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ABSTRACT

In this article, a method is proposed for fast and auto-
matic retrieval of factors of audio content in a large au-
dio database based on user’s audio query. The proposed
method, unlike most existing systems, takes explicit con-
siderations of temporal morphology of audio content. This
work touches upon several existing approaches and tech-
nologies for sound manipulations, such as sound texture
synthesis, music and audio mosaicing on the synthesis
side, and audio matching, query by audio and audio struc-
ture discovery on the analysis side. Destined for creative
applications, the proposed method is modular by allow-
ing interactive choice of search criteria. The analysis side
of the proposed model features a new audio structure dis-
covery algorithm called Audio Oracle that describes the
temporal morphologies of the underlying sound as a com-
pact state-space model. The search engine, and the main
focus of this paper, features a fast and novel algorithm
based on dynamic programming called Guidage that is ca-
pable of reassembling the query audio by concatenating
subclips of target audio files. Demonstrated results sug-
gest a degree of semantic-driven control for query guided
applications. The article concludes with examples of two
immediate applications of audio matching using Guidage
on music, speech and natural sounds and a discussion on
further development and use of such methods in interac-
tive and creative environments.

1. INTRODUCTION

In this paper we describe a unique combination of two
main technologies - concatenative texture synthesis and
audio query - used together in order to achieve audio content-
based control over sound synthesis. The system uses a
sound source (a query) to create new content from a vari-
ety of sounds over a large database of target sounds. The
unique property of the system is its capability to match
variable length clips of the query input to new audio mate-
rials, which are used for recombination and concatenation
from the target database. Matching of the query sound
clips is done over a compact state-space representation of
the target audio, which models the audio structure by tak-
ing into account inter-similarities within each audio. This
state-space representation is learned using Audio Oracle
algorithm [1] and can be computed on-line or accessed as
metadata. The search algorithm proposed here is a fast

dynamic programming algorithm called Guidage specifi-
cally designed for Audio Oracle structures that is capable
of matching the query by concatenating factors or subclips
in the target audio. The resulting audio material preserves
naturalness and captures temporal morphologies of the in-
put query due to its capability to find longer phrases and
flexibility of the matching criteria, as explained hereafter.

In this work we describe two fast audio content re-
trieval applications that work in the following manner:
Given a database of target sounds, the user / composer /
producer enters an audio signal whose properties he would
like to replicate by finding clips in the target sounds that
match to different user-defined features. The system au-
tomatically identifies segments in the target sounds that
match parts of the query. Segments in the query that do not
pass a user-defined matching threshold in the target sound
are left silent, resulting in a collection of possible excerpts
from the target database, matching to different portions of
the query that are obtainable using a simple resynthesis al-
gorithm. In other words, the search algorithm guides the
resynthesis engine to parts of the target audio pertaining to
the query audio and user-defined search parameters, and
allows reassembly of these factors to replicate the given
query. Using this search procedure, we define an immedi-
ate application: Query guided mixing and editing.

Results and the degree of the control of the synthesis
engine provided by the algorithm and control interfaces
suggest some degree of semantic-driven control over large
corpuses of audio guided by user’s audio query without
any explicit segmentation or transcription of audio mate-
rial. To this extent, the proposed schema is different from
similar systems by its explicit consideration of temporal
morphologies during audio structure discovery and taking
them into account during search operations.

The work presented here touches upon several existing
techniques for sound manipulations: sound texture syn-
thesis, and audio mosaicing on the synthesis side; and au-
dio matching, query by audio and audio structure discov-
ery on the analysis side. We start the paper in section 2
by reviewing the most relevant works in the literature in
these fields and their comparison to the proposed meth-
ods. Section 3 provides the general framework of the pro-
posed algorithm, followed by a discussion and definition
of the meta-data used by the algorithm in section 4 as to-
day’s large-scale audio data necessitates. One of the main
reasons for the success of our system is the explicit de-



scription of temporal morphologies of the audio structure
as meta-data using Audio Oracle algorithm which is also
presented in section 4. In section 5 we define the proposed
search algorithm Guidage that uses Audio Oracle struc-
tures to find occurences or partial-occurences of a given
audio query in search target(s). The resynthesis engine
is briefly described in section 6. Two application frame-
works are then introduced in section 7 followed by exam-
ples and discussions on further research and development
along the proposed algorithms.

