
Audio Engineering Society

Convention Paper
Presented at the 129th Convention

2010 November 4–7 San Francisco, CA, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Measures and parameter estimation of triodes,
for the real-time simulation of a multi-stage
guitar preamplifier

Ivan Cohen1 2, and Thomas Helie 1

1Ircam - CNRS - STMS UMR 9912, Analysis/Synthesis Team, Paris, France

2Orosys R&D, Montpellier, France

Correspondence should be addressed to Ivan Cohen, Thomas Helie (ivan.cohen@orosys.fr,
thomas.helie@ircam.fr)

ABSTRACT

This paper deals with the real-time simulation of a multi-stage guitar preamplifier. Dynamic triode mod-
els based on Norman Korens model, and ”secondary phenomena” as grid rectification effect and parasitic
capacitances are considered. Then, the circuit is modeled by a nonlinear differential algebraic system, with
extended state-space representations. Standard numerical schemes yield efficient stable simulations of the
circuit, and are implemented as VST plug-ins. Measures of real triodes have been realized, to develop new
triode models, and to characterize the capabilities of aged and new triodes. The results are compared for all
the models, using lookup tables generated with the measures, and Norman Korens model with its parameters
estimated from the measures.

1. INTRODUCTION

Many commercial guitar amplifiers simulations have
been released today, and several papers about this
subject have been published [2, 3, 5, 13, 14]. They
are often focused on common cathode triode am-
plifier modeling, a circuit widely used in guitar
and hi-fi amplifiers to increase the voltage ampli-

tude of a sound signal. A triode model is chosen,
as the one from Norman Koren [3]. This model
matches well with the triode behaviour displayed in
the datasheets. Nevertheless, some phenomena as
grid rectification effect or parasitic capacitances, and
accuracy between models and real triodes, are rarely
described. Moreover, in simulations, the interaction
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between multiple stages is usually not studied.

In this article, we want to study and simulate in
real time a simplified vacuum tube guitar preampli-
fier. It is made of two common cathode triode am-
plifiers (see figure 7), and a typical guitar amplifier
tone stack (figure 9). In section 2, the Norman Ko-
rens triode model is considered. We suggest different
ways to improve its accuracy, based on a precedent
work (see [1]), and measures of real triodes (section
3). They are realized on 12AX7 with different ca-
pabilities, using look-up tables (i) and identification
algorithms (ii). Numerical schemes are suggested
in section 4, using extended state space representa-
tions, and methods to resolve system of differential
algebraic equations. Then, the stages of a pream-
plifier are studied in section 5. The influence of the
coupling between them is displayed. The results are
compared with the behaviour of a simplified topol-
ogy, without real coupling, but less CPU consuming.
Finally, these models are simulated in real-time.

Sound examples are available at http://www.

orosys.fr/cohen/aes129.htm.

2. PARAMETRIZED MODELS OF TRIODES
The triode is a vacuum tube, with three pins : the
grid (G), the cathode (K) and the plate (P). The in-
directly heated cathode causes a space charge of elec-
trons that may be attracted to the positively charged
plate, and creates a current. Then, a negative volt-
age is applied to the grid to control the amount of
electrons repelled back towards the cathode. This
electronic component has a strongly nonlinear be-
haviour in the working area we consider. Its model
is very important for the realism of the complete
stage’s simulation.

We consider the triode equivalent to two current
sources Ig and Ip, dependant on the voltages Vgk

(grid-cathode) and Vpk (plate-cathode). These cur-
rents are always positive, around a few mA. The
influence of the heater is neglected.

The vacumm tube guitar preamplifiers use al-
most systematically 12AX7 dual triodes (also called
ECC83). This is a ”high gain” triode, its gain pa-
rameter µ being around 100.

2.1. (Basic) Norman Koren’s model
Derived from the Leach model, Norman Koren’s
model is “phenomenological”, and models the be-
havior of physical phenomena using parameters not

Vp

Vk

Ig Ip

Vg

Fig. 1: The triode’s model

derived from fundamental physics. It has been de-
signed so that plate current Ip > 0 whenever plate
voltage Vpk > 0 [3]. It matches better published
curves from datasheets. The expression of the Ip
current is the following :

Ip =
EEx

1

Kg

(1 + sgn(E1)) (1)

with :

E1 =
Vpk

Kp

ln



1 + exp



Kp





1

µ
+

Vgk + Vct
√

Kvb + V 2
pk













Typical parameters values from [3] and SPICE mod-
els are displayed in the table 1.

