Results from
these works highlight importance of ancillary gestures in communicating intention to
the audience as well as understanding their expressive and spontaneous nature.

However, most of these works remain qualitative and do not propose quantitative
methods for characterizing subjective gesture expressivity. One of the reasons is the
problem of retrieving which part of the body (or which movement feature) is relevant
for the analysis from high dimensional captured data often provided by a 3D full body
motion capture system. Two main approaches can be used.

1. The top-down approach considers all the data and tries to find a subset of rel-
evant features explaining the gesture. Usual techniques are PCA [13], Neural
Networks [21], or CCA for cross-modal dimension reduction [8].

2. The bottom-up approach considers a restricted part of the movement selected by
prior knowledge and shows that it can be used to make suitable assessments on
gesture expressivity ([9, 20, 25]) .

In the scope of this paper, we follow the second approach in selecting a specific part of
the captured elements, namely the instrument, that has been shown to be pertinent to
characterize instrumentalists’ ancillary gestures [30, 31].

Gesture as a sequence of primitive actions

Our basic hypothesis is that musical gestures can be considered as a sequence of primi-
tive actions understood as primitive shapes. Previous works in cognitive sciences stated
that people “make sense of continuous streams of observed behavior [like actions, mu-
sic, ...] in part by segmenting them into events” [18]. Events can occur simultaneously
at different time scales and according to a hierarchical structure.

In [15], the authors propose to adapt the linguistic framework to model human ac-
tivity. The proposed human activity language consists of a three-level architecture:
kinetology, morphology and syntax. Interestingly, kinetology “provides a symbolic
representation for human movement that [...] has applications for compressing, de-
compressing and indexing motion data”. Similarly, in activity recognition literature,
a usual technique is to recognize actions defined as human motion units and activities
defined as sequences of actions (see [27] for a survey).



In a recent paper, Godgy et al. [14] explore the theory that “perceived [music
related] actions and sounds are broken down into a series of chunks in peoples’ minds
when they perceive or imagine music”. In other words we holistically perceive series
of both gesture and sound units: gesture and sound are cut into smaller units and the
fusion and transformation of respective units lead to larger and more solid units.

We consider that music-related gestures, like ancillary gestures, can be described
according to different timescales, meaning different segmentation levels (or chunking
levels) like for the human activity language defined in [15]. Our aim is to provide a ro-
bust quantitative analysis technique, first, to represent the gesture signal into sequences
of symbolic units (segmentation and indexing) and, second, to allow for further analy-
sis of ancillary gestures taken as sequences of symbols (parsing). In this study, we will
show that a trade-off has to be made between these two goals. This work is comple-
mentary to the previous work by Widmer et al. [32], showing that quantitative methods
from machine learning, data mining or pattern recognition are suitable for the analysis
of music expression and allow for retrieving the various structural scales in music. An
important difference resides in the data used. Widmer et al. used MIDI like data while
we use continuous data from a full-body motion capture system.

This paper is organized as follows. We first report previous work on human motion
segmentation in the next section. Then we propose an overview of the general architec-
ture of our methodology in section 3. The system is based on two main parts: first, the
definition of a suitable dictionary for expressive gesture representation (in section 4);
second, the stochastic modeling by SHMM that is formally presented in section 5. Sec-
tion 6 details our experiments on a chosen database. First, we evaluate the pertinency
of the model for representing the data using a geometric and a probabilistic criterion.
Then, we show that it is suitable for motion pattern analysis of clarinetists’ interpreta-
tion of a music piece. In section 7, we conclude and propose short-term prospective
works.

2 Related work

Motion segmentation methods can be roughly categorized into either unsupervised or
supervised techniques. Unsupervised segmentation algorithms do not need any prior
knowledge of incoming signals. Barbic et al. [3] have shown that human behaviors
can be segmented using simple methods like Principal Component Analysis (PCA),
probabilistic PCA (PPCA) and Gaussian Mixture Model (GMM) that are only based
on information available in the motion sequence. Changes in intrinsic data dimension
(PCA, PPCA methods) or changes in distribution (GMM method) define segments’
limits. Other methods use velocity properties of the joint angles [12] or perform im-
plicit segmentation as a learning process [5]. In this last paper, Brand et al. use an
unsupervised learning process on human motion to build stylistic HMM defined as a
generic HMM (for instance describing bipedal human motion dynamics) changing ac-
cording to a style parameter (for instance describing walking or strutting). This method
allows complex human motions to be segmented and re-synthesized. However the in-
ternal states defining motion units are difficult to interpret and the method gives access
to solely one timescale for movement description. More sophisticated methods like the
nonparametric Bayesian process are used to model learning of action segmentation and
its causal nature but are specific to goal-oriented actions [6].

