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Abstract

In this paper we first introduce a set of functions to
predict the timbre features of an instrument sound
combination, given the features of the individual
components in the mixture. We then compare, for
different classes of sound combinations, the estimated
values of the timbre features to real measurements and
show the accuracy of our predictors. In the second part
of the paper, we present original musical applications of
feature prediction in the field of computer-aided orches-
tration. These examples all come from real-life composi-
tional situations, and were all produced with Orchidée,
an innovative framework for computer-aided orchestra-
tion recently designed and developed at IRCAM, Paris.

1. Introduction

Computer-aided composition systems aim at formalizing
compositional intentions through the manipulation of
musical objects and their transformation with appro-
priate algorithmic procedures. They usually provide a
large set of primitives and low-level objects from which
composers may create according to their needs more
elaborated musical data and programs (for a review see
for instance Miranda (2001) or Nierhaus (2009)). Over
the years, these environments have addressed almost all
dimensions of music writing: melody, harmony, rhythm,
counterpoint, instrumentation, spatialization, sound
synthesis, to name a few. For some reasons however,
orchestration has stayed relatively unexplored until
recently (Psenicka, 2003; Hummel, 2005; Rose &
Hetrick, 2009).

Orchestration comes into play as soon as timbre issues
are addressed. Boulez (Barriére, 1985) makes a clear
distinction between the two essential aspects of musical
timbre, articulation and fusion. The former refers to fast
timbre variations usually performed by soloists or small
ensembles, the latter refers to static or slowly varying
textures, in which instrument timbres merge into an
overall colour. In this paper we essentially focus on
fusion. We consider orchestration as the search of
vertical instrument combinations to be played at single
time slices, during which the orchestral timbre is static.

Even within the scope of this restriction, the problem is
still difficult. An orchestra is composed by many instru-
ments, each of them being able to create a large variety of
sounds. By combining these instruments together compo-
sers may access a virtually infinite set of sonorities. In
practice, orchestration involves an outstanding compre-
hension of the complex relations between symbolic
musical variables and the resulting timbre as a sound
phenomenon. In fact, this knowledge is so hard to
formalize that composition systems have for years stayed
away from this essential domain of composition.

A closer look at the complexity of orchestration
(Carpentier & Bresson, 2010) shows that it can be
analysed along at least two different ‘axes of complexity’:
the combinatorial explosion of possible sound mixtures
within the orchestra on one hand, and the multidimen-
sionality of timbre perception (see for instance McAdams,
Winsberg, Donnadicu, De Soete, and Krimphoft (1995),
Jensen (1999) or Hajda (2007)) on the other hand. A few
orchestration tools exist today (see Section 2), but they all
circumvent these aspects of complexity. The combinator-
ial problem is in particular greatly disregarded. In a recent
paper (Carpentier, Assayag, & Saint-James, in press) we
have proposed an original approach for the discovery of
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relevant sound combinations that explicitly addresses
combinatorial issues and timbre multidimensionality. We
have introduced a formal timbre model for single time
slices, in which orchestration is viewed as a constrained
multiobjective optimization problem. This work led to the
development of Orchidée, a generic and extendible
framework for automatic orchestration. Starting from
an initial target sound, Orchidée searches instrument
sound combinations that—when played together—*sound
as similar as possible’ to the target. In Orchidée, the fitness
of orchestration proposals is computed from various
sources of information, considering that perceptual
similarity judgements rely on several timbre dimensions.

In this paper, we focus on three perceptual dissim-
ilarity functions used in Orchidée. These functions are
computed on the basis of three spectral features: the
spectral centroid, the spectral spread and the main
resolved partials. We show that the features associated
with instrument combinations can be reasonably esti-
mated from the features of the individual elements. We
also report convincing musical examples discovered with
Orchidée by the joint use of these dissimilarity functions.

The paper is organized as follows. In Section 2, we
briefly report the few previous orchestration tools and
discuss their core limitations. In Section 3, we recall the
foundations of Orchidée and explain why this innovative
tool differs from its predecessors. In Section 4, we
introduce a set of three spectral features for orchestral
timbre similarity and show how we can easily predict
some timbre properties of any sound mixtures on the
basis of their individual elements. Convincing musical
examples from real-life compositional situations are
reported in Section 5. Last, conclusions and future work
are discussed in Section 6.

2. Background

Roughly speaking, computer-aided composition soft-
ware may be divided into two main categories:

e Systems based on sound synthesis (e.g. SuperCollider
(McCartney, 2002) or Csound (Boulanger, 2000)).

e Systems based on the algorithmic manipulation of
musical structures (e.g. OpenMusic (Assayag,
Rueda, Laurson, Agon, & Delerue, 1999) or PWGL
(Laurson, Kuuskankare, & Norilo, 2009)).