µ Ex Kg Kp Vct Kvb

100 1.4 1060 600 0 300

Table 1: Norman Koren’s typical parameters values

2.2. Grid rectification effect

The Ig current is responsible for the grid rectifica-
tion effect that designers try to contain using specific
polarizations and a resistance in front of the triode’s
grid. When the grid-to-cathode voltage Vgk becomes
positive, the value of Ig increases by a few mA. As
a result, the voltage measured at the grid is limited
in its positive course. The triode acts like a rectifier.
This kind of distortion is not wanted by electronic
designers, but exists for high gain configurations. It
is one of the causes of plate voltage’s saturation [1],
and a phenomenon that differentiates the behaviour
of vacuum tubes from the transistors [8].

In [1], the grid current model was a simple approxi-
mation of a diode’s characteristic. A smooth transi-
tion is added between the resistive behaviour and the
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interval of voltages where the current is null, with a
second order polynomial. This model gives results
close to SPICE’s diode models and the measures we
have done as we will see later.

Ig =











0 if Vgk < Vγ −Kn
Vgk−V γ

Rgk
if Vgk > Vγ +Kn

aV 2
gk + bVgk + c otherwise

(2)

with

a =
1

4KnRgk

b =
K − Vγ

2KnRgk

c = −a(Vγ −Kn)
2
− b(Vγ −Kn) (3)

The parameter Rgk controls the resistive behaviour
of the grid current, Vγ is the voltage threshold be-
tween the null and resistive behaviour. The param-
eter Kn is the length of the smooth transition.

2.3. Parasitic capacitances and Miller effect
The dynamic behaviour of the triode model is con-
sidered. Three capacitances are introduced between
each pole, with their capacitance values chosen ac-
cording to the datasheets (around a few picofarads).
In spite of their low values, one of them, the capac-
itance Cgp between the grid and the plate, changes
the frequency response of a triode circuit below 20
kHz. This is the consequence of the Miller effect.
The capacitance acts as its value is multiplied by
the gain of the stage (around 60), like a lowpass fil-
ter with the resistance in front of the triode’s grid.
The cutoff frequency is 5 kHz and more. The other
capacitances can be neglected (see [1]). These re-
sults have been confirmed by SPICE simulations and
listening tests.

3. MEASURES OF TRIODES
A device has been developed to measure the static
behaviour of different kinds of triodes. Their dy-
namic behaviour will be studied in a future work.

The results are shown as series of triplets
(Ip, Vgk, Vpk)i and (Ig, Vgk, Vpk)i. The triodes mea-
sured are the following : a 12AX7 Sovtek bougth in
a music store (1), another 12AX7 recently put in a
guitar amplifier (2), and a 12AX7 used for several

years in a guitar amplifier (3). At the beginning, we
work on the plate current Ip only.

The measured triplets are used in MATLAB to gen-
erate a surface Ip = f(Vgk, Vpk) (see figure 2) us-
ing bilinear interpolation. The measures cover all
the working range of the triode, constrained by the
maximum power dissipation and the maximum plate
current recommanded in the datasheets (1.5W and
10 mA for the 12AX7). Several methods have been
developed to model the real triodes using these mea-
sures.

Fig. 2: Characterization surface for the Ip current

3.1. Interpolation
A lookup table of Ip is generated using equally
spaced dots of the surface. The voltages are lim-
ited to 0 ≤ Vpk ≤ 400 V and −10 ≤ Vgk ≤ 5 V.
This table is used in simulation, with a low step,
using bilinear or bicubic interpolation to calculate
any current value in the limited range, as well as the
derivatives [9].

3.2. Identification
Then, the Norman Koren’s model is used again, and
its parameters are estimated for each measured tri-
ode. Let n be the number of measures used for the
estimation. Let θ be a vector where Norman Koren’s
parameters are stored.

θ = [µ Ex Kg Kp Vct Kvb]
T

(4)

yi is the Ip current’s value from the measure i, and

Ŷi(θ) the Ip current’s value calculated with the pa-
rameters θ and the voltages (Vgk, Vpk) from the mea-
sure i. Let Φ(θ) the objective function of the least
squares, defined as :

Φ(θ) =

n
∑

i=1

(yi − Ŷi(θ))
2 (5)
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This function is the optimization criterion, which
evaluates the accuracy of the estimation. The func-
tion fminsearch of MATLAB is used to minimize
Φ(θ), with the Nelder-Mead’s optimization method
[10]. It is applied to the 3 test triodes (1) (2) (3)
and to some data extracted from a datasheet (4).

