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Summary
This master’s thesis is dedicated to the automatic classification of auditory
scene using non-negative matrix factorization. A particular attention is
paid to the performances achieved by the non-negative matrix factorization
in sound sources detection. Our intuition was that a good classification
could be achieve if we could efficiently detect the sources within auditory
scenes. It appears on short artificial examples that taking into account the
non-stationarity of the spectral content of the sound sources improves the
source detection. Finally, our classification method is applied to a corpus
of soundscapes of train stations and the results are compared with previous
classifications methods. We finally conclude that using non-negative matrix
factorization significantly improves the classification.

Ce rapport de master est dédié à la classification automatique de scènes
sonores utilisant la factorisation en matrices non-negatives. Une attention
particulière est portée aux performances de la factorisation en matrices
non-negatives dans le cadre de la détection de sources sonores. Notre intu-
ition première a été qu’une classification performante pourrait être réalisée
grâce une détection de sources efficace. Il s’est révélé sur de courts ex-
emples artificiels que la prise en compte de la non-stationarité du contenu
spectral des sources sonores améliore la détection de sources. Enfin, notre
méthode de classification a été appliquée à un corpus de paysages sonores
de gares et les résultats ont été comparé à d’autres méthodes de classifica-
tion. Nous avons finalement conclu que l’utilisation de la factorisation en
matrices non-négatives améliore significativement la classification.
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Introduction
Non-negative matrix factorization is a technique for data decomposition
and analysis. The main philosophy of this technique is to build up the
observed data in an additive manner, so that cancellation is not allowed.
The technique has been applied to various problems such as face recogni-
tion [12], semantic analysis of text documents [18] or audio analysis [16].
The present work has two distinct objectives. First, it aims to illustrate
the source detection achieved by NMF and how the set parameters and
the type of algorithm influence the performance. In a second time, making
the hypothesis that the similarity between auditory scenes comes from the
different sources within, it aims to evaluate the relevance of NMF as a tool
for unsupervised classification of auditory scenes.

We study the source separation achieved by different standard NMF
algorithms on artificial auditory scenes, which allow us to compare super-
vised and unsupervised learning. In our application of the NMF, we con-
sider that the learning is unsupervised when we have no prior knowledge of
the present sources and supervised when spectral content representative of
each source is input as a dictionary. It appears that in both cases, standard
NMF is quite efficient for a low level of background noise but achieves poor
performances when the signal to noise ratio increases. We have assumed
that taking into account the non stationarity of the sounds encountered
in everyday life could improve the performances and therefore, we applied
the extension of the convolutive NMF, proposed in [13], to the source sep-
aration in complex auditory scene. This Model is well suited to take into
account the temporal evolution of the spectrum of the sources along time.
It has been efficiently applied in supervised source separation of musical
content [17].

In a second time, we study how NMF algorithms can be used as a un-
supervised tool in order to classify complex auditory scene. In this case,
the factorization does not aim to establish an accurate source separation
but to extract features relevant to the classification task. We compare the
performances achieved the NMF algorithms with the classification obtained
via a perceptual study and with the results obtained in CASA by the bag-
of-frame approach [1].
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1 Presentation of the Non-negative Matrix
Factorization

1.1 Non-negative matrix factorization
1.1.1 Definition

Non-negative matrix factorization (NMF) is a low-rank approximation tech-
nique for multivariate data decomposition. Given an n × m real non-
negative matrix V and a positive integer r < min(n,m), it aims to find a
factorization of V into an n × r real matrix W and an r ×m real matrix
H such that:

V ≈WH (1.1)

The multivariate data to decompose is stacked into V, whose columns
represent the different observations, and whose rows represent the different
variables. NMF can be used in supervised or unsupervised learning. In
our applications, the learning is considered as unsupervised when no prior
knowledge of the sources is known, with W and H randomly initialized,
and as supervised when W is input and that each of its columns is a
representation of a source we aim to identify. Each column vj of V can be
expressed as:

vj ≈Whj =
∑

i

hijwi (1.2)

Where hj and wi are respectively the j − th column of H and the i − th
column of W. The columns of W then form a basis and each column of
H is the decomposition or encoding of the corresponding column of V into
this basis. The rank r of the factorization is generally chosen such that
(n+m)r � nm, so WH can be thought of as a compression or reduction
of V.
In the case of information extraction from audio files, V could be the am-
plitude of the spectrogram and therefore, H would be a basis of spectral
features when H would represent the levels of activation of each of those
features along time. The data in V is supposed to be non-negative, and the
basis and activation coefficients are constrained to be non-negative. There-
fore, cancellation is not allowed in NMF and if the inputV is a spectrogram
NMF provides a reasonable approximation of an additive representation.
As auditory scenes are composed of the addition of different sound sources,
NMF seems well suited to extract meaningful features in application to
CASA.
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Figure 1: Illustration of standard NMF applied to audio spectrum [9]

1.1.2 Standard problem

NMF algorithms are iterative process resulting in a factorization WH that
may be inexact, i.e. differ from V, so the factorization is only approxi-
mate. The aim is then to find the best factorization with respect to a given
goodness-of-fit measure C called cost function or objective function. In the
standard formulation introduced by Lee & Seung [7], the Frobenius norm
is used to define the following cost function:

C(W,H) = 1
2
∑

j

‖vj −Whj‖2
2 = 1

2
∑
i,j

(vij − [WH]ij)2 (1.3)

Thus, the NMF optimization problem can be expressed as:

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

minimize 1
2‖V−WH‖2

F w.r.t. W,H (1.4)

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+

The uniqueness of the solution of the equation 1.10 has to be considered
up to a permutation of the lines of H and columns of W, and up to a
diagonal rescaling. Even then, the solution is not unique. This is due to
the fact that the cost function C is convex neither in H nor in W. Several
definitions of C have been used in the literature in order to improve the
exactness of the solution. In the implementation of NMF algorithms, a stop
criterion sC has to be set in order to stop the iterative process. This stop
criterion can be a value of C for which we consider that the factorization has
reached a sufficient fitness. However, as one can be unsure about the value
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that C may reach, and that it decreases slower along the iterations, sC may
be the difference between two successive values of C. It avoids using too
much iterations for a too small improvement in the fitness of the solution.

1.2 Common Algorithms
Alternating least squares

The alternating least squares algorithms were the first to be used to
solve NMF problems [11]. The idea is to update W and H in turn by
minimizing C respectively w.r.t. W or H until convergence. For the first
update, either W or H needs to be initialized.

H← argmin
H∈Rr×m

+

‖V − WH‖2
F W← argmin

W∈Rr×m
+

‖V − WH‖2
F (1.5)

Gradient descent

The gradient descent algorithms are a particular case of additive up-
dates algorithms whose principle is to give additive update rules so as to
progress in a direction, called learning direction, where the cost function C
is decreasing. In gradient descent, the learning direction is expressed using
the gradient of C. For the standard NMF problem, the following additive
update rules can be deduced for the coefficients of W and H:

hij ← hij − µij
∂C(W,H)

∂hij

wij ← wij − νij
∂C(W,H)
∂wij

(1.6)

where µij >= 0 and νij >= 0 are the respective learning rates or steps
of progression of hij and wij. The gradient coordinates are given by:

∂C(W,H)
∂hij

=
[
WTWH−WTV

]
ij

∂C(W,H)
∂wij

=
[
WHHT −VHT

]
ij

(1.7)

The main problem of the gradient descent algorithms is the choice of
the steps. Indeed, they should be small enough to reduce the cost function,
but not too small for quick convergence.
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Multiplicative updates

The multiplicative updates algorithms for NMF were introduced by Lee
& Seung [6], [7] as an alternative to the additive updates algorithms such as
gradient descent. The multiplicative updates are however derived from the
gradient descent scheme, with judiciously chosen descent steps that lead to
the following update rules:

hij ← hij ×

[
WTV

]
ij[

WTWH
]

ij

wij ← wij ×

[
WHT

]
ij[

WHHT
]

ij

(1.8)

Like in gradient descent, these update rules are applied in turn until con-
vergence. To avoid potential divisions by zero and negative values due to
numerical imprecision, it is possible in practice to add a small constant
ε to the numerator and denominator, or to use the non-linear operator
max(x, ε).

Compared to gradient descent algorithms, multiplicative updates are
easy to implement and guarantee the non-violation of the non-negativity
constraints if W and H are initialized with non-negative coefficients. How-
ever, despite [?] claims that multiplicative updates converge to a local
minimum of the cost function, several authors remarked that the proof
shows that the cost function is non-increasing under these updates, which
is slightly different from the convergence to a local minimum [?]. Com-
pared to alternating least squares algorithms, multiplicative updates are
computationally more expensive and undergo slow convergence time. Fi-
nally, since a null coefficient in W or H remains null under the updates,
the algorithm can get stuck into a poor local minimum.

1.3 Sparseness
The simplest definition of sparseness (or sparsity) is that a vector is sparse
when most of its elements are null. In its application to NMF, improving
the sparseness of the different rows of H helps to make the different ele-
ments of W specific to one source. No consensus on how sparseness should
actually be defined and measured, with the result that numerous sparse-
ness measures have been proposed. We use the sparseness introduced by
Hoyer in the context of NMF [?]. Let X be a vector of length n :

sp(x) =
√
n||X||1/||X||2√

n− 1 (1.9)
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sp(x) is comprised between 0 for any vector with all components equal up
to the signs, and 1 for any vector with a single non-null component, inter-
polating smoothly between the two bounds.

1.3.1 Horizontal Sparseness

Projected gradient optimization has been used by Hoyer [5] to control
sparseness in NMF. It enforces additional constraints onW and/orH, more
precisely to enforce W and/or H to have a desired sparseness sp(W) = sw,
sp(HT ) = sh,with 0 ≤ sw, sh ≤ 1 chosen by the user. The optimization
problem is then:

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

sw and/or sh s.t. 0 ≤ sw, sh ≤ 1

minimize 1
2‖V−WH‖2

F w.r.t. W,H (1.10)

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+ , ‖w‖ = 1 ∀j
sp(W) = sw and/or sp(HT ) = sh

In Hoyer’s work, the sparseness constraint is applied separately on each
line of the matrix H. It forces the activation coefficients to be sparse along
time. It prevents the elements of the dictionary W to be active all the time
but does not preclude them to be active at the same time. We will call this
application of the sparseness constraint the horizontal sparseness and will
refer to its factor by Sh.