2. RELATED WORKS

2.1. Concatenative Approaches to Sound Synthesis

On the synthesis part, different systems undergo various
definitions and approaches to treatment of sound record-
ing using re-assemblage of the original audio or an exter-
nal audio corpus. Mosaicing usually refers to combination
of larger chunks of sound in a “creative” manner”, draw-
ing upon re-mix cultures and other ways of composing
by assembling samples [2, 3]. Both of the above might
have different levels of control over the generative pro-
cess, from uncontrolled manner of creating texture vari-
ants, to constrained selection designed to match a compo-
sitional design. Concatenative synthesis usually refers to
the use of recordings for audio synthesis driven by non-
audio data, such as note sequences (MIDI) for music or
text in the case of speech [4]. This method mostly deals
with finding the right recorded sounds in order to create
a required pitch or phonetic sequence, trying to obtain
an optimal tradeoff between the length of recopied clips
and the amount of editing operations (pitch shifting, time
stretching and etc.). Creative applications of concatena-
tive synthesis usually undergo feature matching on local
or short-term time scales [5]. Other creative applications
include granular synthesis, and iterated non-linear func-
tions, to mention a few.

One of the main drawbacks of most of the creative ap-
plications proposed using these methods is the lack of in-
tuitive control over the produced contents. Some of the ex-
isting systems [4, 3] provide parametric control interfaces
and in the case of the second, an audio content retrieval
scheme for accessing target specific contents. In this work
we present a new and fast way of controlling audio as-
semblage by explicitly considering the audio structure and
its temporal morphologies into account with aid of a fast
audio structure discovery module. The search algorithm
then takes into account this structure and guides the syn-
thesis engine towards sequences within the search target
that can replicate the given structure as query. Moreover,
the level of match or precision versus tolerance in simil-
iarity between the query source and the candidate targets
is controlled by a threshold parameter.

2.2. Audio Matching and Structure Discovery

On the matching and analysis part, there had been sev-
eral approaches to finding similarity between sound tex-

tures. Because of the complexity and the random nature
of sound textures, the matching methods usually rely on
different features than those used for matching of speech
or musical instrument sounds. For a high-quality audio
content retrieval system, it is essential to consider tem-
poral morphologies and the spectral dynamics of the au-
dio into account. This is where audio structure discov-
ery becomes important. Audio structure learning relies
heavily in most present implementations on signal seg-
mentation and can be viewed from two main perspectives:
model-based approaches that incorporate certain musical
or cognitive knowledge into the system in order to obtain
structure boundaries, and model-free approaches where
the structure is learned directly from the audio itself with-
out any incorporation of a priori knowledge of musical
structures [6]. For this work, we are interested in a model-
free approach where the user can specify (or not) which
aspect of the audio information she needs for her inquiry.
Among various models that have been proposed, we focus
our attention on how the temporal structure of an audio
stream is derived given a set of audio features, whether
it be a simple similarity matrix [7] or a combination of
different features [8, 9]. Chai [10] has proposed dynamic
programming to perform music pattern matching for find-
ing repetitions in music and later discovering the structure
of music. The dynamic programming scheme provides a
score matrix that uses a normalized Euclidean distance be-
tween two multi-dimensional feature vectors. In comput-
ing the score matrix, the author uses a finite-window over
time. Actual matching alignment occurs by backtracking
over the score matrix and repetitions can be detected by
finding local minima of trackback. In another approach,
Peeters et al. [8] use Hidden Markov Models (HMM)
and a multi-pass approach combining segmentation and
structure discovery together. In each pass, different time-
order similarity measures are run over audio feature vec-
tors where the results estimate the number of classes and
states for a K-means clustering that provides early param-
eters for learning of an ergodic HMM using Baum-Welch
algorithm. For audio matching and query-by-example,
perhaps the most relevant example is the Freesound project 1

where the focuses of the project are short samples (with
mean duration of 3.25 seconds). Within the Freesound
project there is a content-based search capability that de-
scribes the microsound structure using audio feature vec-
tors using a Nearest Neighbor search. On top of the audio
structure match is an ontology based on an English lexi-
cal model that accesses labels associated with each sample
and enhances semantical capabilities of the results [11].

