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ABSTRACT

Antescofo is a modular anticipatory score following sys-
tem that holds both instrumental and electronic scores to-
gether and is capable of executing electronic scores in
synchronization with a live performance and using vari-
ous controls over time. In its very basic use, it is a clas-
sical score following system, but in advanced use it en-
ables concurrent representation and recognition of differ-
ent audio descriptors (rather than pitch), control over vari-
ous time scales used in music writing, and enables tempo-
ral interaction between the performance and the electronic
score. Antescofo comes with a simple score language for
flexible writing of time and interaction in computer music.

1. INTRODUCTION

The moment a composed computer music piece is con-
cerned with mixed live instruments and electronics, the
question of how to handle synchronization and interaction
between the two becomes inevitable. During the early
periods of mixed pieces, most composers (with excep-
tions) dealt with the problem as a secondary concern. In
the early 80s and through the advent of interactive com-
puter music environments and their popularity among mu-
sicians, the idea of dealing with interaction both during
performance and composition became more apparent and
softwares and technologies such as score followers began
to rise the possibilities such control could bring into the
world of computer music composition and performance.
Today, celebrating 25 years of score following research
and performance, the divide between ‘compositional’ and
‘performative’ aspects of computer music [1] and the lack
of consideration for interaction in the writing of the piece
are even more apparent than it was at the time. This is
also accompanied by many composers’ reluctance to con-
sider such techniques in the compositional process. We
believe this situation is partially due to the following con-
straints in available interactive computer music systems:
(1) While the common vocabulary used in scoring instru-
mental music has extensively expanded, synchronization
or score following applications are extremely limited to
very simple vocabulary in western traditional notation (notes,
trills etc.). (2) The notion of interaction is most often lim-
ited to mere triggering of a separate electronic score. (3)

There has been limited or no consideration for different
temporalities of musical events, the temporal interaction
within and the writing of time involved [2].

This paper is concerned with interactive components
of scored mixed instrumental and electronic music reper-
toire where the need for an explicit interaction between the
live instrument and the electronics is evident. We present
Antescofo, a tool that handles both scoring and live inter-
action of such computer music pieces. In its very basic
use, Antescofo is a classical score following application
that synchronizes real-time audio to a music score (such as
MIDI). But it has been designed in its core to address the
following extensions handling both flexible score script-
ing and live interactions: (1) to enable concurrent, flexible
and user-defined representations of the audio stream in the
score, (2) to concurrently represent and handle different
time scales both in scoring and recognition and enable a
flexible writing of time, (3) to provide a score language
that handles interaction between the live performer(s) and
electronics both time-wise and process-wise during run-
time (i.e. music performance).

In this paper we present key ideas that form the foun-
dation of Antescofo and discuss its use during production
and performance. We begin the paper by providing some
musical and technical background on the subject. This is
followed by a general description of the underlying design
architecture that defines the main concerns and compo-
nents of the system. We outline our model in sections 7 to
10 with a contemplative emphasis on modeling time for
music in section 5. The score language and syntax de-
veloped for Antescofo is defined in section 8. Finally, we
direct the readers attention to development and production
issues regarding the system as well as discussions and fu-
ture directions. In this paper, we focus our attention on the
musical aspects of the design in Antescofo and leave scien-
tific derivations and proofs of methods introduced briefly
for the sake of completeness for a later communication.

2. MUSICAL BACKGROUND

The consensus for interaction between a live music per-
formance and electronics dates back to early experiments
of Maderna, Stockhausen and Davidovsky among others
through «fixed» or tape pieces where the live performer
is responsible for synchronizing with the electronics us-



ing click-tracks or active listening. Later on in mid 80s,
the movement is joined by experiments and repertoire of
the so called “real-time electronics”, starting from experi-
ments by Manoury and Boulez, where most often a score
following application is responsible for synchronizing events
of the live instruments to the pre-written score and trig-
gering the appropriate electronic events (whether fixed or
through live generation). In this latter group, until today, a
lot of composers have leant on the idea of a score follow-
ing application to automate the performance of the elec-
tronics score with synchronization to the live performer(s),
while some others, with Manoury as a forerunner, im-
mediately recognized and incorporated the possibilities in
writing interactive electronic scores which are realized
during the live performance.