The second set of algorithms are supervised techniques, where primitives (in a wide
sense) attributed to the signal segments are known. Arikan et al. in [1] have proposed



a motion synthesis process based on a sequence of primitive actions (e.g. walking—
jumping—walking) given by the user. It allows for higher-level control on motion
synthesis but requires an annotated gesture database. Annotations are usually provided
by the user and make sense for either action-oriented movement or activity synthe-
sis. Our solution defines motion primitives as temporal profiles or shapes rather than
words. An interesting model previously used for shape modeling and segmentation
is the segmental hidden Markov model (SHMM). This model has been studied in dif-
ferent research fields: speech recognition [23], handwriting recognition [2] and time
profile recognition of pitch and intensity evolution in [4]. SHMM allows continu-
ous signals to be segmented and indexed at the same time. The system first needs a
base shape dictionary used to describe input gestures as a sequence of basic shapes.
Then a model defined as a sequence of shapes can be learned (or fixed) for recogni-
tion process. Hence, a character is a sequence of strokes [2] or a violin sketch like
tremolo is a sequence of pitch shapes [4]. Our contribution is to show that the SHMM-
based approach can efficiently represent clarinetists’ ancillary gestures as a sequence of
primitive shapes useful for the analysis of gesture patterns characterizing idiosyncratic
player interpretations.

3 System overview

Figure 1 illustrates the general architecture of the methodology. It is specified for clar-
inetists” ancillary gestures but the methodology can be used for other kinds of gesture
inputs like action-oriented human motion. Here, we focus on data captured by a 3D
motion capture system that gives access to marker positions along the Cartesian axis,
allowing the skeleton and the instrument movement to be reconstructed.

We assume a prior knowledge on the dataset that consists of a selection of rele-
vant features for gesture representation and the definition of a set of primitive shapes
(namely the base shape dictionary). This prior knowledge is based on previous work
in the literature. It corresponds to the first two blocks in figure 1 and will be further
detailed in the next section. Even if using a supervised segmentation technique, the
methodology is modular and these blocks could be replaced by a learning process ei-
ther supervised or unsupervised. For instance, from a suitable gesture parameterization,
we could learn primitive shapes of the dictionary by specifying the number of shapes
we require or by using previously annotated clarinetists’ gestures.

The stochastic model is based on a segmental hidden Markov model that represents
the input gesture signal from the database by the likeliest sequence of continuous and
time-warped shapes taken in the dictionary. SHMM requires that both dictionary ele-
ments and input signal have the same representation. Interpretation allows the initial
hypothesis to be validated, i.e. that clarinetist’s expressive gestures can be represented
as a sequence of meaningful primitive shapes. Interpretation consists of verification
with recorded video and observation.

4 Gesture parameterization and dictionary

In this section we present the chosen gesture parameterization and the set of shapes
composing a dictionary. This prior knowledge is based on previous work [30, 31, 24]
on clarinetists’ ancillary gesture analysis. We first select the gesture features; then we
propose four base shape dictionaries that will be used in this paper. These dictionaries
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Figure 1: Architecture of our system. Continuous gestures are captured by a specified motion capture
system. From the raw data, we define the gesture features (in this paper we consider 2 features) and build
a base shape dictionary. A segmental HMM is applied on captured gesture based on the defined dictionary.
Resulting gesture representation can be interpreted in terms of clarinetist’s expressive movements.

are defined to be flexible enough to handle expressive gesture representation.

4.1 Features for clarinetist’s gestures
Full body motion capture

As mentioned in the introduction, we suppose that we have access to marker positions
from a 3D motion capture system. An absolute cartesian frame (x,y, z) is defined
by the motion capture system calibration. From previous work (see [30], [31] and
[24] ), the bell’s movements have been shown to convey relevant information about
clarinetists’ gestural expressivity. A local frame is defined in which we describe the
movements of the bell. The origin of the local coordinate system is set to the reed
marker, and we consider the vector drawn by the clarinet (bell — reed) in the Cartesian
frame.

Gesture parameterization

Because both the origin and the clarinet’s dimensions are fixed, the clarinet’s move-
ments can be entirely defined by its angles in the relative spherical coordinates. Let C
be a vector representing the clarinet in the cartesian coordinates system: C(z,y, z) =
(bell — reed)(x,y, z). Transformation to a spherical system as depicted in figure 2
is denoted by: C(p, 8, ¢). In the spherical coordinates, p is the radius, 6 the azimuth
angle and ¢ the inclination angle. Here ¢ is preferably called elevation angle. Since p
is constant, we consider only 6, ¢.



clarinet

Figure 2: The clarinet’s movement from cartesian to spherical coordinates system. The radius p is constant
so we choose azimuth 0 and elevation ¢ to describe the clarinet’s bell movements.

4.2 Dictionary

A dictionary is a set of primitive shapes defining the basis on which an input gesture
is decomposed. As mentioned above, each shape is parameterized by the azimuth and
elevation angles 6, ¢.