The historical distinction between these approaches is
slowly disappearing today. Synthesis systems now tend
to consider the sound processing chain as a combination
of formalized operators, whereas symbolic systems offer
the possibility to manipulate and transform sounds
within complex symbolic data and networks.

In the meanwhile, recent advances in music signal
processing and machine learning now allow one to

automatically extract high-level information from music
signals. Music Information Retrieval (MIR) is today
recognized as an essential research field (Casey et al.,
2008) that could lead to a systematic and formalized
organization of sound resources. Unfortunately, though
the current convergence of signal and symbolic ap-
proaches tends to narrow the gap between low-level and
high-level music information, specific musical problems
are still to be addressed by computer science. Automatic
orchestration is one of these.

In this paper, we consider orchestration as the search
of vertical instrument sound combinations that best
‘imitate’ an input sound target. The target timbre is
assumed to be static, and the resulting orchestration is
valid for a single time slice only.

To our knowledge there have been three previous
attempts to computationally address this problem. Rose
and Hetrik (2009) have proposed an explorative and
educative tool that allows either the analysis of a given
orchestration or the proposition of new orchestrations
for a given target sound. The orchestration algorithm
invokes a Singular Value Decomposition (SVD) method
to approximate the target spectrum as a weighted sum
of instrument spectra. Regarding the sample set used as
instrumental knowledge, timbre information is repre-
sented by a time-averaged 4096 FFT-points spectra.
The SVD method requires relatively low computational
effort and ensures that the resulting sum minimizes the
Euclidean distance to the target spectrum. However, the
perceptual significance of a thousands-of-points com-
parison is questionable, and orchestral limitations
cannot be handled by this approach: the SVD-based
algorithm is indeed unable to take into account that
two sounds cannot be played simultancously if they are
played by the same instrument. In order to cope with
such orchestral constraints the authors also suggested
the CHI procedure, which first computes the set of all
feasible combinations, then ranks them on a distance-
to-target criterion. However, as it performs an exhaus-
tive search it is intrinsically bounded to small-size
problems.

Another method proposed by Psenicka (2003) ad-
dresses the orchestration problem with a Lisp-written
program called SPORCH (SPectral ORCHestration). In
SPORCH the instrumental knowledge is modelled by an
instrument database rather than a sound database,
ensuring that any orchestration proposal is physically
playable by the orchestra (e.g. solutions cannot allocate
more instruments than available). The search method
relies on an iterative matching algorithm on spectral
peaks. The instrument mixture of which main peaks best
match the target ones is considered as the best
orchestration. Each instrument in the database is indexed
with a pitch range, a dynamic level range and a collection
of the most prominent peaks at various pitches and
dynamics. SPORCH first extracts the target peaks, then
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searches the database item that best matches those peaks.
The rating is done by Euclidean distance on the peaks
that are close in frequency. Thus, a peak that does not
belong to the target but does belong to the tested mixture
increases the distance. The best fit peaks are then
subtracted from the target and the program iterates.
The use of an iterative algorithm ensures low computa-
tion times, but nothing guarantees the optimality of the
solution. Moreover, SPORCH favours proposals with a
first sound very similar to the target, and therefore
discards many solutions.

The third system is suggested by Hummel (2005).
Hummel’s principle is similar to Psenicka’s, but the
algorithm works on spectral envelopes rather than on
spectral peaks. The procedure first computes the target
spectral envelope, then iteratively finds the best approx-
imation. Since it does not work on spectral peaks, the
perceived pitch(es) of the result can be very different
from the target pitch(es). This is why Hummel recom-
mends his system for non-pitched sounds like whispered
vowels.

All these methods present the significant advantage of
requiring relatively low computation times. However,
they all rely on the target spectrum decomposition
techniques, invoking either SVD or matching-pursuit
methods. They first choose the sound to which the
spectrum is the closest to the target spectrum, subtract it
from the target spectrum and iterate on the residual.
Orchestration is therefore implicitly seen as a knapsack
filling process in which ‘bigger’ elements are introduced
first. In other words these methods are likely to behave
like greedy algorithms, thus may easily get stuck in low-
quality local minima when solving complex problems.
On the other hand, they fail in considering timbre
perception as a complex, multidimensional phenomenon.
Indeed, the optimization process is always driven by a
unique objective function. Last, these methods offer poor
control of symbolic features in orchestration proposals:
the search is driven by the optimization of a spectral-
based criterion, no matter the values musical variables
may take. Consequently, the resulting solutions are
generally difficult to exploit in real compositional
processes.