The identifiability of Norman Koren’s model is
checked. The optimization algorithm is tested on
the model with realistic parameters (well known),
which returns these parameters with an error lower
than 1%. Then, the estimation is done with a few
measures (n around 10), to get the results of the
table 2.

µ Ex Kg Kp Vct Kvb

(1) 106 1.46 1572 464 0.49 179
(2) 107 1.46 1551 538 0.52 201
(3) 96 1.39 1408 866 0.29 171
(4) 105 1.53 1934 712 0.67 255

Table 2: Norman Koren’s parameters for each
12AX7 triode

3.3. Comparisons between triode’s models

We compare the differences between the triodes with
the figure 3 and the table 2. The old age of the
triode (3) is displayed by a reduction of the gain (µ
parameter). Globally, for fixed voltages Vgk and Vpk,
the Ip current will be smaller for an aged triode than
for a new one. This observation is used in the aged
vacuum tubes detectors. Other parameters as Ex,
Kg and Vct are smaller in the triode (3).

In the figure 4, minimal differences between the in-
terpoled model and the estimated model of the tri-
ode (1) are shown. We consider two possible causes
for these differences. First, the estimation algorithm
may be improved, using more measures or other op-
timization criterion, like weighted or nonlinear least
squares. Then, the Norman Koren’s viability is con-
sidered. This model may be unable to match ex-
actly with a real triode’s behaviour. For example,
the derivative at the origin of the Ip current with
the voltage Vpk is null, which is not the case in re-
ality. Some parameters as µ and Ex may not be
constant. But our data displays that this model is
a quite accurate approximation of a real triode, for
the Ip current behaviour.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Vpk (V)

Ip
 (

m
A

)

−6 −5 −4 −3 −2 −1 0 1
0

1

2

3

4

5

6

Vgk (V)

Ip
 (

m
A

)

Fig. 3: Interpoled currents from the triode (1), the
triode (2), and the triode (3)
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Fig. 4: Estimation using data (circles) and interpo-
lation

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 4 of 11



COHEN AND HELIE Measures and parameter estimation of triodes

3.4. Grid current
We consider again the grid current Ig. The figure
5 displays the grid current’s behaviour of the triode
(1). These measures show a low dependence on the
voltage Vpk, so we choose the model from the equa-
tion 2 as a good approximation of the measured grid
current. Its parameters are estimated and shown in
the table 3.
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Fig. 5: Grid current measured for several constant
values of Vpk

Vγ Rgk K
new (1) 0.35 1300 0.5
new (2) 0.18 1280 0.49
aged (3) 0.33 1350 0.55

Table 3: Grid current parameters for several 12AX7
triodes

4. NUMERICAL SCHEMES

4.1. Extended State-Space Representations

Linear state-space representations are well known in
control engineering. For nonlinear cases, nonlinear
functions can be introduced in their classical for-
mulation. Moreover, the nonlinearity can introduce
implicit equations. We have suggested an extended
state-space representation in [1], to separate the dif-
ferential equations of implicit problems, with the in-
troduction of a static nonlinear vector W . This is a
similar but more general state-space representation
for nonlinear systems than the K-method (see [11]).
Let X be the dynamic state vector of the studied
system, W a static nonlinear state, U the input vec-

tor and Y the output vector.

dX/dt = f(X,W,U) (6)

0 = g(X,W,U) (7)

Y = h(X,W,U) (8)

Remark : the linear case is a particular extended
state space representation without the function g,
with dim W = 0 and the functions f(X,U) = AX+
BU and h(X,U) = CX + DU (A, B, C and D are
constant matrices).

4.2. Discretization
The discretization of the extended state-space equa-
tions is done with the resolution of differential and
implicit equations. Their complexity is a conse-
quence of the numerical scheme chosen for the res-
olution, and the existence of nonlinear delay-free
loops in the electronic circuit. Let Te be the sam-
pling period.