1.3.2 Vertical Sparseness

The sparseness constraint has been as well applied in order to prevent the
different elements of the dictionary to be active at the same time. A.
Cont has combined it with the gradient descent update algorithm in the
application to real-time multipitch observation. P. O’Grady [9] described
an extension of the convolutive NMF algorithm that imposes a sparseness
constraint between the different rows of H. A. Dessein [3]has studied how
to control the achieved sparseness.
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1.4 Temporality and NMF
For most of the sound sources encountered in auditory scenes, as for exam-
ple music notes or speech, stationarity of the spectral content only holds
for one frame. However, in the standard NMF, assuming that the order
r of the NMF is set to the number of sources present in the scene, the
contribution of each source to the spectrum of the scene is modeled by a
single vector of spectral features for which only the weight is varying along
time.

In the standard NMF as described in 1.1, one way of dealing with the
non-stationarity of audio would be to learn a large dictionary, containing
several components per source. It could reduce the cost function and do a
better job in reconstructing the nuances in the sound. However it would
not produce any grouping of the dictionary components and in the case of a
sound mixture we would not be able to identify which element corresponds
to which source.

The Convolutive NMF [9] [13] and the Non-negative Hidden Markov Model
[4] are two methods which has been developed in order to take into account
the non-stationarity and improve the the performances achieved in sources
separation.

1.4.1 Convolutive NMF

The Convolutive NMF extends the NMF method by using a 3 dimensional
tensor W as dictionary. For each object i, the corresponding element Wi

of dictionary is a a sequence of successive spectral features vectors and
the corresponding extracted activation pattern Hi represents the starting
points at which Wi is superposed to recreate the contribution of the ith
source . The generative model of 1.1 is extended to the convolutive case:

[!h]V ≈
T−1∑
t=0

Wt ·
t→
H (1.11)

whereV ∈ R>0,M×N is the input to be decomposed,Wt ∈ R>0,M×Rand
H ∈ R>0,R×N are its two factors, and T is the length of each spectrum
sequence. The ith column of Wt describes the spectrum of the ith object
t time steps after the object has begun. The

i→
(·) denotes a column shift

operator that moves its argument i places to the right, as each column is
shifted off to the right the leftmost columns are zero filled. Conversely, the
←i

(·) operator shifts columns off to the left, with zero filling on the right.
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Using the previously presented framework for NMF, the new cost func-
tion for the convolutive model is:

D(V‖Λ) =
∥∥∥∥∥V⊗ log V

Λ
−V + Λ

∥∥∥∥∥ (1.12)

where Λ is the approximation to V and is defined as:

Λ =
T−1∑
t=0

Wt ·
t→
H (1.13)

s
This new cost function can be viewed as a set of T conventional NMF

operations that are summed to produce the final result. Consequently, as
opposed to updating two matrices (W and H) as in conventional NMF,
T + 1 matrices require an update, including all Wt and H. The resultant
convolutive NMF update equations are:

H = H⊗
WT

t ·
←t

[V
Λ ]

WT
t · 1

Wt = Wt ⊗
V
Λ ·

t→
H

T

1 ·
t→
H

T (1.14)

At each iteration H and all Wt are updated, where H is updated to the
average result of its updates for all Wt. Therefore, we can note that if
T = 1 it is equivalent to the standard multiplicative updates.

The convolutive extension of the NMF provides an easy to implement
method of dealing with the temporal variation of the spectral content. How-
ever, it still has some important limitations. The time-length of the objects
to be extracted has to be input and as this time length is fixed, the convo-
lutive NMF does not allow time stretching or other kinds of modulation of
the dictionary spectral content.
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Figure 2: Illustration of Convolutive NMF applied on a two sources sound
mixture [9]

1.4.2 Non-negative Factorial Hidden Markov Model

N-HMM to Model Single Sources [8]

G.J Mysore [8] and A. Ozerov [10] presented the non-negative hidden Markov
model (N-HMM), which jointly captures the spectral structure and temporal dy-
namics of a single source. This model uses several small dictionaries to capture
the spectral structure of a sound source, in order to cater to the non-stationarity
of audio. Additionally, a Markov chain is used to model the structure of changes
between these dictionaries (temporal dynamics). Given a sound source, the dic-
tionaries and the Markov chain are jointly learned.
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Presentation of N-HMM

In the N-HMM, each of those dictionaries corresponds to one aspect of the
sound, the transitions between the dictionaries represent the temporal dynam-
ics. Those transitions are represented by a Markov chain and could be as well
learned from the data. In this Markov chain, each state corresponds to one of
the learned dictionaries.