Naturally, the advent of score following techniques for
synchronization of live performance with electronic score
and control of interaction created a lot of momentum both
in the research and music communities but not without
criticism. Among many criticisms directed towards real-
time electronics school, of particular interest are the ones
by compsoers Jean-Claude Risset and Marco Stroppa. Ris-
set argues that “Not only does the use of real-time sys-
tems bring limitations and difficulties for the durability
of the music, but one may even argue that the concept
of real-time concerns primarily performance and may be
of little relevance to musical composition” [3]. A con-
structional read of Risset’s paper would point to an im-
portant lack in the existing systems: the lack of a composi-
tional interaction during performance. While this issue is
in most parts aesthetical, it has also a great deal to do with
a lack of explicit designs for such matter. Stroppa’s exten-
sive criticism of real-time electronics is accompanied by
the composer’s detailed proposal for a Virtual Interpreter
system[2]. In this vast proposal (which we will not detail
in this paper), the composer is mostly concerned with tem-
porality of musical events and different temporal degrees
of interaction in computer music spanning from explicit
interaction of fixed or live electronic processes with real-
time detected tempi to continuous representations of time
to allow fine grain tuning of composed electronics to a live
performance.

3. RESEARCH BACKGROUND

Since the inception of the first MIDI score followers in
1984 by Dannenberg [4] and Vercoe [5], the research com-
munity has made a lot of contributions and advancements
to the field by incorporating more advanced recognition
and alignment techniques such as probabilistic models [6],
graphical modeling [7]and much more that we will not re-
view for the scope of this paper and would refer the cu-
rious reader to [8] for a historical review. For this paper,
we are particularly interested in approaches where explicit
models of time are involved during recognition; mention-
ing that none of the available systems, to the extent of
the author’s knowledge, has explicitly integrated interac-
tion with the electronic score within the recognition sys-

tem and handling interaction is left to the user once events
are recognized on-the-fly.

It is interesting to note that Vercoe’s initial MIDI Syn-
thetic Performer had explicit interaction with the deducted
tempo of the live performer[5] 1 . With the move to audio
systems using pitch detection algorithms tempo was tem-
porarily forgotten focusing on string matching techniques
and back again with Grubb and Dannenberg [6] where the
pitch observations used in the probabilistic model can in-
fluence the running tempo by comparing the elapsed time
and the idealized score tempo. Perhaps the most elabo-
rate and explicit time model that has been used belongs
to Raphael [7]. Raphael’s design has two stages for de-
coding of score position and tempo. The first, comprising
Hidden Markov Models deducted from the score respon-
sible for decoding the position in the score and the second,
an elaborate Bayesian network which takes this informa-
tion to deduct the smooth tempo during the performance.
Notably, Raphael uses this tempo in interaction with his
accompaniment system to adapt the time-duration of the
accompanying section using phase-vocoding techniques
which has proven to be very effective.

Antescofo is an anticipatory score follower with an an-
ticipatory design that will be outlied hereafter. It is capa-
ble of outputting the real-time tempo of the performance
but unlike previous approaches, it comprises two coupled
audio and tempo agents which work collaboratively and
competitively in an anticipatory design to reduce com-
putation and design complexity and increase robustness
when there is uncertainty in one of the two agents. The
core design of the probabilistic approach in Antescofo, en-
ables direct access to temporal structures which can be
easily accessed and tweaked in the provided score lan-
guage.

4. GENERAL ARCHITECTURE

The proposed system in this paper is based on pair coupled
audio and tempo agents. The music score is represented
through a probabilistic graphical model constructed di-
rectly from a symbolic music score. The two audio and
tempo agents collaborate at all times to map the real-time
audio input to the most likely state sequence in the score
model. The tempo agent computes on the event time-scale
and is based on a cognitive model of musical metric struc-
ture introduced in [9] and provides continuous tempo pre-
dictions based on live audio input and the given music
score. On the other hand, the audio agent undergoes com-
putation on the continuous audio time-scale and assigns
out-of-time probabilistic values to relevant states in the
score state-space. The proposed model is an anticipatory
system which implies “a system containing a predictive
model of itself and/or of its environment, which allows it
to change state at an instant in accord with the model’s
predictions pertaining to a later instant”[10]. The audio
agent is influenced dynamically by the predicted tempo,

1 See the historical video at http://www.youtube.com/
watch?v=vOYky8MmrEU

http://www.youtube.com/watch?v=vOYky8MmrEU
http://www.youtube.com/watch?v=vOYky8MmrEU


and in return the tempo agent is directly affected by the
decisions obtained instantly by the system.

