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Our daily life happens in a world of dense acoustic environments. This is especially the case in train stations,

where soundscapes are usually very complex. In this paper, we will investigate how Non Negative Matrix Fac-

torization methods can be used to obtain a low rank spectrogram approximation, composed of spectral templates

that can be related to some salients events like footsteps, whistles, etc. . . We thus assume here that the scene can

be characterized by a few salient events that occur several times within the scene. We also assume that even if

the acoustic realizations of those events cannot be considered in isolation, those realizations have similar spectro

temporal properties. We here consider 66 recordings made in French train stations, where individual salient events

have been manually annotated. We then assess the ability of the methods to extract meaningful components by

comparing the activations of those components within the scene to the manually annotated ones. Experiments

demonstrate that enforcing sparsity on the activations, i.e. constraining that only a few components is active at a

time, has a positive effect.

1 Introduction
Detecting events of interest within auditory scenes is an

interesting problem among CASA studies. Though human

audition is able to detect such events within complex sound

mixtures the tasks becomes quite difficult for algorithms when

applied to real auditory scenes with strong background noise.

Non-negative Matrix Factorization (NMF) is an approach

introduced by Lee & Seung [5] in which the data is described

as the product of a set of basis and of a set of activation co-

efficients both being non-negative. As the data is constructed

additively, NMF can provide a meaningful representation of

an auditory scene. NMF and its various extensions have been

proven efficient in sources separation [1] [8], real-time pitch

detection in musical content [3] and supervised detection of

acoustic events [2].

We argue in this paper that NMF is a viable method to de-

tect events within sound mixtures without any prior knowl-

edge of their content. Moreover, the sparseness constraint in-

troduced by P. Hoyer [4] in the NMF framework seems to be

a convenient criterion to discriminate between salient events

and background noise as a high sparseness would imply a

source significantly active during short periods of time.

We first present the NMF algorithm in section 2. In sec-

tion 3, we illustrate the event detection achieved by NMF on

simple artificial scenes and introduce some metrics to eval-

uate the achieved detection. In section 4, we apply sparse

NMF to a corpus of soundscapes of train station from the

perceptive study of J. Tardieu [7]. We study the influence of

the sparseness constraint described by P.D. O’ Grady [6] and

propose a selection of the elements of dictionary using the

sparseness constraint from P. Hoyer.

2 Sparse Non-negative Matrix Factor-
ization

2.1 Method
Non-negative matrix factorization (NMF) is a low-rank

approximation technique for multivariate data decomposi-

tion. Given an n×m real non-negative matrix V and a positive

integer r < min(n,m), it aims to find a factorization of V into

an n × r real matrix W and an r × m real matrix H such that:

V ≈W ·H (1)

The multivariate data to decompose is stacked into V, whose

columns represent the different observations, and whose rows

represent the different variables.

NMF is an iterative process that can be used in supervised

or unsupervised learning. The learning is considered super-

vised when the dictionary W is given and not updated along

the iterations. In this case, it is usually built beforehand as

the concatenation of spectral vectors representative of each

present source. In the unsupervised case, no prior informa-

tion about the content is available and W is randomly initial-

ized and updated along with H. In realistic scenarios, build-

ing the inputed W would require to collect relevant record-

ings of the desired sources and to build a new W for each ap-

plication. In the contrary, a reliable unsupervised algorithm

would not require to collect any learning data and could be

more easily applied to a wider range of applications.

At each iteration, the process aims at reducing a cost

function C. In this work, we use a generalized version of

the Kullback Leibler divergence as our cost function:

C(V,WH) =

∥∥∥∥∥V ⊗ log
V

W ·H
− V +W ·H

∥∥∥∥∥ (2)

Where the multiplication ⊗ and the division are element-

wise. The rank r of the factorization corresponds to the num-

ber of elements present in the dictionary W.

In the case of information extraction from audio files, V
could be the amplitude of the spectrogram and therefore, W
would be a basis of spectral features when H would repre-

sent the levels of activation of each of those features along

time. NMF is here used to extract emerging events relevant

to the classification task. Those events are expected to be

significantly present but during a limited time interval. One

convenient way of representing such expectation is to add a

sparseness constraint on the activation coefficients within H.

2.2 Sparseness Constraint
The very definition of sparseness (or sparsity) is that a

vector is sparse when most of its elements are null. In its

application to NMF, the addition of a sparseness constraint

λ permits to trade off between the fitness of the factoriza-

tion and the sparseness of H. We use the NMF implementa-

tion1 of O’Grady sparse convolutive NMF that can be used

for both the convolutive extension of the NMF algorithm or

the multiplicative update used in this work [6]. The sparse-

ness constraint results in the new cost function:

C(V,WH) =

∥∥∥∥∥V ⊗ log
V

W ·H
− V +W ·H

∥∥∥∥∥+λ
∑

i j

Hi j (3)

With the norm of each of the objects within W fixed to unity.