4.2.1. Differential equations
To resolve the ordinary differential equations (equa-
tion 6), explicit Runge-Kutta methods are often
used, because of their good stability and accu-
racy performances [6], for example the second or-
der method (equation 9). Implicit methods are also
used, as backward Euler’s method, or trapezoidal
method (equation 10), often called bilinear trans-
form and widely used in digital signal processing.

k1 = Tef(Xn,Wn, Un) (9)

Xn+1 = Xn + Tef(Xn +
k1
2
,Wn,

Un + Un+1

2
)

Xn+1 = Xn +
Te

2
f(Xn+1,Wn+1, Un+1)

+
Te

2
f(Xn,Wn, Un) (10)

We have seen in [1] that the consideration of the par-
asitic capacitance Cgp in the triode’s model makes a
stiffness problem appear. There is no rigorous def-
inition of stiffness in the literature, but it can be
considered as a differential equation for which cer-
tain numerical methods for solving the equation are
numerically unstable, with some terms that can lead
to rapid variation in the solution. Decreasing the
sampling step, and using implicit schemes are two
solutions to get rid of the stiff equations. In the first
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case, we need sampling frequencies up to some mega-
hertz to get a stable numerical scheme, or variable
sampling steps. They are widely used in ”offline”
simulators (as SPICE), but are not convenient for
real time applications. So, implicit methods of dif-
ferential equations resolution are prefered in stiff nu-
merical schemes.

4.2.2. Implicit equations
The standard method of Newton-Raphson is used
to solve implicit equations written f(Z) = 0 with Z
a vector of any dimension, and find its roots. This
algorithm is well known [6], uses the Jacobian ma-
trix Jf (Z) of the function f(Z), and converges to a
solution after a specified number of iterations. It is
important to check if its application’s conditions are
satisfied, if the Jacobian matrix is Lipschitz contin-
uous and locally isomorphic around the solution [6].
This is generally the case for our state-space equa-
tions. When the interpoled model is used, processing
has been done to make sure that the derivatives of
the currents Ip and Ig are monotonic.

This method resolves the equation 7 but also the
equation 6 if implicit methods of differential equa-
tion’s resolution are used. So, with the capacitance
Cgp considered in the equations, Z is the vector
[X W ]T .

Let Zk
n be the approximative value of Z at the iter-

ation k of the algorithm for the sample n. Jf (Z) is
the Jacobian matrix of f(Z).

Zk+1
n = Zk

n − J−1

f (Zk
n)× f(Zk

n) (11)

5. THE MULTI-STAGE GUITAR PREAMPLI-
FIER

The circuit we are studying is a simplified guitar
preamplifier, made of two common cathode triode
amplifiers (A1,A2) and a typical guitar tone stack
(T). The triodes chosen by designers are very of-
ten 12AX7s. First, each electronic stage is consid-
ered separately. Their extended state-space repre-
sentation is given, and the circuit is simulated using
an explicit numerical scheme to show its behaviour.
Then, they are interconnected, and the influence of
the inter-stage coupling on the preamplifier’s har-
monic response is discussed.

A1 A2 T

Fig. 6: The vacuum tube guitar preamplifier scheme

5.1. Common cathode triode amplifier

5.1.1. The circuit
The common cathode triode amplifier is a topology
of circuit that has been widely used in hi-fi and gui-
tar amplifiers. Easy to design, with a well known
behaviour, musicians and audiophiles like its sound
properties. So, its use today is justified, several years
after the apparition of transistors, as its study in pa-
pers about guitar amplifiers simulation [5, 13, 14]. It
is found in most of the vacuum tube guitar preampli-
fiers, which have the purpose to increase the voltage
of the guitar’s signal (with a maximum voltage of
400 mV, and an impedance of 20 kΩ, depending on
the type of guitar pickup), and to enrich its tone.

The circuit is very simple, the triode 12AX7 is con-
nected with a few resistances and two capacitances.
We don’t consider the parasitic capacitance between
the plate and the grid to simplify the extended state-
space representation.

Rg Rk Ck

Vout

Vin Vg

Vk

Vbias

Vp

RL

Rp
CL

12AX7Rin

Iin

Iout

Fig. 7: The Common Cathode Triode Amplifier

5.1.2. The extended state-space representation
Using Kirchoff laws and triode models, the triode
stage can be modeled by a nonlinear differential al-
gebraic system with an extended state-space repre-
sentation.

The state variables are chosen according to the num-
ber of parasitic capacitances, and nonlinear func-
tions (the plate and grid currents from the triode’s
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model). For the dynamic state variableX, we choose
the voltages of the capacitances Ck and CL. For the
nonlinear static variable W , we choose the voltages
Vgk and Vpk.