3. Orchidée: A generic and extendible framework
for computer-aided orchestration

Taking the above considerations into account we have
recently designed and implemented Orchidée, a generic
and extendible framework for computer-aided orchestra-
tion. Compared to its predecessors Orchidée offers many
innovative features:

e The combinatorial issues are handled by appropriate
optimization techniques based on evolutionary

algorithms. Therefore, Orchidée is not restricted to
small-size problems and can find instrument combi-
nations for real-life orchestras in reasonable time.

e A constraint language on the symbolic musical
variables is used to make orchestration proposals fit
in a given compositional context.

e The multidimensionality of timbre perception is
considered through the joint use of several perceptual
dissimilarity functions that address distinct dimen-
sions of timbre.

A detailed description of Orchidée is clearly out of the
scope of this paper. In the remainder of this section we
will simply recall some of the foundation principles of
Orchidée. Interested readers may refer to previous
papers (Carpentier et al., in press; Carpentier & Bresson,
2010).

3.1 Instrumental knowledge

Like all the previous systems presented in Section 2 the
instrumental knowledge in Orchidée comes from instru-
ment sound databases. These databases should be large
enough (in terms of instruments, pitches, dynamics,
playing styles, etc.) to cover the timbre potentials of the
orchestra. Note that within the context of automatic
orchestration, instrument sound databases can be viewed
as a digital instrumentation treatise. As each item in the
database comes from a recording session, the overall
collection of samples related to a given instrument
conveys useful information about its pitch and dynamics
ranges as well as its numerous playing techniques.

In Orchidée, timbre information is represented by a
set of low-level features extracted from audio samples.
These features are correlated to perceptual dimensions
and provide objective timbre quality measures along each
dimension. As will be discussed in Section 4, each feature
is associated with an estimation function and a dissim-
ilarity function. The former is used to predict the overall
feature value of a sound combination given the feature
values of its components. The latter reflects the dissim-
ilarity between a given sound combination and the
target along the associated perceptual dimension.

Apart from the knowledge database that gathers
symbolic and timbre information about instrument
capabilities, Orchidée is purely agnostic. That is, we do
not look here for a formalization of some ‘classic’ rules
exposed in famous past orchestration treatises (Berlioz,
1855; Rimski-Korsakov, 1912; Koechlin, 1943; Piston,
1955; Casella, 1958; Adler, 1989). Our goal is rather to
encourage the discovery of somehow uncommon instru-
ment combinations. Hence, the timbre information
contained in the sound features is the only instrumental
knowledge accessible to our system and no particular
effort is made to encourage more systematic sound
combinations.
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3.2 Timbre target

Orchidée provides composers with the opportunity of
reproducing a given input target timbre with an
instrument set. We chose to specify this target using
a pre-recorded sound. An alternate possibility would
be to allow for a verbal description of the target, but
such a method would require to solve two difficult
problems:

(i) Find a reduced set of words widely accepted to
describe a large set of timbres.

(i) Correlate these words to sound descriptors (i.e.
acoustic features).

Timbre verbalization experiments usually give rise to a
large set of verbal attributes (Faure, 2000). People often
use different words to describe the same stimulus, and
sometimes the same word for different stimuli, making
things even harder. Interestingly, the problem of
verbalization in the context of orchestration has already
been studied by Kendall and Carterette (1993a.b).
Through three successive experiments, the authors have
identified a small set of verbal attributes to describe the
timbre of wind duets: ‘Power’, ‘strident’, ‘plangent’ and
‘reed’. However, it should be noted that even for a small
set of sounds, numerous experiments are necessary to
find a reduced set of attributes. Accounting that in our
context many kinds of sounds are to be dealt with, such
an approach is not possible.

Another possibility would be to assess the correlation
between verbal attributes and acoustic features, in order
to get the numerical description of the sound from its
verbal description. This issue has also been addressed by
Faure (2000) and Kendall and Carterette (1993a,b) in a
two-step procedure:

(1) Build a timbre space from dissimilarity judgements.
(i) Find a verbal correlate for each dimension.

Such an approach is also limited. Timbre spaces have
only been obtained for small sets of instrumental sounds,
and the verbal correlates of the axes differ amongst the
studies.

For all the above reasons, the target timbre in
Orchidée is specified by a pre-recorded sound, more
precisely by a list of acoustic features extracted from
the signal. With such an approach, we leave open the
possibility of providing the sound features directly
from a verbal description based on further research.
Note also that in most cases such a sound is not
available before the music has been played at least
once. We then offer some appropriate synthesis tools
(Carpentier & Bresson, 2010) to generate a target
sound from symbolic data, e.g. a chord (see Section
5.2. for an example).