1http://ee.ucd.ie/˜pogrady/scNMF/



3 Event Detection on artificial scenes

3.1 Artificial scenes
This experiment illustrates the event detection achieved

with NMF and the influence of the sparseness constraint on

the achieved performances. Eight artificial scenes of 15 sec-

onds duration have been created. Four of those scenes are

composed of drum sounds, chosen because of their low non-

stationarity, and are referred to by Drums. The four others

are constructed such as to be closer from what we would ex-

pect in real-life auditory scenes (such as voice, bell ring or

dog barking) and are referred to by Realistic.

All the sound sources come from mono files encoded at

44100 Hz. Each scene is created by the addition of four

tracks containing one sound repeated several times. A bi-

nary truth vector is associated to each track and is equal to

one when the source is active and to zero otherwise. In or-

der to evaluate the robustness of the algorithm, pink noise is

added to each scene with an Signal to Noise Ratio (SNR) of

0.1 dB and 10 dB, referring to the energy of the signals. The

scenes with added noise are referred to by subscript indices.

3.2 Evaluation of the sources detection
The Receiver Operating Characteristic (ROC) curve is a

well known tool to evaluate the performances of a two group

classification task. This experiment aims to label each source

as active or inactive for each sample of the input signal. The

Area Under the ROC Curve (AUC) can therefore be estab-

lished for each track, considering the lines of H as the score.

When the dictionary W is input, learned in a supervised man-
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Figure 1: ROC curves of the detection of the tom in scene

D1, clean (left) and with added pink noise at SNR=10dB

ner, each line of the extracted H is matched with the corre-

sponding line of the binary truth. In the case of unsupervised

learning, as no knowledge of the organization of W and H is

available, some distinction has to be made with regard to the

matching established between the time varying coefficients

in H and the lines of the binary truth T . Two evaluations are

established for the unsupervised case:

• AUCbp: evaluates the AUC of each track for all the

possible permutations of the lines of H, and keep the

best global score.

• AUCoh: evaluates the distance between each row of H
and each line of the binary truth. The AUC considered

for each line of H is the one considering the closest

line of the binary truth.

• AUCohr: evaluates the AUC similarly to AUCoh. How-

ever, in this case each line of H can be matched only

once with a line of the binary truth. The AUC of each

track is computed starting with the line of the binary

truth containing the highest number of active samples.

AUCbp may provide artificially good results for each sce-

narios, making the comparison difficult. AUCoh allows each

line of T to be matched with several lines of H. AUCohr cir-

cumvent this issue and as a consequence is used in section

4.

3.3 Description of the experiment
NMF is applied on the spectrogram of each scene com-

puted using the short-time Fourier transform with a Ham-

ming window of length 1024 and an overlap of 50%. The

order r of the factorization is set to r = 4 when no noise has

been added and to r = 5 when it has. The sparseness con-

straint λ has been set to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9 and 0.99 in order to evaluate its influence on the achieved

source detection.

Two cases are studied here, supervised and unsupervised.

In the supervised case, along with V, a previously learned W
is input to the NMF algorithm. Each element of this dictio-

nary W has been learnt by applying the NMF algorithm with

r = 1 and λ = 0 to the spectrogram of the audio file of each

separated source. As H, as well as W in the unsupervised

case, are randomly initialized, ten runs have been done with

each set of parameters to gain statistical significance.

3.4 Results

 SNR (dB)

 A
U

C
bp

Clean  10  0.1
0

0.2

0.4

0.6

0.8

1
λ =0.99

λ =0

 SNR (dB)

 A
U

C
oh

Clean  10  0.1
0

0.2

0.4

0.6

0.8

1

 SNR (dB)

 A
U

C
bp

Clean  10  0.1
0

0.2

0.4

0.6

0.8

1

 SNR (dB)

 A
U

C
oh

Clean  10  0.1
0

0.2

0.4

0.6

0.8

1

Figure 2: AUCbp and AUCoh achieved in the unsupervised

case for Drum (top line) and Realistic, with λ = 0 and

λ = 0.99

AUCoh is higher than AUCbp as show in Figure 2. It

seems that even in the simple case of those artificial scenes

and with r = 4, the elements to be detected are represented

using several elements of W, thus indicating that, even in a

detection framework, a correct modeling shall require many

more spectral vectors than sources. Indeed, as the spectral

content is not stationary, it seems logical that it could not be

represented by only one weighted spectral vector.



