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On the Information Geometry of Audio Streams
with Applications to Similarity Computing

*Arshia Cont, Shlomo Dubnov, and Gérard Assayag

Abstract—This paper proposes methods for information pro-
cessing of audio streams using methods of information geometry.
We lay the theoretical groundwork for a framework allowing the
treatment of signal information as information entities, suitable
for similarity and symbolic computing on audio signals. The
theoretical basis of this paper is based on the information
geometry of statistical structures representing audio spectrum
features, and specifically through the bijection between the
generic families of Bregman divergences and that of exponential
distributions. The proposed framework, called Music Information
Geometry allows online segmentation of audio streams to metric
balls where each ball represents a quasi-stationary continuous
chunk of audio, and discusses methods to qualify and quantify
information between entities for similarity computing. We define
an information geometry that approximates a similarity metric
space, redefine general notions in music information retrieval
such as similarity between entities, and address methods for
dealing with non-stationarity of audio signals. We demonstrate
the framework on two sample applications for online audio
structure discovery and audio matching.

I. INTRODUCTION

MUSIC Information Retrieval (MIR) systems deal one
way or another with the information content of music

signals, their transformations, or extraction of models or
parameters from this information. A common question that
many such systems ask at their front-end is what information
is presented in the signal and to what relevancy? This question
is central in almost all music information retrieval systems
dealing either with temporal structures of audio data streams
for search applications (query-by-humming, audio matching,
music summarization etc.), or with temporal decomposition of
audio (source separation, multiple-source identification, etc.).

In this paper, we seek a comprehensive framework that
allows us to quantify, process and represent information con-
tained in temporal structure of audio streams. An audio stream
is a sequence of audio data presented to an algorithm one item
at a time, thus capable of online processing of information.
The framework introduced in this paper brings in concepts
from various literatures: music signal processing, information
geometry and machine learning. By this combination, we aim
to investigate the natural geometric structures occupied by
families of probability distributions representing audio streams
that implicitly represent the ongoing information structure of
the signal over time. Within this framework, music information
arrives in discrete analysis windows over time and occupy
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statistical points in an information manifold. These statisti-
cal points are then analyzed within a generic mathematical
framework called Music Information Geometry, that assures
the existence of an approximate similarity metric space over
data, and redefines common concepts in the MIR literature
such as similarity and metric balls.

The present work inscribes itself within the more general
framework of information dynamics measures for audio in
relation to music cognition. Dubnov has studied information
measure based on mutual information between the past and
present of audio and showed its significance compared to data
collected from listeners [1]. He later developed his method
in [2] for non-stationary audio by separating the data and
model aspects of information dynamics. One of the difficulties
with this approach is determining what consists of relevant
information between data and model. For instance, in the
data case it is assumed that individual observations carry
little information about the model, while in the model case
they are represented by cluster centers, so the information
between observations is ignored. The present work solves this
problem by explicitly defining models on statistical points and
providing mathematical tools for further processing.

Music Information Retrieval (MIR) systems mostly rely on
the notion of self-similarity measures for music and audio
[3] as a basis to compare and deduce music structures. Many
MIR techniques also rely on geometric concepts in machine
learning for building classifiers in supervised problems (genre
classification, artist identification, query by example etc.) or
clustering data in unsupervised settings (audio search engines,
structure discovery etc.). Implicit in all these considerations
is the fact that similarity measures, with all their variety
of formulations, constitute a metric space where equivalence
categories can be deduced and compared. At this stage,
there is no clear boundary in the literature between metrics
and the notion of similarity. Another drawback of common
information processing methods in MIR is the wide use of
bag of features models, where audio data is represented to
the system with no temporal order. Despite their wide use,
such techniques ignore the temporal dimensions of the data
which is an essential criteria in many retrieval processes.
The proposed Music Information Geometry framework aims
at approximating metric spaces over a wide-variaty of signal
representations and similarity measures that lie within the
generic families of Bregman divergences and exponential
family distributions, and by explicitly considering the temporal
order of audio streams.

We emphasize that our focus here is on the mathematical
properties of common distortion measures once formulated
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using methods of information geometry, and not the difficult
and open problem of characterizing which distortion measures
best address the subjective quality of particular psychoacoustic
characteristics of music. The major intent of this paper is to
lay the theoretical groundwork for forthcoming experimen-
tal results. However, we exhibit results on two major MIR
applications defined on information manifolds: online audio
structure discovery and audio matching. The goal here is not
to compare these results with the extensive literature within
each application, but to showcase the power of information
geometric formulations on complex problem sets. Details of
experimental results are thus left for dedicated publications.