Defining segments

In this paper we consider four dictionaries of different sizes, as depicted in figure 3.
The figure details all the shapes used to build each dictionary. Each shape in the figure
describes the evolution of the bell’s movements described by the evolution of the spher-
ical coordinates (6, ¢). The first dictionary contains 8 primitive shapes that describe
four equal parts of two circles: clockwise and counterclockwise directions. The second
dictionary contains 44 primitive shapes. It generalizes the previous one and contains
it. It takes into account the diagonals and intermediate trajectories between quarter-
circles and diagonals. The third dictionary is an intermediate between dictionary 1 and
2. It contains 12 primitive shapes that include with quarter-circles and diagonals. The
fourth dictionary also contains 12 primitive shapes: 8 from dictionary 1 plus vertical
and horizontal trajectories.

Indexing primitive shapes

Each shape from the dictionaries is associated with an (integer) index. Figure 3 illus-
trates the four considered dictionaries and the shape indices. Globally, all the shapes
shared by several dictionaries have the same index within these dictionaries. This sim-
plifies the comparison of sequences of indices, obtained from distinct dictionaries. In
the same way, we associate intermediate integer indices to intermediate shapes (e.g.
between quarter-circle and diagonal in dictionary 2). Finally, dictionary 4 has four
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Figure 3: The four dictionaries defined for our study. From top to bottom: the first dictionary contains
8 elements corresponding to quarter-circles; the second dictionary also has the diagonal and shapes in-
between quarter-circle and diagonal leading to 44 elements; the third one contains 12 elements which are
quarter-circles and diagonals; finally the last one has 12 elements that are 8 elements from dictionary 1 plus
horizontals and verticals.

shapes that are not included in the other dictionaries and not intermediate of previously
defined shapes, so we chose to index them by negative values.

S Stochastic modeling

We first present the theory of Segment Hidden Markov Models and then further discuss
learning, preprocessing and inference.



5.1 Segment hidden Markov model (SHMM)

SHMM is a generative model used for shape-modeling. It generalizes classical HMM
in the sense that emission probability density functions are defined at a segment level
instead of at the sample level. Therefore, a segment generated by SHMM is allowed
to follow a chosen regression form [17]. Figure 4 illustrates SHMM technique applied
to an input signal curve. A uniformly sampled signal is taken as input of the segment
model. An inference process returns the likeliest sequence of states (which correspond
to elements of the dictionary) that fits the input signal and their respective durations.

Input Signal [Y1 . yT]

Dictionary 1 sm

AN .

Inference ‘

Output Sequence of Primitives [ql A q,r]

N

a=1 jm=4 @=3 j6u=2

Figure 4: Tilustration of the application of the segment model on a uniformly sampled input continuous
curve. The inference process finds the likeliest sequence of states and their durations that generates the input
signal. States are elements of the dictionary that can be time stretched to fit the input curve.

Formally, we denote y = [y, ...y the whole incoming feature vector sequence.
A sub-sequence of y from ¢; to o (with ¢; < t2) is denoted yif = [y751 .. .ytz] and its
length is written [ = to — t; + 1. SHMM allows for representing y as a sequence of

segments:
l L+l
=¥ Ve o Y

Each segment is of length I; and we have .|, I; = T where 7 is the number of
segments inferred by SHMM to represent y. Hence each SHMM state g emits a se-
quence yif and a length [ = ¢ — ¢; + 1 according to a density function p(yif, llg) =
p(y#|l,q) x p(l|q). The distribution of segment durations is p(l|q), and the likelihood
of the sequence is p(y;|l, q). If we write ¢] = [q1 ... ¢-] the sequence of states, tak-
ing values in a finite set S, associated to the input sequence y, and {] = [l ...[,]
the sequence of lengths, taking values in a finite set £, the probability that the model



generates the input sequence y? is:

vilaD) Zp 17, qD)p(7lg7) (1)

Where the sum is over all possible duration sequences. Considering that the segments
are conditionally independent given the state and the duration and considering that the
pairs (state, duration) are themselves independent, we can rewrite the probabilities

as:
p(Y?ULQf) = Hp(yll 1+1“17Qz)

p(7lg]) = Hp (lilas)

2)

Figure 5 represents an unrolled SHMM as a graph1cal model where each arrow repre-
sents a conditional dependency. At the bottom is the generated sequence y?. Hidden
layer states are: ¢; (a segment index); [, (the segment’s duration); and X; (a state from
a segment emitting the observation y,).

1

Figure 5: Graphical model of a Segmental Hidden Markov Model [22]. Arrows are conditional depen-
dencies between variables. Inference is finding the likeliest ] and [7 that generate le. Hence duration [; is
dependent on state g; and generated segment is dependent on the duration and the current state.

5.2 Learning and inference of SHMM
Learning SHMM

From the previous description, the hidden layer dynamics of SHMM can be modeled
by three probability distribution functions:

1. State prior distribution: 7 (i) = p(q1 = s;), Vs; € S or how the first shape of the
sequence is chosen.

2. State duration distribution: p(l,,|g, = s;), l, € L or how segment durations are
weighted during inference.



3. State transition distribution: p(gn+1 = $sjlgn = s;) denoted a;;, V(i,j) €
[1...7]? or how shapes in a dictionary are weighted during the inference.