3.3 Multiobjective genetic search

Accounting for the multidimensionality of timbre percep-
tion and for the unpredictability of the relative importance
of each dimension in timbre similarity subjective evalua-
tions (Carpentier, 2008; Tardieu, 2008), we claim that:

(1) several timbre dimensions have to be considered in
the computation of timbre dissimilarities,

(ii) the dissimilarity functions cannot be merged into a
single scalar value. Indeed, the attack time may be
for instance predominant when the target is a
percussive sound, whereas the spectral envelope
would be the main criterion for noisy non-pitched
sounds. In other words, the relative importance of
each dimension cannot be known in advance.

In Orchidée, orchestration is formalized as a multi-
objective combinatorial problem (Carpentier et al., in
press). The strength of the multiobjective approach is to
avoid any prior assumption on the relative importance of
the timbre dimensions. Indeed, multiobjective problems
have a set of efficient solutions rather than a wunique
solution. These efficient solutions reflect different tradeoffs
between potentially conflicting objectives (for more details
see for instance Ehrgott, 2005).

Large-scale combinatorial optimization problems are
often hard to solve, especially when objective functions
are not monotonic (and ours are definitely not—see
Section 4). This category of problems is therefore often
addressed with Metaheuristics (Talbi, 2009), which are
known to return good-quality solutions in reasonable
time. The Orchidée optimization engine makes use of
Genetic Algorithms (GAs) (Holland, 1975), one of the
major classes of metaheuristics. GAs are inspired by
species natural evolution. The search process maintains
a population of individuals—encoded as chromo-
somes—from the best of which new individuals are
generated by the application of genetic operators. As
the evolution goes on, fitter individuals replace less fit
ones and the overall population converges towards
optimal regions of the search space. An example of
genetic encoding for a string quartet is provided in
Figure 1. Individuals (i.e. orchestral configurations) are
represented by tuple chromosomes, and each element of
the tuple is associated with a given instrument. The
figure also illustrates how genetic operators are applied:
the uniform crossover randomly mixes the coordinates of
two parent chromosomes to output two offspring,
whereas the I-point mutation randomly changes a single
coordinate.

3.4 Modelling compositional context

Composing music is composing with time: each composi-
tional element does not come on its own, but in close



Vni | non-vibrato B5+ p non-vibrato B5+ p
vn2 |sul-tasto Eb5+ mf (e)
Va |sul-ponticello D4 f sul-ponticello D4 f
Ve | non-vibrato G3 f non-vibrato G3 mf
vni |art-harm B6 p art-harm B6 p
vn2 |(e) sul-tasto Eb5+ mf
Va | sul-ponticello D4 f sul-ponticello D4 f
Ve | non-vibrato G3 mf non-vibrato G3 f

Uniform crossover

Vvn1 |art-harm B6 p non-vibrato B5+ p
vn2 |(e) (e)

Va |sul-ponticello D4 f

sul-ponticello D4 f

Ve | non-vibrato G3 mf non-vibrato G3 mf

art-harm B6 p
(e)

sul-ponticello D4 f

(e)

art-harm B6 p

sul-tasto Eb5+ mf

sul-ponticello D4 f

non-vibrato G3 mf

1-point mutation
(a) substitution - (b) deletion - (c) insertion

Fig. 1. Integer tuple encoding scheme and genetic operators
(example of a string quartet)—(e) denotes the musical rest
(i.e. the associated instrument is not used in the mixture). Each
slot in the chromosomes corresponds to a well-identified
instrument in the orchestra. In uniform crossover, each
offspring has in slot k the value of slot k of one of its parents,
randomly chosen.

relation with previous, simultaneous or future other
elements. In other words, any musical material is always
attached to a given compositional context. Consequently,
composition tools should help not only in creating new
musical material, but also in contextualizing it in a
relevant manner.

Consider for example an instrumental texture to be
played immediately after a passage where all violins play
with a mute. The composer may then require the search
algorithm to find solutions with only muted violins,
because depending on the tempo instrumentalists may
not have enough time to remove the mutes. In a similar
manner, composers should be able to specify numerous
other requirements, e.g. that orchestration proposals
may not require more than ten instruments, involve at
most three string-typed instruments, use at least one of
each note in a given set, etc.
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A natural and expressive paradigm to model such
contextual requirements is constraint programming. It has
been widely used in past research to address numerous
musical problems, e.g. counterpoint (Laurson, 1996),
instrumentation (Laurson & Kuuskankare, 2001), harmo-
nic progressions (Pachet & Roy, 2001) or interactive scores
(Allombert, Dessainte-Catherine, Larralde, & Assayag,
2008). Musical constraint solvers are today implemented
in various computer music environments. OM-Clouds
(Truchet, Assayag, & Codognet, 2003) and PWGL-
Constraints (Laurson et al., 2009) are such examples.