This paper is organized as follows: Section II introduces ba-
sic mathematical tools and theorems of information geometry
over Bregman divergences and their relationship to exponential
distributions. Section III, refines common tools and terms
such as distortion and similarity to prepare the common
ground. Section IV introduces our Music Information Geom-
etry framework, providing tools, theorems and definitions that
permit a migration from Bregman divergences to similarity
metric spaces. Section V provides sample applications of the
proposed framework proceeded by conclusions.

II. PRELIMINARIES

In this section, we introduce the mathematical basis of our
proposal. We start by introducing basic concepts of informa-
tion geometry and move on to Bregman divergences and their
geometric properties and introducing exponential families and
their behavior in a Bregman geometry. The reader is referred
to [4]–[6] for details and proofs.

A. Information Geometry of Statistical Structures

Let us consider a family of probability distributions speci-
fied by a vector parameter p(x, ξ) where ξ is a vector constitut-
ing the model parameters of the probability distribution. This
set can be regarded as a manifold under certain regularity con-
ditions where ξ = (ξ1, . . . , ξn) would be its coordinate system.
A manifold is an abstract mathematical space in which every
point has a neighborhood which resembles a regular Euclidean
space but the global structure may be more complicated. By
defining probability distributions on a manifold, each point
would then refer to a realization of a family of probability
distribution. The manifold has a natural geometrical structure
if the geometrical structure is (1) invariant under the coordinate
system (or parameters) used to specify the distributions, and
(2) invariant under rescaling of the random variable x.

Amari [4] shows that representing statistical structures
within a Riemannian geometry equipped with the Fisher
Information measure as inner product g, and a canonic affine
connection ∆, would constitute an information geometry. This
construction allows definitions for many geometrical structures
such as distances, lines, volumes etc. Among such constructs,
the existence of dual canonic divergences or distance like
measure D between two points in the geometry is of extreme
importance to us. Alternatively, there have been attempts
to define information geometries on Riemannian manifolds
with g, directly by inducing divergences instead of affine

connections. Recently, Zhang [7] introduced a canonical form
of affine connection that deduces many types of divergence
functions which are in common use in engineering including
the well-known Bregman Divergence family [8]. Given these
findings, and within the framework introduced in [7], we can
assume a geometrical structure over probability manifolds S
using Fisher Information and Bregman Divergences.

Throughout this paper, we assume that a system under
measurement generates families of probability distributions on
a dual information manifold defined as (S, g,∆D,∆D∗

) where
its geometric properties are induced by employing Bregman
Divergence D. Also, the term point represents a family of
probability distributions that belongs to a probability simplex
X ∈ Rd. Vector mathematical constructs are notated using
boldface characters in contrast to scalar constructs.

B. Elements of Bregman Geometry

Definition 1 ( [6], [8]). For any two points p and q of X ∈ Rd,
the Bregman Divergence DΦ(., .) : X × X → R of p to q
associated to a strictly convex and differentiable function Φ
(called generator function) is defined as:

DΦ(p, q) = Φ(p)− Φ(q)− 〈∇Φ(q),p− q〉 (1)

where ∇Φ =
[
∂Φ
∂x1

, . . . , ∂Φ
∂xd

]
denotes the gradient operator

and 〈p, q〉 the inner or dot product.

The most interesting point about Bregman family of diver-
gence is that they can generate many of the common distances
in the literature. Table I shows several of these canonical
generations (see also [9]). Among common properties of
Bregman divergences, we can easily show that they are non-
negative, convex on the first argument, and linearly invariant
on Φ. The reader is referred to [5, Appendix A] for details.

TABLE I
BREGMAN DIVERGENCE GENERATION EXAMPLES

X Φ DΦ(p, q) Generic Name

R+ x log x− x p log p
q
− p+ q Kullback-Leibler Div.

R+
∗ − log x p

q
− log p

q
− 1 Itakura-Saito Div.

Rd ||x||2 ||p− q||2 Squared Euclidean

1) Dual Structure: An important property of information
manifolds is the existence of a dual structure based on
Legendre transformation for any geometrical structure on
S. Using statistical manifolds on Bregman divergences, this
dual structure can be entirely exploited by defining the dual
divergence that is generated by the Legendre transformation
of Φ or Φ∗ =

∫
∇−1Φ. In the sequel, we denote the dual

point of x as x′ = ∇Φ(x). The following property shows the
relationship between a Bregman divergence and its dual:

Property 1 ( [6]). DΦ∗ is also a Bregman divergence called
the Legendre dual divergence of DΦ and we have:

DΦ(p, q) = Φ(p) + Φ∗(q)− < p, q′ >= DΦ∗(q′,p′)
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2) Bregman Balls: In analogy to Euclidean geometry, we
can define a Bregman ball. Due to the asymmetric nature of
Bregman divergences, a Bregman ball can be defined as two
counterparts which are right-type or left-type. A Bregman ball
of right-type centered at µk with radius Rk is defined as:

Br(µk, Rk) = {x ∈ X : DΦ(x,µk) ≤ Rk} (2)

Similarly, the Bregman ball of left-type B`(µk, Rk) is defined
by inverting the divergence in eq. 2 to DΦ(µk,x).