Probabilistic Model

Figure 3: Graphical model for the N-HMM [8]

The figure 3 represents the transition between two states Qt and Qt+1 For
each state Qt and Qt+1 exists a different dictionary. Each dictionary has several
latent components, z which in our case would be spectral vectors. the spectral
z of the stae q is define by the multinomial distribution: P (f |z, q).

At a time frame t, only one of the state can be active and the data (spectro-
gram) in that time frame is modeled as a linear combination of the elements (z)
of the corresponding dictionary. At time t, the weights of the different elements
of dictionary are define by the multinomial distribution P (zt|qt).

The temporal transitions from one state to an other is modeled by a tran-
sition matrix defined by P (qt+1|qt) The different parameters can be estimated
using EM algorithms as detailed in [8].
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N-FHMM to Model Sound Mixtures

The N-HMM are useful to deal with single source audio files. The N-FHMM
(non-negative factorial hidden markov models could be seen as an extension
of N-HMM and permit to deal with sound mixtures in order, for example, to
perform source separation. The figure 4 shows how N-FHMM combine N-HMM
of different single sources. It introduces a new variable St, which indicates the
weight of each source at each time frame.

Figure 4: Graphical model for the N-FHMM [8]

In a given time frame t, each source is described thanks to one of its dictionary
as seen for the N-HMM. Therefore, for a given mixture of n sources, each time
frame is described using n dictionaries. In the particular case of a sound mixture
of two sources, we have:

P (ft|q(1)
t , q

(2)
t ) =

∑
st

∑
zt

P (ft|zt, st, q
(1)
t , q

(2)
t ) (1.15)

The mixture spectrum is modeled as a linear combination of the individual
sources which are in turn modeled as a linear combination of spectral vectors
from the given dictionaries. In the case of two sources, the mixture is a linear
combination of the spectral vectors (z) of the given pair of dictionaries. The
N-FHMM seems like an attractive method to capture temporality as, unlike the
consultive NMF, it allows time stretching or modulation of the spectral com-
ponents of the dictionary. However, it is an heavy method to implement and
some problems such as to model the contribution of each source in the case of
an unsupervised learning remain to be solved.
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2 Application to source detection
2.1 Corpus and evaluation protocol
The aim of this experiment is to compare the performances achieved on sources
detection by the different NMF algorithms we described in section 1 and to
illustrate the influence of the parameters of the NMF on the achieve detection.
It means that we focus on the ability of the algorithm to identify the time
intervals during which a source is present without considering the quality of a
possible reconstruction as we would have done in the case of source separation.

2.1.1 Description of the artificial scenes

Eight artificial 15 seconds scenes have been created in order to illustrate the
application of the NMF on source detection. Four of those scenes are composed
of drum sounds (kick, snare, tom and hat), chosen because of their low non-
stationarity. The four others are constructed such as to be closer from what we
would expect in a real-life auditory scene and are composed of bell ring, phone
ring, footsteps, dog barking, diesel car engine, woman voice and the tune of the
announcement in a French Train Station. All the sound sources come from mono
files encoded at 44100 Hz. The scenes are as well mono encoded at 44100 Hz.
Each scene is created by addition of four tracks containing one sound repeated
several times. A binary truth vector is associated to each track and is equal to
one when the source is active and to zero when it is not.

Figure 5: Construction of a test scene. The binary truth appears in grey back-
ground for each active source.
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We will refer to the four scenes composed of drum sounds by D1, D2, D3,
D4 and to the ones based on realistic sounds by R1, R2, R3 and R4. In order to
evaluate the robustness of the algorithm, pink noise with an energy decreasing
at 3dB per octave is added to each scene. We adjust the level of noise according
to what we perceive as encountered in a quiet room and in an usual public space.
According to that personal judgement, we apply a signal to noise ratio of 0.1 Db
and 10 Db. We will refer to the scenes containing added noise by subscript
indices. For example, for the scene D1, D10.1 and D110 refer respectively to the
same scene with a SNR of 0.1 Db and 10 Db. D represent the entire group of
Drum scenes.

2.1.2 Evaluation metric

The confusion matrix

The confusion matrix is a well know tool in order to evaluate the performance
of a two groups classification task when provided with a score and a truth vector,
both of same length. In our study, the classification task consists in labeling the
sources as active or inactive for each sample of the input signal. In this pro-
cess of evaluation, the confusion matrix can be established for each ith source
present in the scene and by comparing the corresponding activation coefficient,
ith line of H with the ith line of the binary truth. Before doing so, we had to
first rescale the binary truth constructed from the audio files to make it fit the
length of the activations coefficients in H. Let k be the difference between the
length of the Hamming window and the length of the overlap used to compute
the spectrogram, we have:

∀i ∈ Nns Tfit(i) = 1⇔
∑i×k

(i−1)k+1 Ti

k
≥ 0.5 (2.1)