This model has the underlying hypothesis that the au-
dio signal can be totally generated by the underlying state-
space score model. Hence the problem of score follow-
ing is the inverse of this hypothesis, or to find the most
likely state-sequence associated with observed real-time
audio sequence. Due to the nature of this inverse problem,
the underlying state-sequence that generates the audio is
not directly observable by the system. This process of
finding the most likely state-sequence in a hidden process
up to the present is referred to as the inference problem.
The state-space generative model of the score proposed
here is a Hidden Hybrid Markov/semi-Markov chain [11].
Figure 1 shows a general diagram of Antescofo’s design.
Besides decoding the correct score position and tempo,
the system is capable of undertaking (electronic) score ac-
tions if they are present within the pre-loaded score as a
way to communicate with external generative or synthe-
sis engines coupled with the musical time scales that are
provided through Antescofo’s score language.

Observers

Inference & Decoding

Audio Tempo

Audio Streams

Score Position Tempo

Score 
Parser

Score

Score 
Actions

off-line

real-time

Figure 1. General Design Diagram of Antescofo

In what follows, we will look at more detailed design
of each component of the system described above.

5. ON MODELING MUSICAL TIME

5.1. Musical Foundations

In most computer music systems that deal with models
of time, modeling concepts are inherited from long stud-
ied models available for speech or biological sequences.
In almost every field of research dealing with time se-
quences, the issue of belief propagation through time is
a huge dilemma and subject to intense ongoing research.
Choosing one approach over another brings in drawbacks
and approximations according to the departing hypothesis
lied in the model itself. When it comes down to music
signals, the issue of time modeling is of more burden. On
the other hand, musicians and artists, unlike researchers,
have more freedom in contemplating on the issue of time
modeling. The author believes that there is still a lot to
learn from artists with regards to modeling time in every
field of research dealing with the issue. In this section, we

gather several important contemplations on time model-
ing as inputs from the artistic community that constitutes
the core of Antescofo’s temporal modeling. There is no
single reference regarding time models in the arts! Every
composer or artist has dealt with the problem one way or
another. We will not go through all aspects of time mod-
eling in this paper and leave a broader analysis for future.
Moreover, we do not claim to provide a universal model of
time. Here, we present several views and categories that
are widely accepted and are highly inspirational for the
design of Antescofo and were partially presented in [12] .

5.1.1. Temporal vs. Atemporal

Formalized first by Xenakis[13], the Atemporal (or out-of-
time) corresponds to an object that possess its own inter-
nal temporal structure independent of the overall temporal
structures of the piece of music. He also emphasizes on
the independence of the two time structures. To conform
this distinction with our probabilistic design, we define an
Atemporal object or event as one that posseses a physical
space in the score but does not contribute to the physical
time of the score. Typical examples of atemporal objects
are grace notes and internal notes of a (free) trill in the
western classical notation. While both have physical pres-
ence, the individual events do not contribute to the notion
of tempo but their relative temporal appearance in the case
of the first, or their overall in-time structure in the case of
the second contribute to the notion of tempo. Other exam-
ples of atemporal objects are events with fermatas or free-
improvisation boxes seen in various contemporary music
repertoire.