3) Bregman Information: Let X be a random variable fol-
lowing a probability ν that takes values in X = {xi}ni=1 ⊂ Rd.
Let µ = Eν [X]. Then the Bregman Information of X is:

IΦ(X) = Eν [DΦ(X,µ)] =
n∑
i=1

νiDΦ(xi,µ) (3)

Well-known examples of Bregman Information are variance
and mutual information (see [5]).

C. Exponential Family of Distributions

Among different distribution families, the exponential fam-
ily of probability distributions are of special importance and
have found their way in many pattern recognition applications.
Their canonical definition is as follows:

p(x|θ) = exp [< θ,f(x) > −F (θ) + C(x)] (4)

where f(x) is the sufficient statistics and θ ∈ X represents
the natural parameters. F is called the cumulant function,
and fully characterizes the exponential family while the term
C(x) ensures density normalization. Many of commonly used
distribution families can be generated by proper choice of
natural parameters and sufficient statistics as demonstrated in
table II. The expectation of X with respect to p(x;θ) is called
the expectation parameter or µ = µ(θ) =

∫
x p(x;θ) dx.

TABLE II
EXAMPLES OF EXPONENTIAL FAMILY DISTRIBUTIONS

Distribution Natural Cumulant
p(x,Θ) Parameters θ function F (θ)

N (x; ν, σ2) { ν
σ2

−1
2σ2 } − θ21

4θ2
+ 1

2
log(− π

θ2
)

(Univ. Gaussian)
N (x;ν,Σ) {Σ−1ν − 1

2
Σ−1} 1

2
νTΣ−1ν

(Multiv. Gaussian) + 1
2

log det(2πΣ)

N !∏d

j=1
xj !

d∏
j=1

q
xj

j

{
log qi

1−
∑d

j=1
qi

}
log(1 +

∑d

i=1
exp θi)

(Multinomial)

1) Duality of natural and expectation parameters: It can
be shown [4] that the expectation and natural parameters
of exponential families of distributions have a one-to-one
correspondence and span spaces that exhibit a dual relationship
as outlined in section II-B1. Due to the convexity of F , its
dual F ∗ exists on Θ and the following important one-to-one
mappings hold between the two spaces:

µ(θ) = ∇F (θ) and θ(µ) = ∇F ∗(µ) (5)

meaning that the expectation parameter is the image of the
natural parameter under the gradient mapping and vice-versa.

2) Bijection with Bregman divergences: A natural question
to ask at this point is: What family of Bregman divergence
should be chosen for a given family of exponential distribu-
tions? The answer lies in the important property of bijection
between exponential families and Bregman divergences as
proved in [5]. This theorem implies that every regular expo-
nential family corresponds to a unique Bregman divergence
and vice versa, leading to a one-to-one mapping:

Theorem 1 ( [5]). Let p(x;θ) be the probability density
function of a regular exponential family of distribution with F
as its associated cumulant function. Let F ∗ be the conjugate
function of F . Let θ ∈ Θ be the natural parameter and µ be
the corresponding expectation parameter. Then p(x;θ) can be
uniquely expressed as

p(x;θ) = exp(−DF∗(x,µ))bF∗(x) (6)

where bF∗(x) is a uniquely determined function.

Table III shows three examples of bijection between ex-
ponential distributions and Bregman divergences with derived
expectation parameters corresponding to examples in table II.
This information suggests that the bijected Bregman diver-
gence for Multinomial distributions is the well-known KL
divergence, whereas for a spherical Gaussian it amounts to
a simple Mahalanobis distance (see [5] for more examples).