A more relevant framework to our work is the system
described by Casey in [12]. In the described system, spec-
tral dynamics are modeled using a 40-state hidden Markov
model with parameters inferred by machine learning over
a large corpus of audio training data. Time dependence
between audio features is modeled by a first-order Markov
chain process where each state is considered as a genera-
tor for feature vectors through a multi-dimensional Gaus-

1 http://www.freesound.org



sian kernel. In Casey’s terminology, these states are called
acoustic lexemes. Matching can be achieved using the
learned HMM and N-gram models to achieve longer se-
quences where the author considers N-gram models rang-
ing from 1 to 8 states for the specific applications de-
scribed in [12].

The work presented in this paper features a novel and
fast audio structure discovery algorithm. Besides its fast
operation, it provides a compact state-space model over
time that would not have the finite time-window limitation
met by most systems (fixing history window, limiting the
number of states, etc.).

3. GENERAL FRAMEWORK

The search algorithm that is proposed in this article dif-
fers from the ones mentioned above mostly in terms of
the search domain it uses during operation. In our applica-
tion, this domain is a previously learned state-space rep-
resentation of each audio in the database that represents
the underlying audio structure based on a given similarity
criteria. In this way, the search algorithm accesses states
and transitions that are representative of the audio struc-
ture under search procedure as meta data. This meta data
is provided using a novel algorithm called Audio Oracle,
an automaton that is capable of learning repeating factors
of audio structure in linear time and space (therefore fea-
sible in realtime). Audio Oracle representation of audio
structures can be learned either online during the search
procedure or can be stored as meta data representation of
audio files in a database under consideration. Audio Ora-
cle is presented in details in [1] and is demonstrated briefly
in section 4.

The Guidage search algorithm presented in section 5
takes an audio input as query. It is a fast dynamic pro-
gramming type algorithm that browses all the audio files
in a given database (or their associated metadata) to achieve
highest reconstruction of the query audio by concatenat-
ing factors or subclips within each audio in the search
database. More precisely, it provides paths over each Au-
dio Oracle structure to achieve the longest possible sim-
ilar structural sequence to the query audio. Moreover,
when the application requires, microscopic search results
are also accessible within each audio file as demonstrated
in section 7.

The general schema of the Guidage algorithm is modu-
lar in the sense that the user can specify the search criteria
that is used in both meta data construction and search pro-
cedure, and moreover a threshold parameter can control
the degree of structure similarity that the user desires to
assess during resynthesis. Since the Audio Oracle is inde-
pendent of the input vector presented to the algorithm, the
modularity amounts to the choice of the user in terms of
what representation she desires to use as input to the algo-
rithm. Using Audio Oracle structures as meta data would
allow us to learn and store Audio Oracles for different sets
of audio features that can be easily recalled and changed
in the search user interface and utility of the system. In

this paper, we have chosen to experiment with a limited
set of audio features and combinations thereof which will
be represented in the next section. This choice of audio
feature set, is the authors’ choice for the specific applica-
tion domains that are presented here and in actual utility,
the algorithms presented here are applicable to any set of
features given by users.

4. SEARCH DOMAIN AND META DATA

4.1. Audio Oracles for Search Domain

Audio Oracle is a fast automaton learning procedure that
was motivated by a similar technique used for fast index-
ing of symbolic data such as text called Factor Oracle
[13]. Audio Oracle is described in detail in [1]. Here,
we present the description of the output and its relevance
to the applications presented in this paper. Audio Ora-
cle operates on audio feature vectors, that correspond to
successive analysis frames of a given audio stream. The
notion of similarity is thus determined by the type of fea-
tures chosen to represent the audio signal. A sample re-
sult of Audio Oracle learning procedure is represented in
figure 1 where figure 1(a) shows the learned automaton
of Audio Oracle that corresponds to the waveform of fig-
ure 1(b) (two occurrences of a Blue Jay bird sound) where
the automaton is constructed over analysis frames that cor-
respond to MFCC features demonstrated in figure 1(c).

Interpretation of the learned Audio Oracle is straight-
forward. Each numbered state has a one-to-one corre-
spondence with an audio analysis frame. There is always
a forward transition from state i to state i + 1. Following
these states and resynthesizing the audio would amount
to resynthesizing the original audio. Eventually, there are
other forward transitions from a state i to j(i < j). These
forward transitions correspond to similarity of patterns as
continuations of states i and j. There are also backward
transitions of suffix linkes (dashed lines in figure 1(a)) that
point to a previous state that shares the largest similar sub-
clip precedent to both frames.