5.1.2. Striated-time vs. Smooth-time

Striated time is one that is based on recurring temporal
regularities while smooth time is a continuous notion of
time as a flow of information [14]. The pulsed-time used
in most western classical music notation is a regulated
striated time-flow that uses an internal musical clock usu-
ally driven by a tempo parameter in beats-per-minute. In
our terminology, we distinguish between a striated time-
scale where the notion of time is driven relative to a con-
stantly evolving tempo, and smooth time-scale where the
information on the microscopic level consists of individ-
ual atemporal elements or is defined relative to a clock-
time. Typical example of a smooth-time event in western
traditional notation are free glissandis. This distinction is
crucial in order to enable a flexible writing of time and
also to enable the coexistence of traditional event nota-
tions with that of continuous audio-driven events.

6. PROBABILISTIC MODELS OF TIME

One of the main goals of probabilistic modeling is to de-
code temporal dynamics of an outside process. The main
difficulty regarding this task is the temporal dynamics of
the underlying model in use. In most problems, any state



of a given process occupies some duration that can be de-
terministic or not. In such tasks, we are interested in a
probabilistic model of the macro-state duration and so-
journ time. In a musical context, a macro-state can re-
fer to a musical event (note, chord, silence, trills etc.)
given an expected duration. A common way to model
time series data in the literature is by the use of state-
space models. A state-space model of a sequence is a
time-indexed sequence of graphs (nodes and edges) where
each node refers to a state of the system over time. There-
fore each state has a time-occupancy that can be used to
model sojourn time and duration of the events under con-
sideration. In this paper, we limit ourself to two wide
classes of graphical models and their duration models that
cover most existing approaches: Hidden Markov mod-
els (HMM) and Hidden Semi-Markov chains. The major
drawback in HMM is their inflexibility in describing the
time spent in a given state due to their implicit nature of
time occupancy. A semi-Markov chain is composed of an
embedded Markov chain representing the transitions be-
tween distinct states, and discrete explicit state-occupancy
distributions representing sojourn times. Our proposal is
to use the benefits of the both worlds by introducing hy-
brid Markov/semi-Markov chains as first defined in [11].
In section 8 we will show how such a mixture can repre-
sent different time dependencies visited in the last section.

To formalize the problem, we assume that the audio
stream through time τ or xτ0 (as short for x0, . . . , xτ ) is
a stochastic process represented by the random variable
{Xt}, which is generated by a sequence of states sτ0 thro-
ugh the random variable {St} corresponding to (hidden)
states in a hybrid markov/semi-Markov chain generated
from the score. The solution to the inference problem then
determines the most-likely state-sequence Sτ0 that would
generate Xτ

0 and in return the score position and real-time
decoded tempi. Beyond this point, we use P (St = j) as a
short for P (St = sj) denoting the probability that state j
is emitted at time t.

Let St be a J-state hybrid Markov/semi-Markov chain.
It can be then defined by:

• Initial probabilities:
πj = P (S0 = j) with

∑
j πj = 1, which corre-

spond to the starting point in the score of the syn-
chronization application during performance.

• Transition Probabilities:

– semi-Markovian state j:
for each k 6= j, pjk = P (St+1 = k|St+1 6=
j, St = j) where

∑
k 6=j

pjk = 1 and pjj = 0.

– Markovian state j:
˜pjk = P (St+1 = k|St = j) with

∑
k

˜pjk = 1.

• An explicit occupancy (or sojourn time) distribution
attached to each semi-Markovian state:

dj(u) = P (St+u+1 6= j, St+u−v = j, (1)
v = 0, . . . , u− 2|St+1 = j, St 6= j)

where u = 1, . . . ,Mj and Mj denotes the upper
bound to the time spent in state j. Hence, we as-
sume that the state occupancy distributions are con-
centrated on finite sets of time points.

• An implicit sojourn distribution attached to each Ma-
rkovian state j where
P (St+1 = k|St+1 6= j, St = j) = ˜pjk/(1− ˜pjk)
defines an implicit state occupancy distribution as
the geometric distribution with parameter 1− ˜pjk:
dj(u) = (1− ˜pjk) ˜pjku−1

7. THE OBSERVER

The audio process {Xt} is related to the hybrid Markov /
semi-Markov chain {St} (or the score) by the observation
probabilities:

bj(y) = P (Xt = y|St = j) where
∑
y

bj(y) = 1.