Typical tools used in HMM framework for training can be used to learn SHMM param-
eters (e.g. Expectation—-Maximization algorithm [23]). As mentioned in section 2, no
well-defined ancillary gesture vocabulary can be used for training. Thus, the method-
ology adopted is to define prior dictionaries (section 4.2), then show that SHMM is
relevant for ancillary gestures representation (section 6.2) and discuss the construction
of inter- and intra- players gestures classes (section 6.4). For that purpose we use a
generic configuration of SHMM based on uniform distributions:

1. 7(¢) uniform means that any shape in the considered dictionary can be used as
the first shape in the sequence.

2. p(l|gn = si) uniform means that shapes placed in the sequence can have any du-
ration, each possible duration having the same weight. This choice is discussed
later.

3. p(gn+1 = Sjlgn = s;) uniform means that for each shape, any shape placed
afterwards has the same weight (the so-called ergodic model).

Inference

Inference is the estimation of the likeliest state sequence that has emitted the input
gesture data. It means estimating the number of segments 7, the segment sequence ¢;

and the corresponding length sequence lAlT. This can be done by finding the arguments
maximizing the likelihood function defined by equation (1), that is:

~T

(7,17, 01 ) = arg max > p(y{ 1. q])p(7la]) 3)
qT,l

T4 5ty I

As previously mentioned, transition probability distribution and duration probability
distribution are uniform. Here, we define the observation (or emission) probability
distribution. An input signal is represented as a bi-dimensional time series, uniformly
sampled, representing the evolution of azimuth and elevation angles 6, ¢. The incoming
sequence of observations y; = [y; ...yy] is defined such that:

0
Y = [ ¢i :|
Emission probability is defined as:

l; L [0; — 0(s);)* + [6; — B(5);]°
p([ O ]li,q:s>o<exp — Z { }

l; 2
¢li—1+1 20

j=li—1+1

“4)
Where 0(s); (respectively ¢(s);) is the value of the first coordinate (respectively the
second) of shape s at time j; and o is the gaussian standard deviation. Exact inference
is made using the forward-backward Viterbi algorithm. For an observation sequence of
length T, it takes O(M DT?) where M is the number of primitives in dictionary, D is
the maximum length of possible durations. Hence, doubling the number of elements in
a dictionary implies doubling the computation time. It can be a criterion for selecting
a dictionary among the others.
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Preprocessing and resynthesis

While processing the inference, each segment to be compared to shapes in a dictionary
is normalized to [0, 1] meaning that both azimuth and elevation signals are translated
by their minimum and scaled by their maximum. Let us consider the ¢-th segment; we
define an offset coefficient

. 0,
lilglllgmi([ o })

as well as a scaling coefficient

0;
z,ilrff%su([ ®; })

These coefficients are stored for the resynthesis process. During resynthesis, for each
shape taken sequentially in the inferred sequence by SHMM, we scale the whole shape
by the scaling coefficient and translate the scaled shape by the offset coefficient.

6 Results

In this section we first present the material used for the analysis. Then, we inspect the
accuracy of the model with respect to the considered dictionary. Finally we show how
the resulting sequence of index can be parsed and what kind of information it gives us
for characterizing and analyzing ancillary gestures.

6.1 Database

The database used for experiments was recorded at the Input Devices and Music Inter-
action Laboratory (IDMIL) at McGill University, Montreal, Canada. From the whole
database we have selected four clarinetists playing the first movement of the Brahms
First Clarinet Sonata Opus 120, number 1. The task was to interpret the piece four
times in a neutral way. The set-up was as follows: The clarinet sound was recorded
using an external microphone, and a video camera was used to record all the players’
performances. Clarinet movements were recorded using a 3D motion capture system.
Two of the markers were placed on the clarinet, one the reed and one the bell.

In order to cross-analyze players’ performances, we need to align each performance
to a single reference. The common reference is the score of the first movement of the
Brahms sonata. First we build a synthetic interpretation: the score is translated into
a pitch time series with a fixed sample rate (see figure 6). Synthetic pitch evolution
corresponds to the piece played regularly following a tempo of 100. The pitch evolu-
tions of the subjects’ performances are pre-processed to be discrete and aligned to the
synthesized signal using the Dynamic Time Warping (DTW) technique. Since audio
and gesture streams are recorded synchronously, the resulting alignment is also applied
to gesture data.

An example of one performance by each clarinetist is depicted in figure 7. Solid
black lines represent azimuth signals, and dashed black lines represent elevation sig-
nals. Each signal has been centered to have a zero mean and aligned on the reference
interpretation.