Note that Audio Oracle is a deterministic automaton,
and is therefore described by simple transition lists where
each list element Tran(i) contains state indexes when
there is a detected transition for state i. Moreover, each
index of Audio Oracle has a one-to-one correspondence
with an analysis window and its feature vector set in the
audio. Thus, Audio Oracle provides a compact and ef-
ficient representation of the audio structure that immedi-
ately reduces the search domain for any search algorithm
with explicit access to internal details and structures of
the sound and at the same time, maintains time indexing
and continuity of audio features. This is the main reason
behind choosing Audio Oracle as the meta data represen-
tation used for our audio query guided search algorithm.

4.2. Audio Oracle as Meta Data

When dealing with databases of audio files and in mu-
sical application, there are several issues that are raised
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Figure 1. Audio Oracle Example

which we would not necessarily encounter when dealing
with small sets of sound files. First of all, we would most
likely be in need to access only parts of the source infor-
mation for specific application and not all. In most audio
applications this amounts to choosing a desired set among
many audio features that are available to describe differ-
ent sound properties. For example, a user that is work-
ing mostly on speech queries would be mostly in favor of
Mel-Frequency Cepstral Coefficients (MFCC) and their
first derivatives whereas a user that is working with mu-
sic files would probably favor MFCC, pitch profiles, pitch
contours, etc. or a combination thereof. Secondly, de-
spite the increase of Random Access Memory in recent
personal computers, they are still not quite sufficient when
dealing with long duration audio files and large corpuses
of audio. Therefore, it is desirable to store latent infor-
mation needed during search operation somewhere on the
hard-drive, in an interchangeable format that can be easily
accessed whenever needed using a third-party application.

In our experiment, we store learned Audio Oracle struc-
tures, along with their corresponding audio features and
analysis information in meta data information using the
Sound Description Interchangeable Format (SDIF) [14].

Besides its universal accessibility and interchangeable for-
mat, SDIF allows fast and efficient access to any desired
set of analysis frames during execution. Moreover, SDIF
allows personalized type-definitions which are used here
to describe Audio Oracle structures, along parameters that
are used during audio re-assemblage once the search algo-
rithm has finished the search task.

For this experiment, each audio file is analyzed and
described by MFCC, ∆ MFCC, pitch information, pitch
contour and some combinations of these features. For
each feature set, an Audio Oracle is learned and stored as
a separate stream in the corresponding SDIF file. Along
with this information, time-domain samples and further
analysis information is stored in the SDIF file to facilitate
the resynthesis procedure.

5. GUIDAGE ALGORITHM

We define the problem context for our proposed search
algorithm as follows: Given a query audio and a search
target audio file, find an assemblage of sub-clips within
the target audio file that can replicate the query audio. In
other words, we are aiming at reconstructing a new audio
similar to the query by concatenating sub-clips of the tar-
get audio file. The search criteria is defined by the user
and corresponds to the type of audio feature set (and its
corresponding Audio Oracle) used for analysis and simi-
larity comparison.

The search algorithm proposed here is based on Dy-
namic Programming, an algorithm paradigm in which a
problem is solved by identifying a collection of subprob-
lems and tackling them one by one, smallest first. Dy-
namic Programming uses the “answers” to small problems
to help figure out larger ones, until the whole of them is
solved. In the context of our problem, the “small” prob-
lem set amounts to finding audio chunks (or audio analy-
sis frames in this case) in the search target audio file, that
are similar to a corresponding chunk in the query and can
be considered a continuation of the previously obtained
chained based on the Audio Oracle structure of the target
audio. We call this step of the procedure the forward pass.
The “larger” problem, then, becomes finding the best path
among all recognized that best meets the search criteria
when all the small-set problems are solved. This step is
referred to as backward procedure.

To describe the algorithm in a formal manner, we use
the following notations: Query Audio is represented as
Q = {Q1, Q2, . . . , QN} where each each Qi is the (user-
specified) feature description that corresponds to the ith

time-domain analysis window. Similarly, the search target
audio is represented by Y = {Y1, Y2, . . . , YM} and also
by its corresponding Audio Oracle structure represented
by {Tran(i)| i ≤ M} described earlier. Using these
notations, algorithm 1 shows the steps taken during the
forward pass of Guidage.