TABLE III
EXPONENTIAL DISTRIBUTIONS WITH BIJECTED BREGMAN DIVERGENCES

Distribution Expectation Parameter Bijected Bregman Div.
p(x,Θ) µ DF∗ (x,µ)

N (x; ν, σ2) ν Squared Euclidean
1

2σ2 (x− ν)2

N (x;ν,Σ) ν Mahalanobis
(x− µ)TΣ(x− µ)

Multinomial {Nqj}d−1
j=1 Kullback-Leibler

3) Mixture Models: In machine learning and pattern recog-
nition literature, many stochastic sources are expressed as
a mixture of k densities of the same exponential family.
This yields a soft clustering where clusters correspond to the
components of the mixture model, and the soft membership of
a data point in each cluster is proportional to the probability
of the data point being generated by the corresponding density
function. Using the right side of eq. 6, the log-likelihood of an
exponential mixture model with mixture weights πi becomes:

L(x|Γ) =
k∑
i=1

log[πibF∗(x)]DF∗(x,µi)

=
k∑
i=1

νiDF (θi,x′) (7)

where property 1 and relationships in eq. 5 have been em-
ployed. Note that eq. 7 is simply a reiteration of the Bregman
Information in the dual setting and up to an additive constant.
This simply states that there is a duality relationship between
exponential distributions and their mixtures. This is also true
for more general affine connections as discussed in [4].
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III. DISTORTIONS, SIMILARITY, AND METRICS

An information manifold defined on Bregman divergences
or (S, g,∆D,∆D∗

) provides us with interesting information
theoretic tools for qualification and quantification of paramet-
ric stream information. Once such a framework exists, it is
desirable to apply it to common pattern recognition problems
such as nearest neighbor search or segmentation schemes to
name a few. Such measures of information have been widely
referred to as distortion measures in the speech and audio
processing literatures. The distortion between two entities
represents the cost resulting when the first is reproduced by the
other and is related to new information carried from one entity
to other. Distortion measures have wide variety of applications
in the design and comparison of systems [10]. Despite their
usefulness, these measures do not guarantee equivalence be-
tween entities if distortion is low. This is in contrast to most
information processing systems where a notion of metric is
required to assure equivalence between classes for clustering
or classifying data points or clusters. In this section, we study
necessary properties for metric equivalence and discuss the
behavior of Bregman distortions as metrics.

Let Ω be a nonempty set and R+ be the set of non-negative
real numbers. A metric function on Ω is a function d : Ω×Ω→
R+ if it satisfies the following properties [11]:

Property 2. d(x,y) = 0 iff x = y

Property 3 (Symmetry). d(x,y) = d(y,x)

Property 4 (Triangle Inequality). d(x,y) ≤ d(x, z)+d(z,y)

We are interested in a particular type of distance, the
“similarity distance”. In the field of Music Information Re-
trieval, Jonathan Foote has been credited for promoting and
using self-similarity measures for music and audio [3]. The
MIR literature on database search, structure discovery, query-
based retrieval and many more, rely on Foote’s general notion
of similarity as a basis to compare, retrieve, and discover
music structures. Nevertheless, the metrics employed in such
approaches lack one or more of the properties above, and
moreover do not necessarily address any information theoretic
aspect of the content. In this section, we study the notions of
distortions, similarity and metric spaces with a special eye on
the bijected Bregman divergences on information manifolds to
pave the way for the proposal in section IV.

A. Equivalence and Similarity

Within information entities, an ideal similarity metric d and
distortion measure D are inversely related. In other words,
two entities have high similarity when the information rate
between them is low, and vice versa. Given this intuition, we
can consider two information states similar if the information
carried from one to the other is minimal. Because signals
can have arbitrary forms, usual choices for assessing signal
difference like mean-squared error make little sense. Instead
we rely on distance measures that quantify difference between
the signals’ probabilistic descriptions. We thus append the
following definition to property 2:

Definition 2 (Similarity). Two entities θ0,θ1 ∈ X are as-
sumed to be similar if the information gain by passing from
one representation to other is zero or minimal; quantified by
D(θ0,θ1) < ε which depends not on the signal itself, but on
the probability functions pX(x;θ0) and pX(x;θ1).

Following the intimate relationship between exponential
families and Bregman divergences, they would naturally fit
to the above definition to detect similar entities when audio
streams are modeled parametrically as exponential family
of distributions. While property 2 is inherent for all DF ,
Bregman divergences are not necessarily metrics since they
are usually not symmetrical and the triangular inequality does
not generally hold. We now study these two missing properties
and provide the grounds to approach them in section IV.

B. Symmetrized Bregman Divergences

Bregman divergences are not necessarily symmetric and
various methods exist to make them so. A common approach
is to employ the J-divergence or

DJ
F =

1
2

[DF (x,y) +DF (y,x)] (8)

as in [12], [13], but this symmetrization scheme does not fit the
dually flat manifold [9], and requires further considerations for
use within applications that necessitate similarity computing.