For a given real value of threshold T ∈ R+, the source is considered to be
active at the sample i if H(i) ≥ tr.

`````````````̀Truth
Observation Positive Negative

Positive a b
Negative c d

Table 1: Confusion Matrix

a is the number of true positives b is the number of false positives
c is the number of false negatives d s the number of true negatives

recall = a

a+ b
precision = a

a+ c
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ROC Curve

We can establish the confusion matrix for different values of treshold T .
Then, for or each value of T , the confusion matrix gives us a true-positive
rate and a false positive rate. In our study, the true positive rate evaluates
the ability of the algorithm to detect if a source is present or not. On the
other hand, the false positive rate evaluates the tendency of the algorithm
to produce false alarms.

As the value of T increases, the algorithm will classify more elements
as positive, but may as well commit more false alarms. As both ratios can
only take value in [0, 1], the area under the ROC curve (Receiver Operating
Characteristic) can be used as a good evaluation score that will take values
in [0, 1]. This area under curve, that we note AUC, is used as the perfor-
mance score in our source detection experiments. The ROC curves is also a
good tool to visualize the performance of an algorithm for multiple values
of T . Indeed, a perfect classifier would be represented by a square and a
worthless classifier would have its curve appearing under the diagonal of
the graph.
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Figure 6: Example of the ROC curve obtained for the source detection applied
on the scene D1 using supervised convolutive NMF with a one second length
object and sHv = 0.8.
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Matching between H and Tfit

Even though we always evaluate the source detection with the AUC,
some distinctions have to be made in regard to the matching we establish
between the time varying coefficient in H and the line of the binary truth
Tfit. In the case of supervised learning, as the dictionary is given as a
prior, we know which of the sources is represented by each line of H and
the corresponding line in Tfit. Therefore, we simply calculate the AUC
for each source and the global performance of the algorithm on one scene
is the mean of the values obtained for each of its tracks.

However, in the case of an unsupervised learning we have no knowledge
of the organization of W and H and do not know to which lines of H com-
pare the lines of Tfit. We established different metrics based on the AUC
but that differ from each other by the used matching.

First, we can evaluate the AUC of each track for all the possible per-
mutations of the lines of H, and keep the best global score AUCbp as the
performance of our algorithm. However, the matching may not make corre-
spond the time activations described in Tfit with their significant elements
of dictionary if the source separation is not reliable enough. For example, it
does not take into account that in NMF, a single element of dictionary can
be used to reconstruct several of the sources. Therefore, this performance
may provide artificially good results. Moreover, as the score has to be com-
puted for each permutation, the computation time increases exponentially
with the order r of the factorization and the AUCbp cannot be applied to
applications containing numerous sources.

Though the learning is unsupervised, the elements of dictionaryWsused
in the supervised learning algorithm can be used to guide the evaluation.
First, the rows of H are sorted according to their level of energy and the
same permutation is applied to the elements of the dictionary W . H
is then composed of r rows with H(r) the row of maximum energy. we
evaluate the distances between W(r) and the different elements of Ws in
order to identify the closest element Ws(i). The AUC is finally evaluated
between H(r) and Tfit(i). This process is iterated along all lines of H by
descending level of energy and the global performance is the mean of the
respective values for each track. As this method is an oracle method based
on the dictionaries W, we note the resulting score AUCow. At each step of
the iterative process, we could exclude the previously selected rows of Tfit

as possible match for the currently evaluated row of H. We will note the
resulting score AUCowr.
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A similar method can be applied using Tfit as input of the oracle. In
this case, after having sorted the rows of H according to their level of
energy, each row is matched with the closest row of Tfit. Again, we can
choose to consider or not the previously selected rows of Tfit as possible
match. The resulting score is noted AUCoh when all matches remain pos-
sible and AUCohr when a line cannot be attributed twice.

2.2 Description of the experiment
On each of the artificial scenes, we applied the multiplicative update al-
gorithm and the convolutive NMF algorithm. The scenes are 15 seconds
mono .wav files encoded at 44100 Hz. The input of the algorithm is the
spectrogram computed using the short-time Fourier transform with a Ham-
ming window of length 1024 and an overlap of 50%.

As four sources have been added in each scene we set the order r of the
factorization to r = 4 when no noise has been added and r = 5 when it has.
In the case of the the convolutive NMF, the time length of the objects to
be detected has been chosen in order to be superior to their actual length.
It has been set to 1 second for the Drums scenes and to 2 seconds for the
Realistic scenes. The vertical sparseness constraint sHv has been set to 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.99 in order to evaluate its
influence on the achieved source detection. As H, and W in the unsu-
pervised case, are randomly initialized, ten run have been done with each
set of parameters. The presented performances are the means of the score