To be able to perform the coupling between this cir-
cuit and the tonestack later, we consider the input
voltage Vin and the output current Iout as inputs for
our system. The output voltage Vout and the input
current Iin are the outputs.

U = [Vin Iout]
T

X = [Vk Vout − Vp]
T

W = [Vp − Vk Vg − Vk]
T

Y = [Vout Iin]
T

(12)

The extended state-space representation of the sys-
tem is the following :

f(X,W,U) =

{

(−X1

Rk
+ Ig + Ip)/Ck

−
X2+W1+X1

RLCL
+ U2

CL

g(X,W,U) =











W1 +X1 − Vbias

+Rp(Ip − U2 +
X2+W1+X1

RL
)

W2 +X1 +
RgRin

Rg+Rin
(Ig −

U1

Rin
)

h(X,W,U) =

{

X2 +W1 +X1
W2+X1−U1

Rin

with

Ip = Ip(W1,W2)

Ig = Ig(W1,W2) (13)

5.1.3. Results
A sinousoid with a frequency of 200 Hz and an ampli-
tude of 10 V feeds the input of the simulated stage.
In the figure 8, the output and its harmonic content
are displayed.

5.2. Tone stack

5.2.1. The circuit
Commonly found in many guitar amplifiers, the tone
stack changes the frequency content of the guitar
signal. The user can adjust Treble, Middle, and
Bass controls to modify the gain of the respective
frequency bands. The schematic is standard, and
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Fig. 8: Output signal

has been found in [15]. It is generally cascaded after
all the preamplifier stages, and sometimes before a
cathode follower.

The frequency knobs are potentiometers, modeled as
parameterized resistors (R2, R3, R4 and R5), with
Treble, Middle and Bass controls, with values be-
tween 0 and 1.

C1

C2

C3

R1

R2

R4

R5

Vout

Vin

R3
RL

Rin

Iin

Iout

Fig. 9: The Tonestack

5.2.2. The extended state-space representation
Using Kirchoff laws, the tonestack can be modeled
by a differential system with a linear state-space rep-
resentation.

The state variables are the voltages of each capaci-
tance. To be able to perform the coupling between
this circuit and the tonestack later, we consider the
input voltage Vin and the output current Iout as in-
puts for our system. The output voltage Vout and
the input current Iin are the outputs.

U = [Vin Iout]
T

X = [Vc1 Vc2 Vc3]
T

Y = [Vout Iin]
T

(14)
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The extended state-space representation of the sys-
tem is the following :

f(X,U) =





A11 A12 A13

A21 A22 A23

A31 A32 A33



X +





B1

B2

B3



U

h(X,U) =

[

C11 C12 C13

C21 C22 C23

]

X +

[

D11D12

D21D22

]

U

The expression of theses coefficients is easy to find,
but a few complicated and not very relevant in this
paper. For more information about tone stacks, see
[4, 16].

5.2.3. Results
The frequency response of the tone stack is shown in
the figure 10, for 4 different sets of knobs parameters
shown, in the table 4.

Bass Mid Treble
Set (1) 0.5 0.5 0.5
Set (2) 0.7 0.1 0.7
Set (3) 0.1 0.5 0.8
Set (4) 0.9 0.5 0.1

Table 4: Sets of knobs parameters
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Fig. 10: The tone stack frequency’s response

5.3. Coupling
With the extended state-space representation of
both circuits, it is possible to simulate their com-
bination. The components values are taken from a
real preamplifier schematic. The coupling is done by
adding one intermediate variable, and one equation

for each relationship between one output and one
input of two consecutive stages.

This preamplifier is studied in two cases, with differ-
ent coupling configurations. Each time, a sinousoid
with a frequency of 200 Hz and an amplitude of 1 V
feeds the input of the simulated circuit. The tones-
tack knobs are set in an intermediate position. The
output and its harmonic content are displayed in the
figures 12 and 14.

Let XA1, XA2, XT be the dynamic state vector of
respectively the two common cathode triode ampli-
fiers and the tonestack, WA1 and WA2 the static
nonlinear states for the common cathode triode am-
plifiers, UA1, UA2 and UT the input vectors, Y A1,
Y A2, Y T the output vectors. The simulation of
the full preamplifier is done by solving the extended
state-space representation of each stage, using the
numerical schemes we have seen. Moreover, some
extra nonlinear static state variables W are added,
to introduce the coupling relationship in the equa-
tions.