Algorithm 1 returns the structure I , which refers to
found indexes on Audio Oracle structure during the for-
ward pass and can be regarded as an analogy to the score



Algorithm 1 Forward pass of Guidage
Require: Query Audio as Q = {Q1, Q2, . . . , QN},

Search Target Audio as Y = {Y1, Y2, . . . , YM}, and
search target Audio Oracle described by Tran(i).

1: for i = 1 to N do
2: Obtain Ii

i where

Ii
i =

{
j| 0 < j ≤M, dist(Qi, Yj) ≤ θ

}
3: Assign k = i
4: while Ik

i 6= ∅ do
5: Increment k by 1
6: Assign Γ =

{
j|Tran(j) = µ , µ ∈ Ik+1

i

}
7: Obtain Ik

i where

Ik
i =

{
j| j ∈ Γ, dist(Qk, Yj) ≤ θ

}
8: end while
9: end for

10: return I

matrix in a dynamic programming paradigm. Within I ,
subsets Ii = {I1

i , . . . , I
k
i } contain several paths associ-

ated with target Audio Oracle states and refer to the pos-
sible reconstruction indexes in the search target audio that
can reassemble the sub-clips or factors in the query audio
between indexed frames 1 → i, if k = i; or the factor
between frames k → i, if k 6= i.

Having I from algorithm 1, finding the best paths amounts
to a backtracking procedure over subsets Ii, resulting into
a reconstruction matrix R : N × `. Here, N refers to
the total number of analysis frames for the audio query
and ` is the search depth or the longest sequence that was
achieved during the search operation. Similar to I , each
row k in the reconstruction matrixR corresponds to a sub-
clip in the audio query and the contents of that row are
index references to the Audio Oracle of the target audio.
These indexes correspond to audio frames in the target au-
dio that can reassemble the “longest possible factor” of
the audio query up to frame k within a similarity margin
θ provided by the user. Obviously, in the case of self-
similarity for an audio query of total N analysis frames,
the described algorithm results to an N × N symmetric
reconstruction matrix R with each M th row (M ≤ N ) in
the form {M,M − 1, . . . , 2, 1, 0, . . . , 0}.

6. RESYNTHESIS

Once the reconstruction matrix R is obtained by Guidage,
resynthesis of the search results is straightforward. Each
row of R contains indexes to an audio frame window and
resynthesis algorithm is dependent on the choice of rep-
resentation of inputs to Audio Oracle, therefore modular.
For our goal, each index refers to time-domain samples
corresponding to the frame index. Thus, synthesis of the
results amounts to a concatenation of the indexed time-

domain samples with a windowed overlap-add algorithm
to assure phase continuity. Resynthesis in the general case
of Audio Oracle navigation is described in [1].

7. APPLICATIONS AND RESULTS

The Guidage algorithm can be easily integrated into any
application that calls for the framework described earlier.
For this presentation, we describe two immediate applica-
tions. In one application, an audio query is given by the
user as well as a pointer to a search target folder, and some
search parameters. The application then runs Guidage
over the whole database and a Graphical User Interface
(GUI) demonstrates ranked search results and visualizes
different parameters. In the second application, an au-
dio query is searched within one given target audio, where
the aim is to reassemble various occurrences of the query
in the target file and access the micro-structure level re-
assemblage. Hereafter, we discuss each application in
depth and demonstrate results.

7.1. Query over an Audio Database

For the first application described earlier, we have imple-
mented a GUI that both controls input file, folder and pa-
rameters by the user and also visualizes the results and
exports them as desired by the user. The front interface of
the GUI is demonstrated in figure 2.
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Figure 2. GUI for Audio Query over an Audio Database

This GUI is designed as follow: At the right of fig-
ure 2, there are three panels that separate different func-
tionalities of the application. The first and most important
is the search panel where the user can freely choose the
audio query file and a folder as the search target. In the
next step, the user can choose the search criteria that she
intends to perform the algorithm on from a pop-up menu.
The list of search criteria is either (1) loaded automatically
from the meta-data in case the chosen query is in SDIF
format, or (2) is the list of available features to the system
as described in section 4, also open to further expansions.
Another parameter that can be controlled by the user is the
distance threshold or θ used in algorithm 1. Pressing the
Search button then performs the algorithm over the whole
database assigned by the user. Once the results are ob-
tained, the result-box at the left of the GUI demonstrates a