Observations in our context correspond to the instanta-
neous belief about the expected score events given the lat-
est (or real-time) inputs to the system. Most score follow-
ing applications comes either with their internal observa-
tion mechanisms or are tuned towards a specific observa-
tion module living outside the score follower itself. For
the design of Antescofo, we have decided to make it mod-
ular by both providing an internal observation mechanism
and also enabling user-defined observation inputs. In its
basic use, Antescofo is a classical score following applica-
tion that accepts a list of pitches (in Hz or MIDI) as input
to map it to the score position and the tempo variable. But
for more curious users, Antescofo is able to accept concur-
rent observations of different nature. The number of con-
current observations to the system (which are user-defined
and calculated outside Antescofo) and their code names
are defined by the user during object instantiation in Max
or Pd. Figure 2 shows the classical and user-defined ap-
pearances of the Antescofo on a Max window. Here, the
creative user of figure 2(b) has attempted to provide four
different concurrent observation to the module. Conse-
quently, the score that the user creates would normally
make use of these different sources to follow different as-
pects of audio streams during a performance. We will get
back to this point later in section 8.2 and here focus on
how these observations are prepared by the observer for
the inference and decoding modules.

Antescofo comes with several standard built-in obser-
vations for classical score following which are denoted
by: hz, midi and KL used respectively for pitch obser-
vation using an external pitch tracker, MIDI observation
and polyphonic audio observations. To obtain instanta-
neous observation probabilities for Antescofo’s modular
observer, we simply center Normal distributions over the
expected value indicated in the score and obtain proba-
bilities in run-time. Obviously if the input consists of a
vector of values multivariate normal distributions are used
instead. The variance of these normal distributions (or the



(a) Classical

(b) User-defined

Figure 2. Modular Observation in Antescofo

diagonal covariance matrix for vector inputs) are set to 1%
of the expected value (or a semi-tone for pitch), also con-
trollable by the user through the score (section 8.2). The
above holds for all observation modes except the KLmode
which is designed for polyphonic tracking and is left out
here due to space considerations.

8. SCORE TOPOLOGY AND LANGUAGE

The state-space topology of {St} is determined by the
score, where each score element is mapped into a hybrid
Markov/semi-Markov equivalent chain using Antescofo’s
parser. These built-in maps describe different event types
and time models and can be directly described using a
simple text-based score language. The score language of
Antescofo has been carefully designed to enable import-
ing of common score formats such as MIDI and to be able
to easily describe common classical music repertoire as
well as user-defined events coming from different audio
observations and with different temporalities. In this sec-
tion we describe the basics of Antescofo’s score language
with their real-world equivalences and show how the same
syntaxes can define complex unconventional score events.
Moreover, Antescofo’s score language enables the coexis-
tence of the instrumental score and the electronic music
score altogether. As a convention, in the figures that fol-
low, a Markov state is demonstrated by a regular circle
and a Semi-Markov state by a double-lined circle. Also
in defining command syntaxes, the plus sign (+) next to
each type should be interpreted as “one or more of”. As
a last convention, a <float> indicates a floating num-
ber representing the notated observations in the score. For
pitched events and as a convention, events would be rep-
resented by either MIDI or MIDIcent note numbers.

8.1. Basic commands

8.1.1. BPM command

The initial tempo and any tempo change in the score can
be encoded by the BPM command in Beats-Per-Minute.

8.1.2. Single Event

A single event can be a single pitch, silence or grace note
if the observation under consideration is pitch. These events
can be either temporal or atemporal (see section 5.1.1).
The usual syntax for a single event is as follows:
<float> <duration> <optional name>

where the duration is expressed as the number of beats rel-
ative to the initial score tempo. Figure 3 shows a sample
graphical score, the Antescofo equivalent and the state-
transition diagram created after parsing. If the duration
associated with a single event is set to 0.0, it is a sign that
the associated event is atemporal. In this example, pitches
are encoded using MIDIcent format and a left-right state
diagram is created that is in one-to-one correspondence
with the score. Note that in this example, a dummy atem-
poral silence is created in the middle state. Antescofo’s
parser automatically puts dummy silences between events
where appropriate to better model the incoming audio.