11
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Figure 6: Synthetic interpretation. The figure is the pitch signal (piano roll like) of an interpre-
tation of Brahms’ First Clarinet Sonata Opus 120, number I played at tempo 100.
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Figure 7: Examples of signals for one interpretation by players 1, 2, 3, 4. Solid lines are azimuth
signals 6, and dashed lines represent elevation signals ¢

6.2 Ancillary gesture as a sequence of base shapes

To clarify the reading, let us take the example of a part of player 4’s fourth performance
from 17 seconds to 22 seconds (the whole signal is plotted at the bottom of figure 7).
We denote yif where t;1 = 17 and to = 22, the sequence of observations taken as
input for SHMM. Considering the dictionaries 1 and 2, the model inferred a sequence
of shapes per dictionary. Figure 8 shows the results: on the upper part are the results
obtained with dictionary 1; on the lower part are those obtained with dictionary 2. For
each, two plots are depicted: at the top is the azimuth angle (Hif); and at the bottom,
the elevation angle (¢§f). Dashed lines are the original angle time series and gray solid
lines are the sequences of shapes inferred by SHMM for both dictionaries. Bracketed
integers are the shape indices from the considered dictionary.

Intuitively, a more exhaustive dictionary should better represent a given continuous

12
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Figure 8: Examples of resynthesized curves. Upper part presents the input signal and the resynthesized
signal using dictionary 1. Dashed lines are original curves (azimuth at the top, elevation at the bottom), and
piecewise gray lines are the shapes inferred by SHMM. Similarly, the lower part reports the result using the
second dictionary

multidimensional curve. This can be observed in figure 8 around 18.5sec. Let us
consider dictionary 1, the likeliest shape for the input signal around 18.5sec is the
shape indexed by 1, and it better matches the elevation signal than the azimuth signal.
In dictionary 2, the result reveals that the likeliest shape to model this part of the signal
is shape 5 that does not belong to dictionary 1. This shape is an intermediate shape
between 1 and the diagonal 6. On the other hand, this simple example shows a more
regular sequence of indices (bracketed integers) on the upper part of figure 8 than on
the lower part. Hence, a more exhaustive dictionary seems to provide a more varying
sequence of symbols.

This example illustrates how a gesture input is represented by a sequence of shapes
taken from a dictionary and shows that differences appear according the choice of the
dictionary. Firstly, we want to generalize the approach by systematically evaluating the
accuracy of such a representation through other input gestures from the database and
the available dictionaries. Secondly, we want to qualitatively analyze the sequences of
symbols provided by the model according to the different dictionaries.

6.3 Evaluation of the model

SHMM infers the likeliest sequence of shapes together with the likeliest sequence of
the shapes’ durations. The concatenation of the inferred time warped shapes offers
a new representation of the input signal (as presented in the schematic view figure
4). Here, we inspect how accurate is the re-synthesis in representing ancillary gestures
from real performances of clarinetists. To do so, we propose two evaluation criteria: the
Euclidean norm and the log-likelihood. As mentioned before, distributions involved in
the model are uniform. The possible durations are from 0.1sec to 1.3sec (step of 0.1sec)
and the standard deviation used is o = 0.1 radian.

13



Evaluation using the Euclidean norm |. ||

As mentioned in section 6.1, the database contains four natural interpretations of the
Brahms sonata by four players. We evaluate how these gestures are represented accord-
ing to each of the four dictionaries defined earlier. An Euclidean distance is computed
between the resynthesized signal and the original one. Therefore, one distance value
per interpretation is returned. We average over the interpretations so that one value
remained per player. Results are reported in table 2 showing means and standard devi-
ations.

Dictionaries (#elements)

x1073 1(8) \ 2 (44) \ 3(12) \ 4(12)
Player 1 1.414+0.18 | 0.84 +0.12 | 0.84 +£0.12 | 1.40 £+ 0.19
Player 2 0.37+£0.07 | 0.194+0.02 | 0.21 £0.01 | 0.37 +0.07
Player 3 0.394+0.07 | 0.18+0.03 | 0.24 +0.01 | 0.39 £ 0.07
Player 4 1.284+0.37 | 1.07+£0.51 | 1.04 +0.38 | 1.33 £0.31

Table 1: Averaged Euclidean distance with standard deviation. Values are reported in 103 radians.
Lowest values correspond to better fitting between the resynthesized signal and the original one.

In this table, lowest values mean better fitting. Globally, the results show that the
model efficiently fits the incoming data: the maximum mean value is 1.41 x 103 radi-
ans (player 1, dictionary 1) corresponding to the mean quantity of variation between the
two curves. Moreover standard deviations across interpretations are very low, meaning
that there are not important variations intra-participant [30]. For players 1, 2 and 3,
lowest scores are obtained for dictionary 2 although they are very close to the scores
obtained with dictionary 3. Dictionary 1 and 4 return the same scores and a close look
at inferred sequences reveals that SHMM returns the same sequence of shapes for both
dictionaries, meaning that the vertical and horizontal shapes in dictionary 4 are not
involved in the inferred sequence. The case of player 4 is singular because standard
deviations are high and the dictionaries can not be statistically discriminated: the Stu-
dent’s t-test shows that the mean obtained for dictionaries 1 to 4 are not significantly
different at the 5% significance level. To conclude, according to the Euclidean norm,
dictionary 2 and 3 are equivalent as well as dictionaries 1 and 4. Hence the number of
elements in a dictionary is not necessarily linked to a better fitting.