ranked list of sound files in the database according to the
reconstruction percentage with regards to the audio query.
The best reconstruction for each file is thus the longest
sequence that can be reassembled through resynthesis to
achieve similar factors to the audio query. Following the
definition of the reconstruction matrix in section 5, this
path corresponds to one row of the matrix R and the one
with non-zero elements. Choosing each file in the result-
box reproduces three figures in the middle of the GUI for
visualization and better browsing of the semantical con-
tents that has been found during the procedure. The top
figure shows the chosen target audio waveform where the
found factors within the audio are highlighted with red.
The middle figure shows the query audio waveform and
the bottom one shows the concatenative synthesis of the
highlighted factors in the first figure relative to the audio
query. A Listening Panel respectively allows listening to
the three described waveforms and an additional Export
Panel allows exporting the resynthesis, if desired by the
user, to an external audio file.

7.1.1. Sample Results

Here we demonstrate results on two sets of sounds and dif-
ferent queries. All the sounds reproduced here and more
sample results on other data sets are available for audition
on the internet 2 . The first set corresponds to a database
of musical loops and rhythms out of realistic recording
sessions taken from the Kontakt Sound Library 3 . The
collection of loops chosen for the search session amounts
to approximately 200Mb of disk space, 140 audio files
with mean duration of 7 seconds. The query used for
this demonstration is an African drum sequence that lasts
approximately 4 seconds and non-existant in the search
database. Figure 3 shows the 3rd ranked results, corre-
sponding to 47.06% reconstruction and the produced wave-
forms out of the GUI described earlier. The search criteria
used for this query session are the MFCC feature vectors
with an Euclidean distance threshold of 0.05.

Figure 3(c) shows the resynthesized result audio as the
best reassembly of the factors in the target audio (figure 3(a))
to achieve similar effects to the query waveform (figure 3(b)).
As mentioned earlier, the silences in figure 3(c) corre-
spond to factors where no match has been found. High-
lighted (red) waveforms in figure 3(a) correspond to fac-
tors of the target which are used for concatenative synthe-
sis and indexed results of Guidage to achieve the wave-
form in figure 3(c). Comparing figure 3(c) and 3(b), we
can see that the algorithm has used factors corresponding
to sound objects in figure 3(a) to achieve a similar rhyth-
mic pattern as in figure 3(b). Listening to the synthesized
audio (on the provided URL) also reveals the timbral sim-
ilarity between the query and result - another reason why
this sample has appeared among the top 10 results in a
search session over 140 sound files.

2 http://www.cosmal.ucsd.edu/arshia/index.php?
n=Main.Guidage

3 http://www.native-instruments.com/
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Figure 3. Music Result Sample of the Audio Query by
Content

The second experiment-set corresponds to speech au-
dio files. This experimental database corresponds to 10
recordings of theatre actors saying the same phrase in French
with different durations and intonations. The repeated
phrase in French is: C’est un soldat à cheveux
gris. The query is taken out of one of the sound files
and corresponds to the pronunciation of the word Soldat
in French. The aim of the search algorithm here is there-
fore to find the occurrences of the word Soldat in dif-
ferent phrases despite their variances or to reconstruct the
same word by concatenating different phonemes where
linear reconstruction is not possible. The search criteria
used for this query session is a mixture of MFCC feature
vectors and their first derivative (∆MFCC). This choice
of audio feature is common among speech recognition
systems. For this sample result, we demonstrate the 9th

ranked result among 10, thus towards the worst, in fig-
ure 4. The interest in showing “worse” results is to demon-
strate the behavior of the re-assemblage.

Similar to figure 3, the three subfigures correspond to
the query waveform of the word query Soldat (figure 4(b)),
the target phrase recording and the used factors during
resynthesis (figure 4(a)) and the resynthesized result in
figure 4(c). The remarkable result here is that since the
intonation and duration of the target audio is quite differ-
ent from the original source, the algorithm has reinforced
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the reconstruction of the query using different phoneme
sequences than the original. More precisely, factors used
during reconstruction (highlighted waveforms in figure 4(a))
correspond to the /s/ sound in the pronunciation of the
word C’est (in French) in the beginning of the phrase
(and not the /s/ sound in Soldat) and partial factors
of the spoken word Soldat as seen in the sub-figure to
achieve reconstruction.