74 72 76 740

; This is a sample score
BPM 60
7200    0.0           ; grace note
7200    1.0    note1  ; regular note
7600    0.0
7400    1.0    note2
0       0.5           ; silence

0

Figure 3. Antescofo’s score sample and state transition
diagram for single events

8.1.3. TRILL Class

As the name suggests, the TRILL class of Antescofo is
a way to imitate classical music trill notation. In terms
of modeling, Antescofo’s TRILL is one in-time event that
has several out-of-time events within. Moreover, the order
in which these sub-states appear is not important. Fig-
ure 4 shows two examples for Antesofo’s TRILL syn-
tax where the second is taken out of the first measure
in Marco Stroppa’s Little-I for flute and electronics and
demonstrates a free glissandi which can be successfully
encoded using the TRILL class in Antescofo. The TRILL
class syntax is as follows:
TRILL ( +<float> ) <duration> <name>

8.1.4. CHORD Class

As the name suggests, a chord class denotes a single semi-
markov (or markov if duration is set to zero) state that
models polyphonic events. The regular syntax for the CHORD
class is similar to the TRILL class but translates to only
one state:
CHORD ( +<float> ) <duration> <name>

8.1.5. MULTI Class

Using the above commands, any classical music piece can
be easily parsed or rewritten in Antescofo’s format. We



; This is a simple trill
BPM 60
TRILL ( 7200 7400 )   1.0   myTrill

; This is also a trill
BPM 60
TRILL ( 6600 6700 6550 ) 8.0 myTrill

66 65.567

72 74

Figure 4. Antescofo’s score sample and state transition
diagram for TRILL class

add one more class to allow more complex object and
temporal encoding. The MULTI class is similar to the
TRILL class with the exception that the symbols defined
within it are ordered in time. This new addition to An-
tescofo’s score syntax allows decoding of continuous time
events such as glissandis (in western notation) and even
audio streams associated with a pre-defined observation
for audio-matching. The MULTI syntax is as follows:
MULTI ( +<float> ) <duration> <name>

In this new topology, a high-level semi-markov state
represents the overall temporal structure of the whole ob-
ject that is mapped to a series of sequential left-right Markov
chains. Figure 5 shows a MULTI example for two consec-
utive notated glissandis.

; This is a sample for the MULTI class
BPM 60
MULTI ( 6080 6100 6150 6200 ) 4.0 First-Gliss
MULTI ( 6300 6200 6150 6100 ) 4.0 2nd-Gliss

Figure 5. Antescofo’s score sample and state transition
diagram for MULTI class

8.2. Advanced commands

8.2.1. VARIANCE

The variance associated with the observer (see section 7)
can also be controlled in the score and takes as unit, semi-
tones (for pitched events) or percentage values of the ex-
pected score event (for other observations). This is quite
useful in several circumstances. For example, when fol-
lowing audio signals from a flute in a live performance,
the tuning of high pitches might become different than the
expected tuning considered in the score due to warming up

of the flute’s body. An increase of the observer’s variance
in such case could save the system and the performance!
Also, when dealing with different information sources of
audio, one might want to adapt this percentage to the na-
ture of the incoming process.

8.2.2. The @ Operator

As mentioned in section 7, Antescofo is capable of han-
dling concurrent representations of audio streams for recog-
nition and interaction. By default, Antescofo uses the left-
most inlet for all recognition work unless specified before-
hand by the @ operator. The string following the @ opera-
tor should conform to the code names created by the user
during the object’s instantiation (section 7) otherwise it
would be neglected during score parsing and an error mes-
sage would be sent. Using this, the user can easily switch
between various representations of audio and follow the
desired aspects simultaneously in a single score.

8.3. Computer Music Score Actions

One of the important features of Antescofo scores is the
coexistence of the instrumental part with the electronics
part at the same place. Traditionally, in most interactive
environments that make use of score following systems,
the electronic score lives separately in additional qlists
and the event numbers (or names in our case) associated
with specific score events would trigger the messages in
the qlist for further processing. This can be easily done
inside Antescofo’s scores. In addition to that, Antescofo
has an internal timer that is coupled with the real-time de-
coded tempo that can be used to do sequencing over the
messages to be sent. Note that while traditional qlists also
allow sequencing through delay values in milli-seconds,
the simple fact that the sequencer in Antescofo can ac-
cept relative musical values (in beats) that are realized in
run-time (during performance) adds a new dimension and
flexibility in the writing of temporal processes for mixed
instrumental and computer music repertoire.