Orchidée uses global constraints on the music sym-
bolic variables (e.g. notes, dynamics, playing styles,
mutes) to formalize this context. In opposition to local
constraints that are applied to a few variables only,
global constraints address all variables of a given
problem. Orchidée comes with a formal constraint
language thanks to which complex constraint networks
may be expressed. For instance, the following constraint
code is a simple and readable way to restrict orchestra-
tion solutions to combinations involving between ten and
twelve instruments among which at most six are string-
typed, playing all different notes with at least one C2 and
all at the same dynamics:

[size-min 10]

[size-max 12]

[family at-most 6 strings]
[note all-diff]

[note at-least 1 C2]
[dynamics at-most-diff 1]

We will not go into deeper details in this paper. Readers
interested in global constraint handling in Orchidée may
refer to Carpentier et al. (in press).

4. Sound description

Even if the Orchidée relies on a generic framework that
can theoretically consider any number of sound features,
estimation functions and dissimilarity functions are hard
to define in practice. Indeed, predicting the timbre
features of sound combinations is a rather difficult task
(Tardieu, 2008). Thus, we currently use three spectral
features for which we propose efficient estimation and
dissimilarity functions:

(1) The Spectral Centroid (sc), i.e. the mean fre-
quency of the spectrum, which is often correlated
to the perceptual brightness (McAdams et al.,
1995).

(i) The Spectral Spread (ss), i.e. the standard devia-
tion of the spectrum, which has been identified as
highly correlated to the third dimension of timbre
spaces (Peeters, McAdams, & Herrera, 2000).
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(i) The Main Resolved Partials (M RPs), which reflect
the harmonic colour of the sound. An auditory
model is used to select among prominent spectral
peaks the partials resolved by the human auditory
system.

All these features are average values on the steady-state
of the signal. Temporal features (including the attack
time) are not considered here. Note that our purpose is
not to build an exhaustive timbre description but rather
to design a general framework which can be easily
extended by adding new features (Tardicu, 2008) when
needed.

4.1 Feature extraction

Figure 2 depicts the way these three features are
extracted from the signal. The common step is a short
time Fourier transform for each windowed signal frame.
From there, a partial tracking procedure is used to select
the steady peaks which are then filtered by an ERB
(Equivalent Regular Bandwidth) (Glasberg & Moore,
2000) auditory model to compute the MRPs. Simulta-
neously an inner ear transfer function (Moore, Glasberg,
& Baer, 1997) and an ERB model are applied on each
FFT frame to extract an instantaneous loudness. The
global spectral moments (centroid and spread) are then
computed by averaging instantaneous values over time
(each frame is weighted by its local loudness).

4.2 Feature estimation functions and dissimilarity
functions

We introduce in this paragraph estimation functions that
predict the features of a sound combination given the
features of its components, as well as dissimilarity
functions that compare the estimated features to the
target features. Let 7 be the target timbre, s an

orchestration proposal, (s¢;); the components’ centroids,
(ss;); the spreads and (e;); the total energies of the
individual spectra in s.

Spectral centroid and spectral spread are computed
using the energy spectrum. The underlying hypothesis is
that the energy spectrum of a sound mixture is the sum of
the components’ energy spectra. We also assume that all
sounds in the mixture blend together in a unique timbre.
The centroid and spread of the mixture can then be
computed by first finding the mean spectrum of the
mixture and then computing the features on this
estimated spectrum. This sequence of operations has an
analytical solution which is given by Equations 1 and 2.
Those formulas can be deduced by using the spectral
centroid and spectral spread formulas and the estimation
of the mixture energy spectrum by the sum of energy
speactra of the instruments.

o= —ZZ"Q"SC", (1)
i€i
[ Xeise +ss7) 2 )
58 = S s¢ . (2)
1

As far as dissimilarity functions are concerned, we use
for both centroid and spread a relative distance to the
target feature values sc7 and ss7:

_|se = ser|

D) =T Dy =

_|ss — ss7]

(3)

From a psychoacoustic viewpoint this choice of dissim-
ilarity functions might be questionable, however the
multicriteria approach used in Orchidée (Carpentier
et al., in press) allows us to circumvent this issue. Indeed,
Orchidée tries to optimize instrument mixtures by
considering perceptual features separately, and the only

Signal

Windowing FFT

Fig. 2. Extraction of spectral features from audio signals.
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Target spectrum [dashed line] and Main Resolved Partials (MRP) [solid line]
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Fig. 3. Extraction and estimation of Main Resolved Partials (MRPs).