Evaluation of the temporal prediction score

We compute the log-likelihood log p(y?|I7, sT) for the observation time series y? (or
test data). This score refers to the likelihood assigned to the incoming observation by
the model [17]. Higher scores mean that the model is likely to generate the test data. In
other words, the model has a better predictive power. In order to be length independent,
we normalize by the length of the observation sequence. The average log-likelihood
values are computed for each subject and the results are given in table 2.

The results show that the highest log-likelihood scores are obtained with dictionary
2, meaning that the probability to generate data from the Brahms database is higher
with dictionary 2 than either with dictionary 1, 3 or 4. Dictionary 2 is more exhaustive
than the other three, and table 2 shows that the scores obtained with dictionary 3 are
significantly better than with dictionary 1. An interpretation is that the more exhaustive
a dictionary is, the better it is to generate (and consequently to predict) the observed
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Dictionaries (#elements)
1(8) \ 2 (44) \ 3(12) \ 4(12)
Player 1 || —1.335 £0.023 | —0.643 +£0.058 | —0.743 +£0.063 | —1.353 +0.023
Player 2 || —1.294 £0.041 | —0.641 £0.028 | —0.712 +£0.047 | —1.309 £0.042
Player 3 || —0.907 £0.148 | —0.481 +0.033 | —0.584 4+0.037 | —0.920 +0.148
Player 4 —1.163 £0.087 | —0.662 +0.056 | —0.748 +0.056 | —1.179 4+0.085

able 2. Cumulative Log-likelihoo _4 log(p s Yelq averaged over the interpretations an
Table 2: C lative Log-likelihood ( Z_llg Y1 yela] ged he interp: i d
the standard deviations. The criterion returns the likelihood that the model generates the observation data.
Highest values correspond to better perdiction.

data. This is in contrast with the results based on Euclidean distance: we add infor-
mation' from dictionary 3 to dictionary 2 by adding new primitive shapes whereas it
does not affect how the reconstructed curve fits the input curve. This will be refined
in section 6.4. However, considering the scores obtained with dictionary 4, a t-test
(using a 5% significance level) shows that they are not significantly different from the
scores with dictionary 1 (similar to the evaluation using the Euclidean norm) even if
dictionary 4 contains more elements than dictionary 1.

This can be explained as follows. As mentioned in section 5, the log-likelihood is
based on the observation likelihood and the transition probability. Therefore, adding
elements in a dictionary: increases the observation likelihood as long as they better fit
the observations (dictionary 2, 3); decreases their transition probability (uniform over
the elements of the dictionary) (dictionary 2, 3 and 4)). Hence, a dictionary can be
tested using this criterion as follows: starting from a simple dictionary (e.g. dictionary
1), one can add element by element and inspect the resulting log-likelihood. If the
score is decreasing, it means that the the fitting criterion is stronger than the decreasing
weight. Otherwise, the added element is not relevant for the input observations.

6.4 Parsing the sequences of indices

The sequence of shapes can be analyzed as a sequence of symbols (integer indices).
The motivation is to observe the real-world data set of ancillary gesture signals at a
higher level than the shape level presented in the previous section. A symbolic rep-
resentation of continuous signal allows the retrieval of patterns and motifs based on
parsing processes: the continuous signal can be considered as a string. There exists
a large set of methods for string analysis (from machine learning, pattern recognition,
theoretic computer science and so forth). Here we propose a qualitative interpretation
by considering ancillary gestures as strings that could be useful for future research in
this field. We discuss how the design of a dictionary can determine the pattern analy-
sis.We start by considering the first dictionary as an example, and we compare to the
results obtained with dictionaries 2 and 3 (in this section dictionary 4 is discarded since
it does not add relevant information).

From shape level to pattern level

In this section, we inspect how the shapes and their durations are temporally distributed
in the signal. Figure 9 presents the data for player 3’s second interpretation. At the top,

!nformation is to be understood as the accuracy of the model to generate the input data

15



the temporal evolution of the pitch is represented as a continuous signal and zero values
mean silences. Below, we report both the azimuth signal (solid line) and elevation
signal (dashed line). Finally, at the bottom the sequence of shapes’ index inferred by
the stochastic model is plotted as a piecewise constant signal with circles indicating
the starting and ending points of the shape. It appears that short-duration shapes are
concentrated around 2 seconds (62.5% of shapes have durations lower than 500ms), 13
seconds (80% lower than 500ms), 24 seconds (75% lower than 500ms) and 33 seconds
(66.7% lower than 500ms). In-between these instants, sequences of longer duration
define a specific recurrent pattern (so-called motif) 1-23-22—44 that is highlighted by
gray lines. A more detailed study of motifs will be given afterwards.