obtained for each of the ten runs. We present the values that illustrate best
the influence of the parameters on the achieved source detection.

2.2.1 Supervised Source Detection

In the case of the supervised learning, a four elements dictionary has been
input to the algorithm. Each element of dictionary has been learnt by ap-
plying the NMF algorithm with r = 1 and sHv = 0 to the spectrogram of
the audio file of each separated source. Two dictionaries have been built,
corresponding to the multiplicative update algorithm and to the convolu-
tive NMF algorithm. In the case of the convolutive algorithm, the length
of each element of dictionary has been set to 1 second for the drum scenes
and to 2 seconds for the realistic scene, which represent objects of 85 and
171 frames respectively.
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Drum
NMF Multiplicative Convolutive
sHv 0 0.99 0 0.99
AUC 0.87 0.92 0.82 0.95

Table 2: AUC of the supervised learning, multiplicative and convolutive,
for sHv = 0 and sHv = 0.99, applied on the Drum scenes

Realistic
NMF Multiplicative Convolutive
sHv 0 0.99 0 0.99
AUC 0.83 0.92 0.88 0.95

Table 3: AUC of the supervised learning, multiplicative and convolutive,
for sHv = 0 and sHv = 0.99, applied on the Realistic scenes

We can see that even for a simple case, without added background noise,
the convolutive NMF achieves better performances than the standard mul-
tiplicative update when applied to the group of the Realistic scenes. This
improvement of performances does not appear for the Drum scenes. It
comforts the hypothesis that convolutive NMF should improve the source
detection of non-stationary sound.

2.2.2 Unsupervised Source Detection

In the case of the unsupervised detection, no dictionary has been input to
the algorithm and therefore after having been randomly initialized, W is
learnt and updated at each iteration along with H.

sHv AUCbp AUCoh AUCow AUCohr AUCowr

D 0 0.64 0.91 0.61 0.77 0.65
D 0.99 0.70 0.94 0.63 0.75 0.66
D10 0 0.61 0.77 0.65 0.64 0.70
D10 0.99 0.67 0.79 0.59 0.64 0.57
D01 0 0.64 0.66 0.76 0.67 0.72
D01 0.99 0.66 0.72 0.75 0.71 0.61

Table 4: The different types of AUC achieved on the Drum scenes by the
convolutive NMF in function of sHv and of the level of background noise
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sHv AUCbp AUCoh AUCow AUCohr AUCowr

R 0 0.62 0.92 0.60 0.80 0.60
R 0.99 0.68 0.94 0.67 0.83 0.71
R10 0 0.84 0.66 0.61 0.79 0.65
R10 0.99 0.80 0.77 0.67 0.80 0.70
R01 0 0.56 0.67 0.51 0.66 0.57
R01 0.99 0.62 0.73 0.51 0.61 0.60

Table 5: The different types of AUC achieved on the Realistic scenes by
the convolutive NMF in function of sHv and of the level of background
noise

As one may expect, the detection performance decreases when the signal
to noise ratio increases. However, the sparseness constraint sHv contributes
to the robustness of the detection in presence of noise. We can also note
that AUCoh is higher than AUCbp, which seems like each sources is repre-
sented by several elements of dictionary.
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3 Application to Auditory Scenes Classifi-
cation

3.1 Corpus and evaluation protocol
Our work is based on records collected by J. Tardieu [15] [14] in a study
of the human perception of the similarity between soundscapes of train
station. The corpus is composed of 66 audio files recorded in 6 different
French train stations: Avignon TGV, Bordeaux St Jean, Lille Flandres,
Nantes, Paris Gare de l’Est and Rennes. He considered that the typology
of spaces in a train station is composed of six types: platform, hall, cor-
ridor / stair, waiting room, ticket office, shop. At least five recordings of
about 3 minutes were made in each type of space and in each of the train
stations for a total of nine hours during three days of recording sessions.
Among those recording, a selection of 66 samples was made by four people.
It permitted to remove the poor quality recordings and to select samples
supposed to be representative of each space in terms of sound sources and
human activity. In our categorization task, we will consider the 6 types of
space as the six groups constituting of our ground truth.

J.Tardieu showed that the knowledge people have about train stations
concerns the objects present in the spaces, the type of events happening
and the type of space where all the sounds occur. Because of the ability
of the NMF to isolate different sound sources and because of its additive
nature that makes it an intuitive representation, we believe it is an inter-
esting process to be used as a classification tool.

3.2 Evaluation
n-precion, Mean Average Precision and R-precision

The achieved classification has been evaluated using the n-precision at
rank 5, the R-precision and the mean average precision.

precision = |{relevant samples} ∩ {retrieved samples}|
|{retrieved samples}| (3.1)

The precision at rank n, or n-precision, is the precision achieved for:
|{relevant samples} ∩ {retrieved samples}| = n

The r-precision is the precision at rank r where r = |{relevant samples}|
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The average precision AP is the average of the precision values at the
points at which each relevant document is retrieved. The Mean Average
Precision is the average of the average precision value for a set of queries.

MAP =
∑Q

q=1 AP (q)
Q

(3.2)

Recognition scores

The perceptual study gives the recognition scores achieved by the sub-
jects during the forced recognition task. This recognition scores represent
the average of the confusions matrix built for each subject during the exper-
iment. In the computational method we consider, the computed distances
between each of the samples produce a similarity matrix that we use to
establish the recognition scores of each method. However, in order to do
so, a K-Nearest Neighbors technique has to be applied and the recognition
scores presented for the computational method depend of a chosen number