An interactive (or fixed) electronic music event might
be bound to a single event in the score. In this case,
a sequence of FWD commands with corresponding mes-
sages following the event in Antescofo’s score would do
the work. The simple syntax of FWD is as follows:
FWD <symbol> +<message>

FWD <delay> <symbol> +<message>

where <symbol> is the string corresponding to the re-
ceiving symbol and +<message> correspond to atom(s)
that would be sent to the symbol at the desired position.
The <delay> option if exists, is a float number indicat-
ing the delayed time value in beats which would delay the
clock-time for sending the message to outside processes
using an internal scheduler coupled to the tempo agent.

The additional command LFWD (or loop forward) en-
ables periodic messaging with the following syntax:
LFWD <name> <period> <symbol> +<message>

which upon triggering sends the indicated messages to a
symbol in a periodic manner. The period is given in beats



and is coupled with the decoded tempo inside Antescofo.
This simply means that the period of the looped message
would change appropriately with the tempo of the mu-
sician(s). The KILLFWD command can stop a loop for-
ward by calling the process’ name anywhere in the score:
KILLFWD <name>.

This feature of Antescofo’s score language is constantly
growing in accordance with the needs of the computer mu-
sic community using the developed software. For a com-
prehensive list of score actions and future plans of these
features we invite the curious reader to try and follow the
development in section 11.

9. TEMPO DECODING

The perception of time in music synchronization tasks is
not merely an analysis of rhythmic content, and rather it
shapes an active listening strategy in which the listener’s
expectations about future events can play a role as im-
portant as the musical events themselves. Therefore, any
model for timing synchronisation of musical events should
consider the hypothesis that the temporal structure of lis-
teners’ expectations is a dynamic structure. A primary
function of such structure is attentional which allows an-
ticipation of future events, enabling perceptual targeting,
and coordination of action with musical events. These
considerations led Large et al. [9] to design a cognitive
model of tempo based on internal entrained oscillations.

The model used in Antescofo for decoding of the con-
tinuous tempo variable is highly inspired by [9]. Inter-
nal tempo is represented through a random variable sk
revealing how fast the music is flowing with regards to
the physical time. After Large, we model the behavior of
such random variable as an internal oscillator entraining
to the musician’s performance. Such internal oscillation
can be represented and modeled easily using sine circle
maps. These models have been well-studied in the litera-
ture and can be considered as non-linear models of oscil-
lations that entrain to a periodic signal and using discrete-
time formalism. Using this framework, we represent the
tempo random variable in seconds/beat and note onset
positions as phase values φk on the sine circle. This way,
given a local tempo sk, the onset time tn can be repre-
sented as φn = tn

sk
+2kπ where k is the number of tempo

cycles to reach tn. For our model, a phase advance would
be the portion of the oscillator’s period corresponding to
note Inter-Onset-Intervals (IOI).

In order to compensate for temporal fluctuations dur-
ing live music performance, we would need a function of
φ that would correct the phase during live synchroniza-
tion and at the same time model the attentional effect dis-
cussed previously, thus enabling perceptual targeting, and
coordination of action with musical event. The attentional
pulse can be modeled using a periodic probability den-
sity function, the von Mises distribution which is the cir-
cle map version of the Gaussian distribution. Since we are
interested in the tempo update and not directly the phase,
the corresponding attentional factor for the tempo variable

would be a derivative of the von Mises distribution as de-
picted below [9]:

F (φ, κ) =
1

2π expκ
eκ cos(2πφ) sin 2πφ

Here, the parameter κ plays an important role as smaller
values spread the correction all over the phase domain.
To take this fact into account, we accumulate attentional
factors that occur during note IOIs and numerically solve
for the best κ that should be used during the next update.