4 Event detection in complex auditory
scene

4.1 Corpus and experiment
The corpus is made of scenes recorded by J. Tardieu in his

study of the human perception of similarity between sound-

scapes of train stations [7]. It is composed of 66 audio files

recorded in 6 different train stations. The recordings have

been made in six types of spaces within each of those sta-

tions: platform, hall, corridor / stair, waiting room, ticket

office, shop.

For each of those scenes, the list of the recognizable sound

sources present during the recordings is provided in [7]. For

each scene, the time interval during which the above men-

tioned events are present have been manually annotated. This

annotation provides a binary presence indicator for each sound

source used as ground truth, similarly to the experience de-

scribed in 3.

4.2 Experiment
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Figure 3: Overview on the process applied to each of the 66

auditory scenes

This experiment aims to evaluate the influence of sparse-

ness on the relevance of the extracted elements of dictionary

present in W by considering the process summarized in Fig-

ure 3.

NMF is applied on the spectrogram of each scene com-

puted using the short-time Fourier transform with a Ham-

ming window of length 1024 and an overlap of 50%. The

order r of the factorization is set to r = 10, r = 25 and

r = 50, as the number of actual sources is unknown. The

sparseness constraint λ has been set to 0, 0.5,0.8,and 0.99 in

order to evaluate its influence on the event extraction. As no

knowledge of the spectral content of the auditory scenes is

available, NMF is used in the unsupervised case, both W and

H being randomly initialized.

The extracted W and H are normalized such that:

W(i) =
W(i)∑n

f=1 W(i)

(4)

H(i) = H(i) ×
n∑

f=1

W(i)

Where i is either a column of W or a line of H. AUCohr is

finally computed using the extracted H as the score and the

binary truth from the annotation as the target.
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Figure 4: means of the scores achieved for all scenes and all

considered events for different values of r and λ

4.3 Results
4.3.1 Sparseness Influence

Figure 4 represents the average of the AUC achieved for

all of the considered events on the evaluated scenes. The best

fit between the binary truth and H is achieved for the highest

order of factorization, r = 50. Meanwhile, the sparseness

constraint is counterproductive for a low r but slightly im-

proves the performances when the order of factorization has

been set high enough. This observation can be interpreted in-

tuitively. As the sparseness constraint enforces the elements

of W to be less active other time, more elements of dictio-

nary have to be extracted in order to obtain meaningful com-

ponents.

4.3.2 Resynthesis using sparseness selection

As the extracted W and H can be used to reconstruct the

scene, a proper selection among the extracted elements may

highlight the salient events of interest. Though, we cannot

evaluate its merit within a denoising framework as no clean

reference signal is available for this corpus.

As stated before, the sparseness over time λt proposed

by Hoyer seems an interesting measure to establish such dis-

crimination:

λt(H(i)) =
√

n
√

n − 1

||H(i)||1
||H(i)||2

∀i ∈ [1, r], 0 ≤ λt(H(i)) ≤ 1

(5)

As the salient events are present during a short interval, it

can be expected that they would be represented by elements

of dictionary with sparse activation. In order to illustrate

that phenomenon, the scenes have been reconstructed using

the reconstructed W and H, in which the 5 less sparse over

time elements have been neglected, as filter gain applied to

the spectrogram of the scene. The figure 5 represents the

achieved reconstruction when applied to a recording from a

platform of the station Avignon TGV. Between the 3rd and

4th second, the whistle is more salient while the background

noise has been significantly reduced2.

2The original recording and its reconstruction are available at

http://recherche.ircam.fr/equipes/analyse-synthese/

lagrange/research/nmfAcoustics



Figure 5: Spectrogram of a recording from a train station platform, with scale in dB. Between seconds 3 and 4, the whistle is

more salient and the background noise is reduced from the original (top) to the reconstructed using selected elements of

dictionary

5 Conclusion
Imposing sparseness within the NMF algorithm improves

the detection of the interval of salient events both in the sim-

ple artificial scenes and on the real auditory scenes. In the

case of the auditory scenes, however, this is the case only if

the rank of the factorization is high enough. This fact can be

explained by the need to fully express the complexity of the

scene. Also, we have shown that using temporal sparseness

as a discrimination criterion permits to reduce background

noise and to increase the saliency of events of interest.

Further work would include analysis of the influence of

the different parameters and particularly of the ratio between

the order of the factorization and the number of selected ele-

ments for a possible reconstruction.
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