2000

Pitch
[Hz]

Azimtuh
Elevation
[rad]

Lo

Primitive
Index

20 24 28 32 36 40
Time [s]

Figure 9: Player 3’s second interpretation. At the top we report the pitch evolution corresponding to this
specific interpretation. In the middle, the solid line represents the bell’s azimuth evolution while the dashed
line draws the bell’s elevation. At the bottom, we report the segmentation obtained by SHMM using the first
dictionary. We added indications about the Brahms sonata: phrases 1, 2 and 3 as well as the various rests.

Three parts are of particular interest: [12, 16] seconds (part 1), [22, 25] seconds (part
2) and [32, 35] seconds (part 3). Part 1 is in-between two identical patterns defined by
the sequence 1-23—22—44. Our hypothesis is that it defines an articulation between two
phrases separated by a rest. This is reinforced by the second part ([22, 25] seconds):
it corresponds to the articulation between the second phrase and the third one which
starts by the same pattern 1-23-22—44. Finally, part 3 seems to be of different nature.
Since the global pattern is very similar to the recurrent pattern 1-23-22—-44, the short-
duration shapes detected in the middle of the pattern seem to be due to “noise” (i.e.
unwanted perturbation that is not specific to the interpretation). Let us analyze further
this assumption by discussing figure 10. The figure depicts the same performance as in
figure 9. Pitch signal has been omitted for readability. On the upper part, we report the
beginning and the end of the gesture as well as the three parts described above. On the
lower part, we depict each occurrence of the pattern 1-23-22-44.

The seven occurrences of the pattern 1-23—22—-44 correspond to a circle performed
in counterclockwise direction and are mostly occurring during musical phrases. The
second and the last circles clearly include the beginning of the next shape: it gives a
trace of the articulation between shapes at a fine temporal scale. On the other hand, if
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A;imtuh/EIevation [rad]

40 Time[s]

Primitive Index
7

Patterns

Figure 10: Player 3’s second interpretation. This figure shows the azimuth and elevation signals (respec-
tively solid and dashed lines) and the segmentation inferred by SHMM using the first dictionary. Patterns
are in gray, and articulations are in black. We explicitly plot the bell’s original movement for these partic-
ular parts. Patterns are clockwise circles, with idiosyncratic movements in between them. Patterns can be
retrieved using the symbolic representation though it is not clear from only the original signals.

considering the three parts of interest described above, part 1 (fig. 10, [12, 16]sec) and
part 2 (fig. 10, [22, 25]sec) reflect a different behavior: an abrupt change of direction
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and the articulation between this change and the beginning of the next circle. Part 3
(fig. 10, [32, 35]sec) corresponds to a circle performed counterclockwise supporting
our previous guess that short-duration shapes in this specific part are due to noise and
do not reflect articulations between different behaviors. This study reveals that occur-
ring patterns can be identified using the symbolic representation and highlights higher
temporal structure in ancillary gestures (patterns — articulations). Interestingly, this
could be handle in the SHMM by defining higher level models constituted by the se-
quences defining the patterns. Consequently, a non-ergodic model would optimize the
recognition of such patterns.

Identifiable motifs

In the previous example, a clockwise circular pattern is repeated seven times and is
described as the sub-sequence of indexes 1-23-22—44 in the first dictionary. Here we
show that a symbolic representation gives a powerful tool for exact motif retrieval in
the continuous gesture signal. A quick enumeration of recurrent patterns in the data
from players’ interpretations shows that the previously introduced sequence 1-23-22—
44 occurs 38 times, mostly in interpretations by player 3 (25 occurrences) and 4 (12
occurrences) than player 1 (1 occurrence) and player 2 (0 occurrences). The pattern
begins by shape 1 drawing the circle from the leftmost point. A circular permutation of
the pattern index means starting the circle at a different position. A quick study shows
that starting from the left point creates the pattern 22—44—-1-23 occurring 42 times: 32
occurrences for player 3 and 9 occurrences for player 4.

Figure 11 reports the two symbolic sequences corresponding to the inferred shapes
for the fourth interpretations by both players 3 and 4. The co-occurring pattern 1-23—
22-44 is emphasized by gray frames: 8 occurrences for player 3 and 5 occurrences for

player 4.
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Figure 11: At the top we can see the segmentation of player 3’s fourth interpretation. Patterns 1-23—
22-44 are highlighted by gray frames. At the bottom, we can see the segmentation of player 4’s fourth
interpretation. Same patterns are similarly highlighted. 1-23-22-44 pattern is particularly found in the
interpretations by these two players.

A similar analysis shows that the pattern 11-34-12 occurs 19 times across all the
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interpretations and specifically in player 1’s interpretations (12 occurrences) and play-
ers 2’s interpretations (7 occurrences). This pattern consists in three quarter-circles in
counterclockwise direction, that is, the opposite strategy from players 3 and 4. Hence,
every clarinetists make use of circles in their interpretations.