7.2. Query within Micro Audio Structure

The application described in the previous section uses only
one result path among all that is found by the algorithm
described in section 5. Recall that the reconstruction ma-
trix R has N rows where each can contain a candidate
path. In some applications, and especially musical ones,
users might be interested to focus on the microscopic search
results rather than the longest path result that is repre-
sented in section 7.1. In this section, we demonstrate
this aspect of the Guidage algorithm where we focus on
one audio query and one (eventually long) search target,
and visualize all the results obtained by the Guidage al-
gorithm. Once again, the user has the ability to control
search and audio analysis parameters to a fine-scale con-
trol, allowing access to query guided grains in the target
audio.

Figure 5 and 6 show two snap shots of the application
run on the same query/target pair, but showing the first and
second results respectively. Here again, as in section 7.1,
a Search panel allows the user to choose the audio query
and target files as well as search parameters and analysis
parameters (in case an audio file is chosen instead of pre-
formated SDIF meta-data). Clicking on the Search button
lists all the results in the result-box on the left and choos-
ing each result (represented by the reconstruction percent-
age), visualizes the results in two corresponding figures in
the GUI. Here, the top figure corresponds to the target au-
dio waveform, again, where highlighted waveforms corre-
spond to the found factors for the chosen result set. The
lower figure visualizes the resynthesized waveform rela-
tive to the query waveform (not shown here). The query
used for this demonstration is the same African drum se-
quence used in section 7.1.1 and the search target audio is
a Live Mambo Congas audio sequence.

Figure 5 shows the first result that corresponds to the
highest reconstruction percentage (24.7% here). This is
the typical “best” result used in the audio query over database
application. As before, the resynthesized audio has the
same timeline as the query; showing that in figure 5, the
reassembled sequence corresponds to the original query
audio that appears approximately between samples 40K−
60K or times 0.9− 1.4 seconds.
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Figure 5. GUI for Micro Audio Query

Figure 6 shows the 2nd result in the list chosen by the
user. This result corresponds to 21.1% reconstruction.
What is remarkable here is that comparing both visualized
subfigures in figures 5 and 6, it is clear that (1) the factors
used during re-assemblage and results of Guidage are dif-
ferent. And (2) the resynthesized sequences correspond
to two different timelines of the original audio query (in
figure 6 between 3− 4 seconds.

In contrary to the query over database application pre-
sented earlier, a simple access to all results as demon-
strated in this section, gives more control over microscopic
content structure of target audio guided by an audio query.
As before, implemented GUI facilitates export of audio
material for further mixing and musical use.
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8. DISCUSSIONS

We introduced the concept of Guidage as query guided
audio assemblage and provided an algorithm for fast dis-
covery of audio structure, fast retrieval audio-content, and
resynthesis of retrieved factors as a re-assembly of the
target audio. We presented two immediate applications
of such concept in section 7. The results are suggestive
of a semantical-level control of sound objects for musi-
cal applications. For example, demonstrated results in
section 7.1.1 suggest that the factors that are found by
Guidage correspond to semantically independent sound
objects with clear boundaries which are then re-assembled
to replicate the audio query. Unlike similar systems, we
do not perform any kind of explicit segmentation or tran-
scription of audio sources to achieve this level of semantic
control. We believe that this is due to an explicit consider-
ation of temporal morphologies of audio structures during
structure discovery and guided search operation.

With this introduction, the presented concept should be
further explored for interactive and creative computer mu-
sic environments. The simplicity of both Audio Oracle
and Guidage algorithms and their fast performance also
make them strong candidates for high-level control mod-
ules in interactive computer music environments. Speed
performance of Guidage depends on the degree of seman-
tic similarity between the query and search targets. For the
experiment described in section 7.1.1 on a corpus of 140
audio files with total size of 200Mb, Guidage performs in
approximately 80 seconds using MATLAB and a 2.3Ghz
Mac-Intel machine. In another audio query over database
experiment on natural bird sounds with 244 audio files
and over 600Mb of data, Guidage performs in less than
80 seconds. This suggests some degree of scalability of
the proposed algorithm when dealing with large corpuses
of audio and makes it even more attractive for high-level
interactive control of computer music processes. We are
currently pursuing further research and developments along
these lines.

All the examples and sounds presented in this paper,
and further experiments on other data sets, are available

for audition and further examination on the internet 4 .
Guidage is currently under development and the progress

and eventual release of Guidage can be tracked from the
same URL.
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