Table 1. Dissimilarity values between extracted and computed values
the dissimilarity).

of combination features (in parenthesis: standard-deviation of

1 sound 2 sounds

3 sounds 4 sounds

Monophonic mixtures

centroid 10.4% (9.7%) 10.7% (9.5%) 11.1% (9.2%) 11.2% (9.3%)
spread 8.8% (7.6%) 8.2% (8.5%) 7.7% (8.0%) 7.5% (7.7%)
MRPs 5.0% (5.8%) 5.1% (5.5%) 5.0% (5.1%) 4.7% (5.5%)
Polyphonic mixtures

centroid - 11.0% (10.4%) 11.2% (9.9%) 11.2% (10.4%)
spread - 9.0% (8.8%) 9.5% (9.1%) 9.1% (9.2%)
MRPs - 5.9% (6.1%) 6.3% (6.9%) 6.6% (7.3%)
requirement is to have orchestral configurations dissimilarities take values in roughly the same range,

closer to the target on a given objective being better
ranked (optimization criteria are interpreted as ‘distances
to the target’” only, not pair-wise distances). Addi-
tionally, Equation 3 ensures that centroid and spread

which helps the optimization algorithm in managing the
potentially conflicting objectives.

Regarding the main partials the process is slightly more
complex. For each orchestration problem we first extract
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the target MRPs according to the process depicted in
Figure 2. Then, for each sound in the knowledge database,
we identify the partials that match the target MRPs. This
operation is a preliminary procedure (before the search
process itself) that allows, as we will see, a faster
computation of the MRPs of any combination. The
matching criterion is a simple threshold frequency ratio ¢
(usually around 1.5%) on the partials to be matched. For
instance if the target has its third MRP at 500 Hz every
database sound with a partial between 493 and 507 Hz
will get it matched with the third MRP of the target. Let
{fT} and {a’} be respectively the frequencies and
amplitudes of the MRPs of 7. Let s; be a sound of the
database with associated partials {]j,i, api}. The contribu-
tion of s; to the MRPs of 7 will therefore be:

MRPT (n) = { @ i3m0, (1407 <L /AT <140,
S 0 otherwise.

4)

To each sound s; in the knowledge databage we then
associate a vector of amplitudes MRPSTI_ of same
length as {a! } which reflects the contribution of s; to the
MRPs of 7. Once this preliminary process is completed
the computation of the MRPs of any sound combination
s is performed in the following way:

MRPT = {max (MRPST(l)),max (MRPS{(z)),. : }

icl icl
()

Spectra are here computed in decibels, in which case the
max is a simple and efficient approximation of the
mixture spectrum (Roweis, 2000). Note that the pre-
liminary frequency match allows one to deal with partial
amplitudes only in the estimation of the MRPs. The
computation is therefore extremely efficient.

Figure 3 illustrates the above operations. The upper
diagram shows the target spectrum (dashed line) and the
corresponding MRPs (solid lines). The middle diagram
plots the contributions to the target MRPs of two sounds
of the database of pitches C2 and D2. We see that the 4th
partial of C2 is matched with the 6th MRP and that both
the 9th partial of C2 and the 8th partial of D2 matched
with the 13th MRP. Last, the bottom diagram shows the
estimation of both contributions.

The dissimilarity function associated with the MRPs is
defined in the following way:

DMRP(g) = 1 — cos (M’R\PZ, MRP%) . (6)

Note that the dissimilarity is minimal when both MRP
vectors are proportional. The gain level of the target

sound has therefore no effect on the dissimilarity value.
Thus, sounds are compared according to the shape of
their spectral envelopes. Moreover, the cosine distance
implicitly bears more importance to the loudest partials
in the MRPs, which seems acceptable from a perceptual
viewpoint. Last, DYR lies between 0 and 1, in roughly
the same range as D3¢ and D5,

4.3 How relevant are optimal solutions?

Our three spectral features and their associated estima-
tion and dissimilarity functions allow us to turn the
orchestration problem into a three-objective optimiza-
tion problem. Before going further however we need to
investigate the following issue: how relevant are optimal
solutions? Do the optimal solutions of the optimization
problem correspond to relevant orchestration proposals
for the composer? There are various ways to answer this
question.

The first idea is to show that estimation functions are
accurate predictors of the sound combination features.
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Table | reports feature estimation error rates between
extracted and computed features for different kinds of
mixtures. This experiment was run over 500 instances of
each type (monophonic and polyphonic mixtures ranging
from one to four sounds). The predicted features were
computed from the feature knowledge database with the
estimation functions previously introduced. The extracted
features were computed by first adding reverberation to
each component, then summing the components and
applying the extraction process depicted in Figure 2.
Reverberation was used to depart from the original
samples and simulate mixtures in real auditory condi-
tions.