Motif-based dictionary information

From previous sections, a dictionary can hold different information contents: number
of elements and/or accuracy of these elements for the specific input. In this section,
we analyze the influence of a chosen dictionary on ancillary gesture motif recognition.
Let us focus on pattern 1-23-22-44 in player 3’s interpretations. Figure 12 reports
resynthesized patterns in (6, ¢) coordinates for dictionaries 1, 2 and 3 together with the
original input trajectories. The first line illustrates the patterns inferred by SHMM with
dictionary 1. Above each reconstructed pattern, we report the corresponding sequence
of indices. The second line (resp. the third) illustrates patterns inferred with dictio-
nary 2 (resp. 3). Circle patterns corresponding to the index sequence 1-23—-22-44 are
marked by dashed rectangular boxes.

2
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= \
] / \
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Figure 12: Player 3’s fourth interpretation. We can see 1-23-22-44 pattern occurrences in the interpre-
tation inferred using three dictionaries: dictionary 1 at the top, dictionary 2 in the middle and dictionary
3 at the bottom. Shapes approach original signal while the dictionary gets more exhaustive but symbolic
representations become highly sensitive to the variations across shapes.

At first sight, the recurring pattern 1-23-22-44 retrieved using dictionary 1 has
various shapes: closed circle, open circle, continuous and noncontinuous circles. Even
so, all these shapes are labeled 1-23-22-44, that is a circle performed in clockwise
direction. Using a more exhaustive dictionary allows for a better fitting of the resyn-
thesized signal from the original signal (see section 6.2 and lines 2 and 3 in figure 12):
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SHMM inferred more accurate shapes when using dictionary 2 and 3. For instance, let
us consider the first pattern at each line in figure 12. The sequence of symbols given
by dictionary 1 (first line) is 1-23-22-44. If we use dictionary 2 (second line), infer-
ence induces a novel sequence of indexes that corresponds to the following shape index
transformations:

1 = 1
23 — 25
22 — 22
44 — 42

Similarly, inferred sequence using dictionary 3 (third line) shows other novel sequence
of index that corresponds to the following transformations:

1 - 1
23 —  23;
22 — 22

4 — 39-39;

Hence, proposing a large set of shapes (e.g. dictionary 2) for gesture shape modeling
implies a larger set of symbolic representations. In figure 12, all plotted circle pat-
terns have a distinct symbolic representation (distinct sequence of index). It means that
SHMM inferred sequences of shapes that tend to adapt to variations in the observations
and, consequently, the model is more discriminative. On the contrary, the use of dictio-
nary 1 allows similar continuous patterns (e.g., circles) to be retrieved even if they are
not exactly the same at each occurrence (the so-called motifs as defined in [34]). The
inferred symbolic sequence constitutes of a general stereotype in the shape of a clock-
wise circle. Finally, sequences of indexes inferred by SHMM with dictionary 3 vary in
length: some indexes are either repeated, omitted or changed. Even if this dictionary
provided with good trade-off between a sample-by-sample fitting criterion (Euclidean
norm criterion) and a temporal predictive criterion (log-likelihood criterion), it seems
to be less adapted for symbolic representation of considered patterns.

7 Conclusion and perspectives

In this paper, we have presented a segmentation algorithm applied to a real-world data
set of clarinetists’ ancillary gestures. The hypothesis is that ancillary gestures can be
suitably analyzed by multi-level modeling techniques. The general system is based on
the definition of a dictionary of primitive shapes and a stochastic temporal modeling of
the sequence of shapes that best represents the input gesture signal. The model is tested
on a database containing four interpretations of the first movement of the Brahms First
Clarinet Sonata Opus 120, number 1 by four clarinetists.

Firstly, we have shown that the proposed model infers sequences of shapes that ac-
curately fit the input signal. A detailed study of the Euclidean distance between both the
re-synthesized and the input signals has shown that the fitting does not depend on the
number of elements in a dictionary. We have also shown that the log-likelihood of the
temporal sequence increases (i.e better predictive power) if we add relevant elements
in the dictionary (e.g dictionary 1 to dictionaries 2 and 3) but might decreases while the
number of elements increases if the added elements are not pertinent (e.g, dictionary
4). A trade-off has to be made between the number of elements and how representative
of the input observations these elements are. We proposed an incremental process to
build a dictionary based on these criteria.
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Secondly, we have shown that a greater concentration of short duration shapes
occurs between recurrent regular sequences of longer shapes that we called patterns.
Short duration shapes model articulations between phrases in the piece while patterns
occur within phrases. Such high level structure seems not to be trivially retrievable if
we consider only the initial signal.

Finally, we have shown that some patterns occur in every clarinetists’ interpreta-
tions. The choice of the dictionary makes a difference in retrieving the patterns. A large
set of shapes leads to variations in the sequence of symbols that represents the pattern.
On the contrary, a smaller set of shapes allows for pattern stereotype definition. Hence,
symbolic representation using semantically relevant primitive shapes highlights higher
time structures in gesture signals that can be otherwise hidden.

A future improvement of our system will take into account a hierarchical structure
in the dictionary. A first dictionary with stereotypical shapes will be defined, accom-
panied by refinements of each one these elements. We will also pursue a real-time
implementation of the model.
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