of elements we consider in each group. We fixed this number at 11, which
is the average number of elements per group in our considered corpus and
means finding the 10 nearest neighbors for each sample.

For all methods, we define the recognition rate R as the mean of the
diagonal of the recognition scores matrix. R is the mean of the percentages
of correct attributed samples for each type of space of our ground truth.
When compared to a random classifier, results are the mean of one hundred
computation.

3.3 Previous classification methods
We do not aim here to present all existing classification methods used in
computational auditory scene analysis but to describe the two methods
with which compare our results. First, the perceptual study based on
the human perception that we believe to be the top performance we aim
to achieve. Then, the bag of frame approach, which is a computational
method that has already been used on the classification of soundscapes,
will be our baseline performance.
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3.3.1 Perceptual study

This perceptual study was made by J.Tardieu on the same sound corpus we
use. We describe here the six alternatives forced-choice recognition that we
aim to reproduce with our computational method. Thirty-eight new peo-
ple participated in the second experiment (17 women and 21 men, between
25 and 45 years old . The participants were provided with a description
of the six types of spaces mentioned in 3.1. The experiment consisted of
two steps, a six-alternative-forced-choice recognition task and a selection
of prototypes. During the forced categorization the audio files were all
randomly placed on one half of the screen and the participants had to sort
the files into labeled categories the labeled categories corresponding to the
types of the spaces where the samples were recorded. Participants could
listen to each file as many times as they wanted.

For each type of space, it is possible to know the percentage of partici-
pants who attributed the samples to the right category.

Associated Spaces
Spaces Platforms Halls Corridors W. rooms T. offices Shops
Platforms 67 12 7 9 1 4
Halls 19 52 11 6 4 8
Corridors 16 14 55 2 5 8
W. rooms 6 7 12 45 9 21
T. offices 2 4 2 11 53 28
Shops 3 20 5 5 9 57

Table 6: Recognition scores for forced recognition Task: R = 54, 8

Except for the Waiting room (45%), the diagonal is greater than (50%).
As there were six categories, a random choice would have resulted in 16, 6%
in each cell of the table.
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3.3.2 The "Bag of Frames" approach

Description

BOF models soundscapes as the long-term accumulative distribution of
frame-based spectral features. The signal is cut into short overlapping
frame typically 50 ms with 50% overlap. For each frame generic spectral
features are computed (as MFCC, Mel-frequency Cepstral Coefficients).
Then the spectral features are fed to a classifier (as GMM, Gaussian Mix-
ture Model). The classifier models the global distribution of the features
corresponding to each class. The global distribution for each class can
then be used to determine decision boundaries between classes. A new,
unobserved signal is classified by computing its features vectors, finding
the most probable class for each of them. The most represented class is
then the class of this new unobserved signal.

The BOF method has been used in order to classify soundscapes and
musical pieces as well. J.J Aucouturier and F. Pachet studied the influence
of the different parameters of this method in its application to the timbre
similarity in [?]. The main algorithm can be summarize by this figure:

Figure 7: Bag Of Frame

Six parameters can influence the algorithm performance:

1 Signal Sample Rate (sr)
2 Number of MFCC (Nmfcc)
3 Number of components (Ngmm)
4 Distance Sample Rate (dsr)
5 Alternative Distance (ad)
6 Window Size (ws)
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Study from J.J. Aucouturier [2]

This article is a comparison between the results given by the BOF approach
to audio pattern recognition for Urban Soundscapes and polyphonic mu-
sic. It concludes that the BOF approach is not a sufficient model to be
applied to polyphonic music but that it does give convincing results on
soundscapes classification in the case of urban soundscapes in spaces such
as parks, avenues or market. However, in our particular corpus of train
station soundscapes, the achieved performances are close from a random
classifier.

5-Precision MAP R-Precision
Random 0.18 0.25 0.19

Bag of Frames 0.18 0.24 0.20

Table 7: Achieved performance for the Bag of frame and for a random
classifier

Associated Spaces
Spaces Platforms Halls Corridors W. rooms T. offices Shops
Platforms 0 30 30 20 20 0
Halls 12.5 12.5 62.5 0 12.5 0
Corridors 0 58.3 25 0 16,7 0
W. rooms 0 15.4 30.8 15.4 38.5 0
T. offices 0 0 30 10 60 0
Shops 20 0 80 0 0 0

Table 8: Recognition scores for the BOF method: R = 19, 7
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3.4 Classification using NMF
3.4.1 Method

The 66 mono .wav files have been resample to 44100 Hz. Their spectro-
gram, computed as in 2.2, has been input to unsupervised NMF algorithms,
multiplicative and convolutive in order to extract bothH andW. The rank
R of the factorization has been set to 10, 25 and 50 elements of dictionary
in the case of the multiplicative update algorithm. However, because of the
high computation time required For each value of R, sHv has been ranged
to 0, 0.5, 0.8 and 0.99.In the case of the convolutive NMF, the time length
of the objects as been set to a half second.
For each of the extraction, the distance between the different scenes have
been computed in order to built the similarity matrix representing the cor-
pus.

Measure of distance

We considered the distance between the scenes to be the distance be-
tween their respective dictionaries. In order to reduce the computation
time and to have a representation closer from the human perception, the