Considering the difficulty of the prediction task, the
error rates are reasonably low and do not depend on
the size of the mixtures. It seems that prediction shifts are
therefore due to the reverberation rather than the
estimation functions themselves. The absence of significant
differences in error rates between one-sound mixtures and
any other mixture types confirms this hypothesis.

Another way to state the correctness of the problem
formulation is to consider the mixtures used in the
previous test as orchestration targets and use the
information of their components to study the quality of
the solutions returned by the search algorithm. Efforts in
this direction have been made in Carpentier (2008) and
have led to promising results.

5. Musical examples

The Orchidée orchestration prototype has already been
used by composers in many real-life situations. We report
several significant examples here. All of them—as well as
many others—are published on line with convincing
sound simulations on the following website: http://
recherche.ircam.fr/equipes/repmus/carpentier/

In the remainder of this section we use the scientific
pitch notation (middle C is C4).

5.1 Car horns

In this example the target timbre is a field-recorded
car horn sound. It is a polyphonic sound in which
two pitches can clearly be heard: G#4 and C5. The
search space was therefore limited to G#4 and C5
sounds, plus their upper harmonics: G#5, C6, D#6,
G6, etc.

Figure 4 reports two orchestration proposals for this
horn sound, with two different sets of instruments. Note
that the score is in C, and the contrabass harmonic is
noted in true pitch.

Surprisingly, the imitation is more convincing with
the string section rather than with the wind section.
The latter indeed combines woodwind and brass
instruments, and it is known that a better perceptual
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fusion is achieved when all instruments belong to the
same family. Moreover, the specific brass timbre at the
fortissimo dynamic generates a rougher sound than
the original.

5.2 A generative example

This example has been suggested by composer Tristan
Murail and illustrates how the orchestration process may
be driven by symbolic material in the absence of a pre-
recorded target sound. The starting point is here a simple
chord (G2, C#3, A#3, G#4, B4 + 1). Tristan Murail used
the OpenMusic (Assayag et al., 1999) composition
environment to transform the initial chord into a
synthesis sound.

Figure 5 is an OpenMusic patch taking as input
argument the symbolic chord (G2, C#3, A#3, G#4,
B4+). The chord is first expanded into a harmonic series
for each fundamental pitch, and the harmonics intensities
are adjusted with a spectral envelope profile. The
resulting ‘symbolic spectrum’ is then mapped on a set
of frequency/amplitude pairs and a target sound is
generated by simple additive synthesis.

"The +symbol here refers to the quarter-tone notation.
B4 + should be understood as a quarter-tone above B4.

The orchestration of the synthesized sound is
reported on Figure 6. It contains all the pitches of the
initial chord plus two D4 sounds (third harmonic of
G2). The resulting orchestration has the same timbre
characteristics as the synthesized target sound and adds
the ‘richness’ of real instruments. This example shows
how simple synthesized sounds may be used as ‘mock-
ups’ of complex timbre mixtures for which no pre-
recorded sound is available (Carpentier & Bresson,
2010).

5.3 Timbre ‘fade in’

In this example suggested by composer Yan Maresz the
constraint solver of Orchidée is used to generate a
continuous timbre evolution over time. The constraint
solving algorithm embedded in Orchidée is a local search
procedure (Carpentier et al., in press). It iteratively
changes one variable at a time, and keeping trace of all
visited configurations gives a continuous sound path from
an initial configuration to another.

Figure 7 illustrates this process. Starting from the
recording of a trombone played with a bassoon reed, we
first looked for a combination of sounds that best
imitates the target. We then transformed the output
orchestration into a unison of three instruments all
playing at the pp dynamic thanks to the following
constraint set:

cl: [size-min 3]

c2: [size-max 3]

c3: [note at-most-diff 1]

c4: [dynamics at-least 3 pp]

Storing the trace of the Orchidée constraint resolution
algorithm gives a continuous timbre motion from the
initial orchestration to the final unison. Reversing the
whole evolution in Figure 7 we thus obtained a ‘timbre
fade in’. The first bar is the initial pianissimo C5 unison
played by clarinet, bassoon and viola. The contrabass
enters at bar 2. The clarinet switches to A#5 + at bar 3,
etc. Each bar corresponds to one iteration of the
constraint solver at which only ome variable (i.e. one
part) is changed. The timbre gets more and more
complex over time and finally reaches the target timbre
at bar 12. This example clearly emphasizes how time-
varying orchestrations can still be handled by a static
timbre model when the evolution is driven by symbolic
parameters.