5.3.1. Stages cascaded and decoupled
First, the stages are cascaded with an imperfect cou-
pling. The voltages are the same at the entrance and
at the exit of cascaded stages, but no currents are
flowing between them. This is equivalent to the fol-
lowing relationship :

Y A1
1 = UA2

1

Y A2
1 = UT

1

UA1
2 = 0

UA2
2 = 0

So, the influence of cascaded stages exists only in
one direction, from the input to the output of the
preamplifier. The behaviour of the second triode
amplifier has no influence on the behaviour of the
first for example (see figure 11).

A1 A2 T
Vin VoutV V

Fig. 11: Decoupled preamplifier’s schematic

The equations 15 are introduced using the coupling
state variables WA1A2 and WA2T . First, we replace
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some inputs in the equations with :

UA2
1 = WA1A2

UT
1 = WA2T

UA1
2 = 0

UA2
2 = 0

Then, we introduce the outputs relationship accord-
ing to the coupling variables :

WA1A2 = XA1
2 +WA1

1 +XA1
1

WA2T = XA2
2 +WA2

1 +XA2
1

In the extended state-space representation of the
preamplifier, the dimension of the vector X is 7, and
6 for the vector W . The dimension of these vectors
in each stage are added together, with the dimension
of the coupling state variables for W (2).

The figure 12 displays the output and the harmonic
content of the ”decoupled” preamplifier.
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Fig. 12: Decoupled preamplifier

Note : UA2T
2 and Y A1A2

2 are not considered, because
we only take account of the input and output volt-
ages of the full preamplifiers. The input and output
currents are only useful if stages exist before and
after the full circuit.

5.3.2. Stages cascaded and coupled
To have a ”perfect” coupling, both voltages and cur-
rents are the same at the entrance and at the exit of
cascaded stages. The following relationship is intro-
duced in the equations :

Y A1
1 = UA2

1

Y A2
1 = UT

1

UA1
2 = Y A2

2

UA2
2 = Y T

2

The influence of cascaded stages exists in all the di-
rections, from the input to the output of the pream-
plifier (see figure 13).

A1 A2 T
Vin Vout

V V

ii

Fig. 13: Coupled preamplifier’s schematic

The equations 15 are introduced using the coupling
state variables WA1A2

1 , WA1A2
2 , WA2T

1 and WA2T
2 .

We replace the inputs in the equations with :

UA2
1 = WA1A2

1

UT
1 = WA2T

1

UA1
2 = WA1A2

2

UA2
2 = WA2T

2

Then, we introduce the output relationships accord-
ing to the coupling variables :

WA1A2
1 = XA1

2 +WA1
1 +XA1

1

WA1A2
2 =

WA1
2 +XA1

1 − UA1
1

Rin

WA2T
1 = XA2

2 +WA2
1 +XA2

1

WA2T
2 =

[

CA2
21 CA2

22 CA2
23

]

XA2

+
[

DA2
21 D

A2
22

] [

WA1A2
1 WA2T

2

]T

In the extended state-space representation of the
preamplifier, the dimension of the vector X is 7, and
8 for the vector W . The dimension of these vectors
in each stage are added together, with the dimension
of the coupling state variables for W (4).

The figure 14 displays the output and the harmonic
content of the ”coupled” preamplifier.

6. DISCUSSION
The explicit numerical scheme of the complete

stage, with different triode models, has been imple-
mented as a real-time VST plug-in. High sampling
frequencies in simulations increase the speed of the
convergence of the numerical scheme, and reduce the
aliasing. As a result, we have decided to choose 96
kHz as the sampling frequency.

The real triode’s models have only shown a few dif-
ferences, the most significant being their gain. This
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Fig. 14: Coupled preamplifier

element may not look pertinent. But a voltage de-
crease before a saturating triode can change a lot
the harmonic response in a high gain preamplifier,
with three or more triodes for example. The design-
ers choose the polarization of each stage to get an
exact quantity of saturation, without too much grid
rectification. If the triode’s gain changes, this pa-
rameter is no more balanced. That’s why guitarists
are able to tell when the preamplifier triodes become
old, because they don’t listen to the same quantity
of saturation than before. Other remark, the inter-
polated (with bilinear interpolation) and estimated
models of any triode give almost the same results
in the simulations. But the interpolated model is
prefered because it needs less CPU processing in the
VST plug-in.