elements of dictionary have had their potential zero values replaced by
their median before being reduced to 13 Mel Frequency Cepstral Coeffi-
cients (MFCC), which have then been normalized to take values between
zero and one.

The distance between two elements from two different dictionaries Wa

and Wb, after they have been normalized, is the sum of their element by
element absolute difference. The distance betweenWa andWb is the sum of
the R minimum distance between their elements of dictionary. Similarly to
2.1.2, while choosing the minimum pairwise distance between the elements
of dictionary, we can consider than one element can be attributed only one
time or not. Moreover, in order to determine wether or not the weight
of each element of dictionary in the reconstruction would be a relevant
feature to be used in the classification, the two distances have been calcu-
lated with and without a previous ponderation of eachW(i) bymax(H(i)).
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3.5 Classification experiments using NMF
3.5.1 Achieved performances

The multiplicative update is used in order to evaluate the influence of the
different parameters. The highest scores have been reached for the dis-
tance computed by allowing multiple consideration of a single element of
dictionary and without ponderation. In the following, we will consider the
results achieved with that distance.

Multiplicative Update

The best classification performance achieved during our experiment has
been achieved for the multiplicative update algorithm set with order of the
NMF R = 50, a sparseness constraint sHv = 0.99 and after 10 iterations.

5-Precision MAP R-Precision
Random 0.18 0.25 0.19

Bag of Frames 0.18 0.24 0.20
Multiplicative NMF 0.45 0.31 0.22

Table 9: Achieved performances, Multiplicative NMF: R = 50, sHv = 0.99

Associated Spaces
Spaces Platforms Halls Corridors W. rooms T. offices Shops
Platforms 10 60 10 0 20 0
Halls 0 75 18.7 0 6.2 0
Corridors 0 33.3 66.7 0 0 0
W. rooms 15.4 23 38.5 15.4 7.7 0
T. offices 0 0 30 30 40 0
Shops 0 0 100 0 0 0

Table 10: Recognition scores for the NMF, R = 34.8 multiplicative
update,R = 50, sHv = 0.99

The achieved classification represents a significant improvement of the
results achieved by the Bag of Frames approach.
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Convolutive

Unfortunately, because of the long time of computation required by the
convolutive NMF algorithm, we did not study it as deeply as the multi-
plicative update algorithm yet. The provided scores are the ones achieved
for R = 10 and no constraint sHv. The best performance has once again
be achieved for 10 iterations.

5-Precision MAP R-Precision
Random 0.18 0.25 0.19

Bag of Frames 0.18 0.24 0.20
Multiplicative NMF 0.45 0.31 0.22
Convolutive NMF 0.42 0.28 0.22

Table 11: Achieved performances, Convolutive NMF: R = 10, sHv = 0

The given performance for the convolutive NMF are difficult to inter-
pret because of the lack of results for other settings. Further experiments
need to be run in order to conclude about the relevance of the convolutive
NMF algorithm in this particular application.

3.5.2 Observations on the influence of the parameters

Vertical sparseness

The vertical sparseness constraint is used to reduced the number of ele-
ments of dictionary active at the same time. Our hypothesis was that it
would contribute to make the elements of dictionary more representative
of separated sources and improve the classification. It turns out that the
sHv is indeed relevant in the application to a classification task but only if
the order R of the NMF has been set high enough.

R 10 50
sHv 0 0.5 0.8 0.99 0 0.5 0.8 0.99
MAP 0.41 0.41 0.41 0.41 0.43 0.43 0.44 0.45
R 31.8 31.8 27.3 30.3 30.3 33.3 33.3 34.8

Table 12: MAP and R achieved for R set to 10 and 50 elements of dictio-
nary and a varying sHv
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Number of iterations

During the classification experiment, the results have been saved for the
1st, 5th, 10th and 15th iteration. It appears that from the 1st to the 10th, the
achieved classification improves as the cost function C decreases. However,
for all of our tests, we note that the classification score achieved at the
15th iteration is poorer. It means that once a certain level of fitness of the
factorization has been reached, the algorithm updates features irrelevant
for the classification task. A too high number of iterations is therefore not
only time consuming but also counterproductive. It is an important obser-
vation as it shows that the technic of the early stop [] would be necessary
in applications of the algorithm.
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Conclusion
We examined the application of NMF to sources detection before applying
it to auditory scenes classification. We examined different evaluation tools
to be applied to the classification or to the sources detection, as well as
several ways of computing the distances between the extracted features of
the NMF algorithm. We also observed the lack of correlation between the
cost function of the NMF and the classification scores. The comparison
between our achieved results and the bag of frames shows that NMF rep-
resents a significant improvement in the classification rate, which was the
goal we were aiming at in the first place.

However, some work still need to be done. We did not deeply stud-
ied the influence of the different metrics we established and the results we
achieved using the multiplicative update algorithm should be validated by
more numerous runs. As we noticed that the best classification score has
been achieved for the highest order of NMF we tried, it would be interesting
to know if a higher order of factorization could still improve the results.
Finally, we should determine if the convolutive update can improve the
results we achieved so far by experimenting with same set of parameters
we set for the multiplicative update.
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