5.4 Speakings ostinato

This last, slightly more complex example comes from a
collaboration with composer Jonathan Harvey on his
lastest piece Speakings for orchestra and electronics. In
this work Jonathan Harvey focused his writing on the
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imitation of human voice timbres. At the beginning of
the third part of Speakings a subset of the orchestra
plays a tutti ostinato which is used as a harmonic

background line for the soloists.

57

These orchestral

textures have been largely written with the help of

Orchideée.
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The initial material was a simple three-note mantra
sung and recorded by the composer. To each note
corresponded a given vowel: Oh/Ah/Hum (see Figure
8). The goal was to imitate the sound of the sung
mantra with an ensemble of 13 musicians. The
composer wanted the orchestra to sing the mantra 22
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Fig. 10. Bars 11 to 14 of the mantra ostinato in Jonathan Harvey’s piece Speakings © 2008 by Faber Music Ltd, reproduced by kind
permission of the publishers. Parts written with our orchestration tool are enclosed in black boxes—score in C.

times, and wished the resulting timbre to evolve along brighter, closer and closer to the target vowel. In
the ostinato in the following manner: the sound was to addition, the orchestration was to use higher and higher
become louder and louder over time, brighter and pitches (harmonics of the vowels fundamentals) in
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harmonically denser and denser” chords. This quite
complex demand was processed as follows:

(1) As the ostinato was to be played by an ensemble of
13 musicians, at most 13 different pitches were
playable simultaneously. For each sung vowel we
thus generated 13 sets of 10 different solutions with
the following constraint for each set kin {1, ... ,13} :
[note at-least-diff k]. This constraint ensures to have
at least k different pitches in each solution of set k .

(2) For each sung vowel we used Orchidée to generate
130 solutions of various timbres and chord densi-
ties. For each solution we then computed the
following features: perceptual loudness, spectral
centroid, MRPs, highest pitch, harmonic density
(i.e. the number of different pitches in the chord),
size of the orchestration. The overall loudness of a
solution was computed with the following formula
(for more details see Moore (2003)):

(3) For each vowel in the mantra we then used a local
search algorithm to find a ‘path’ linking 22 points in
the overall set of 130 solutions, in such a way that
all the above features increase over the evolution.

An excerpt of the global solution generated by this
procedure is given in Figure 9. Harvey’s corresponding
final score is given in Figure 10. Parts enclosed in black
boxes have been written with Orchidée.

Generally speaking the orchestration suggested by the
system has been kept ‘as is’ in the final score, though a
few changes were necessary to cope with voice leading or
practical playing issues. For instance the trumpet player
who wishes to perfectly follow the score of Figure 9 has
to change his mute in the middle of the 13th bar, remove
it on the first crotchet of the 14th bar and change it again
twice on the following two notes. This is obviously
impossible in practice, and the composer chose to keep
the same mute for the whole passage. Most other changes
deal with specific playing styles resulting in extremely soft
sounds (e.g. col legno tratto for the strings) that cannot
be heard in orchestral music.

Apart from these minor changes it should be noted
that most of the dynamics (and their frequent variations)
were kept ‘as is’ by the composer. Jonathan Harvey even
left a note to the director at the beginning of the ostinato:
‘Great care to respect the dynamics’. Orchidée was
therefore very helpful in finding the finest balance in
the instrument intensities.

>The density of a chord is here understood as the number of
different pitches in it.

Speakings was premiered on 19 August 2008 in the
Royal Albert Hall, London (BBC Scottish Orchestra,
director Ilan Volkov).

6. Conclusions and future work

In this paper we have presented functions that predict the
timbre features of an instrument sound combination,
given the features of the individual components in the
mixture. These functions have been evaluated on a
significant collection of test case instances. Results show
that timbre features of complex sounds may be
accurately predicted with rather simple estimation
functions. Embedded in Orchidée, an innovative auto-
matic orchestration tool recently designed and developed
at IRCAM, feature estimators, allow one to address
various musical situations in which timbre control and
exploration are the main issues. Convincing examples
from real-life compositional situations confirm the
interest and potential of computational timbre estima-
tion for the sake of musical creativity.

Future work will first focus on the addition of new sound
features in Orchidée. Recent research in timbre modelling
for computer-aided orchestration (Tardieu, 2008) has
provided new feature estimation methods that still remain
to be experienced. We believe that composers will then be
able to address a wider range of musical situations among
which the spectral issue will be no more than a particular
case. As far as long term research is concerned, we will
concentrate on the design of efficient time models for
describing and computing time evolving timbres.
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