Then, the coupling between stages has shown to be
significant. It is ”imperfect” in a few market sim-
ulations to reduce the CPU consumption, but that
implies a lot of loss in realism. If we compare the
figures 8, 14, and 12, we can see that the preampli-
fier produces more distorsion than a common cath-
ode triode amplifier alone. Nevertheless, the triode
amplifier has been feed with a 10 V sinusoid in the
figure 8 whereas the preamplifier has a 1V sinusoid
as an input. Else, the harmonic content is different
in the two coupling cases. The odd harmonics are
strong in the two cases, but the coupled preamplifier
shows higher even harmonics.

7. CONCLUSION
A preamplifier stage has been studied and simulated
with efficient numerical schemes for real time appli-
cations. It yields to the implementation of plug-
ins, which produces satisfactory sounds with stan-
dard cabinet simulations. Moreover, future work will
be dedicated to model and simulate more complex

topologies of guitar preamplifiers, with a larger num-
ber of triodes measured, and guitar power amplifiers.

8. REFERENCES

[1] Ivan Cohen, Thomas Helie, “Simulation of a
guitar preamplifier stage for several triode mod-
els : examination of some relevant phenomena
and choice of adapted numerical schemes” pre-
sented at the AES 127th convention, New York,
USA, 2009.

[2] W. Marshall Leach JR., “SPICE models for vac-
uum tube amplifiers”, in J. Audio Eng. Society,
Vol. 43, No. 3, March 1995, pp. 117-126.

[3] Norman Koren, “Improved vacuum tube mod-
els for SPICE simulations”, http://www.

normankoren.com, 2003.

[4] Yeh, D. T., and J. O. Smith, “Discretization of
the 59 Fender Bassman Tone Stack” in Proc. of
the Int. Conf. on Digital Audio Effects (DAFx-
06), New York, USA, 2006.

[5] David T. Yeh, Jyri Pakarinen, “A review of digi-
tal techniques for modeling vacuum-tube guitar
amplifiers”, in Computer Music Journal Sum-
mer 2009, Vol. 33, No. 2, 2009.

[6] Jean-Pierre Demailly, “Analyse numerique et
equations differentielles”, Collection Grenoble
Sciences, 2006.

[7] Linear Technology, “LTSpice IV / Switcher-
CAD III”, http://www.linear.com, 2009

[8] Merlin Blencowe, “Designing Tube Preamps for
Guitar and Bass”, 2009

[9] William H. Press, Saul A. Teukolsky, William
T. Vetterling, Brian P. Flannery, “Numerical
Recipes in C++”, Cambodge University Press,
2002

[10] J.C. Lagarias, J. A. Reeds, M. H. Wright, and
P. E. Wright, “Convergence Properties of the
Nelder-Mead Simplex Method in Low Dimen-
sions”, SIAM Journal of Optimization, pp. 112-
147, Vol.9, no. 1, 1998

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 10 of 11



COHEN AND HELIE Measures and parameter estimation of triodes

[11] De Poli Giovanni, Borin Gianpaolo and Roc-
chesso Davide, “Elimination of Delay-Free
Loops in Discrete-Time, Models of Nonlin-
ear Acoustic Systems”, IEEE Transactions on
Speech and Audio Processing, pp. 597-605, Vol.
8, no. 5, September 2000

[12] David T. Yeh and Julius O. Smith, “Simulating
guitar distortion circuits, using wave digital and
nonlinear state-space formulations”, in Proc. of
the Int. Conf. on Digital Audio Effects (DAFx-
08), Espoo, Finland, Sept. 1-4, 2008.

[13] Stefano Tubaro, Francesco Santagata, Augusto
Sarti, “Non-linear digital implementation of a
parametric analog tube ground cathode ampli-
fier”, in Proc. of the Int. Conf. on Digital Audio
Effects (DAFx-07), Bordeaux, France, 2007.

[14] Jyri Pakarinen, Matti Karjalainen, “Wave dig-
ital simulation of a vacuum-tube amplifier”,
in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP06),
May 2006.

[15] Duncan Amps, “Tone stack calculator”, http:
//www.duncanamps.com/tsc/, Retrieved Au-
gust 29th, 2010.

[16] Roman Miletitch, Ivan Cohen, Thomas Helie,
“Etude et modelisation numerique d’une ped-
ale d’effet pour guitare”, master ATIAM report,
2009.

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 11 of 11