It can be shown that the above considerations corre-
spond to the following tempo update upon arrival of each
new decoded score position from the audio agent:

sn+1 = sn(1 + F (φn, κ))

10. ANTICIPATORY INFERENCE
FORMULATION

As mentioned earlier, the inference problem addresses de-
coding of the most likely state sequence in time associ-
ated with the observed audio sequence xτ−1

0 . In a non-
realtime context, an exact inference can be obtained using
the Viterbi algorithm [15] that for each time t uses both
beliefs from time 0 through t (referred to as forward or
α probability) and future knowledge from present (t) to
a terminal state at time T (referred to as backward or β
probability). In a score following system that necessitates
on-the-fly synchronization of audio with the music score,
using the β or backward probability of an exact inference
framework is either impossible or would introduce consid-
erable delays in the system. In the proposed system, we
hope to compensate for this absence of future beliefs thro-
ugh our anticipatory model of audio/tempo coupled agents
and an adaptive α calculation procedure. Here, we for-
mulate a dynamic programming approach for an adaptive
α calculation for a hidden hybrid Markov/semi-Markov
process. The inference techniques shown here can be de-
ducted and proofed mathematically from the framework
discussed in section 6, which are left here out due to space
considerations.

For a semi-Markovian state j, the Viterbi recursion of
the forward variable is provided by the following dynamic
programming formulation:

αj(t) = bj(xt) max( max
1≤u≤t

(

{
u−1∏
v=1

bj(xt−v)

}
· dj(u) max

i6=j
(pijαi(t− u)))) (2)

For a Markovian state j, the same objective amounts to:

α̃j(t) = max
s0,...,st−1

P (St = j, St−1
0 = st−1

0 , Xt
0 = xt0)

= bj(xt) max
i

(p̃ijα̃i(t− 1)) (3)

Within this formulation, the probability of the observed
sequence xτ−1

0 jointly with the most probable state se-
quence is argmax

j
[αj(τ − 1)].



Equations 3 and 2 provide us with a recursive frame-
work to decodes the real-time score position given that
we know the survival function dj(u) for each event in
the score in equation 2. In return, the tempo can be de-
coded correctly if we have the score positions of the cur-
rent note and the previous notes as seen in section 9. To
solve both issues, we couple both agents together where
both are running in parallel and collaborating to decode
the best score position and tempo altogether. While the
influence of score position decoder on the tempo agent is
evident, we need to refine the other way round mostly be-
cause the two agents run on different time scales.

To solve this burden, we consider a stochastic process
P (Tk) which models the estimated arrival time (in terms
of number of analysis frames) for the kth event in the
score as a poisson process. Since the survival function
dj(u) is the inter-arrival time, using basic stochastic the-
ory principles it can be easily shown that,

dj(tn − tn−1) = e−λ(tn−tn−1)

where λ is the expected number of occurrences that one
would expect to happen during the given time interval.
During the inference framework of equation 2, tn being
the real-time and tn−1 the last decoded position, we can
easily obtain λ by using the latest decoded tempo and the
event duration (in beats) from the score.

11. DEVELOPMENT AND DISCUSSION

Antescofo has been developped using advanced C++ tem-
plate libraries and is available for free from the author’s
website for Max/MSP and PureData environments on their
respective operating systems. Antescofo’s described score
language is also exportable through the NoteAbility Pro
commercial music notation software 2 . Figure 6 shows a
snapshot of the help file that comes with the downloadable
package with demonstrative examples and tutorials:
http://cosmal.ucsd.edu/arshia/antescofo/

Figure 6. Antescofo’s Help snapshot in Max/MSP

Antescofo was primarily conceived for Marco Stroppa’s
“... of Silence” for saxophone and chamber electronics,
premiered on Nov. 23rd 2007 in Shizuoka, Japan. Since

2 http://debussy.music.ubc.ca/NoteAbility/

then, it has been used in several concerts including Boulez’
“... Explosante-Fixe...” with Los Angeles Philharmonic in
January 2008 and several new productions are underway.
In this paper we demonstrated basic foundations and con-
cepts of Antescofo. We leave a more rigorous discussion
on the design, evaluation and exploitation of the system to
a future communication.
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