C. Triangle Inequality

Among the three properties for metrics, the triangle inequal-
ity is probably the most non-trivial. The triangle inequality can
be generalized for any triple x, y, and z in X as follows:

DF (x, z) +DF (z,y) = DF (x,y) + 〈x− z,y′ − z′〉 (9)

If the underlying geometry is dually flat, which is the case with
manifolds deduced from Bregman divergences, the generalized
Pythagoras theorem states that

DF (x,y) ≥ DF (x, z) +DF (z,y) (10)

where the equality hold only if for X being a convex simplex
of x [4], z = argminq∈X DF (q,y) which is not true for ar-
bitrary entities r ∈ X , and we are left with eq. 10 which is the
inverse of property 4. Therefore special attention must be paid
in computing similarity using regular Bregman divergences.

IV. MUSIC INFORMATION GEOMETRY

Using mathematical tools introduced so far, we aim at
providing a framework for processing and qualifying the
effectiveness of audio streams. We define an affine informa-
tion geometry (S, g,∆D,∆D∗

) using Bregman divergences
induced by the choice of statistical distribution over incoming
data and represented hereafter as DF , where F is deduced
from theorem 1. We start by presenting the general framework,
proceed to data and model information entities, and discuss
information theoretic tools useful for many pattern recognition
and information retrieval applications.
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A. General Framework

In our framework, audio data arrives incrementally to the
system as time series Xti containing sampled overlapping
windows of audio where ti is time (in seconds) of the window
center. For simplicity, we drop the i index hereafter and use
Xt instead where t ∈ N. We assume that data underlying
Xt is generated by a family of exponential distributions
(or mixture there of). By this assumption, theorem 1 would
provide us automatically with distortion measure DF and
underlying geometrical tools discussed so far to introduce an
information processing framework. In this section, we discuss
these assumptions and their consequence in the design and
formulation of common problems in audio processing.

The choice of the exponential family distribution over time
series Xt depends on the nature of the problem to solve and
constitutes the a priori over modeling. Despite this limitation,
generic exponential distributions (or their mixtures) are widely
employed in general pattern recognition as well as audio and
speech processing systems either implicitly or explicitly. For
example many researchers choose a time-frequency represen-
tation over Xt as St(ω) such as short-time Fourier or wavelet
transforms, where each St(ω) can be treated as frequency
distributions or histograms of the corresponding Xt. Such
histogram features can be assumed, without loss of generality,
to be generated by Multinomial distributions with the well-
known KL divergence as bijected distortion measure. This
choice has been empirically proved in [12] for concatenative
speech synthesis. Other systems tend to use more compact
representations for audio signals such as Cepstral Coefficients
and/or by directly modeling through probability distributions
with sparser natural parameter space. The review of such
systems is out of the scope of this paper but existing literature
should convince the reader of the wide use of exponential dis-
tributions and their mixtures. In summary, any design process
for a given problem that involves exponential distributions (or
their mixtures) as front-end has a unique information geometry
defined by its bijected Bregman divergence.

Using exponential distributions over data streams, the time
series Xt can be represented by their equivalent distributions
p(x,θt) or by natural parameters θt ∈ Θ. θts constitute the
points of the information manifold, referred hereafter as data
points. Converting back and forth between the data in Xt (or
relevant feature representations) and θt is problem dependent
but is a one-to-one mapping (see [5] for examples). In the
following subsections, we employ information geometric tools
for information processing of underlying audio streams.

B. From Data Information Rate to Model Information Rate

The first step in any information processing system is to
introduce measures quantifying the amount of information car-
ried through the signal. Following [2], we denote such measure
as Information Rate (IR) within a transmission process over
a noisy time-channel and defined as the relative reduction
of uncertainty of the present considering the past. [2] shows
that the Information Rate at time t = T is equal to the
mutual information carried between the past {X1, · · · , XT−1}
(denoted in the sequel as XT−1

1 ) and history of the signal up to

present or XT
1 . It is further shown in [14] that for a stationary

Gaussian process, IR can be approximated asymptotically in
T using the spectral flatness measure of the time signal, or the
ratio between geometrical and arithmetical means of {St(ω)}.
We refer to this measure as Data-IR, reflecting information
rates on data points. It can be proven that this data-IR measure
is a special case of Bregman Information for Itakura-Saito (IS)
divergence, widely used in speech and audio as a distortion
measure on power spectra [10]. See [15, Ch. 4] for proof.

Using Bregman Information on information manifolds, the
Data-IR measure can thus be extended to other representa-
tional aspects of the underlying stream. Despite this theoretical
comfort, Data-IR is not useful in practice for two main
reasons: (1) the underlying assumption of stationarity on Xt

which is not true for real audio, and (2) extensive consideration
of data-points in computation specially for long streams.

To tackle both issues, we adopt the plausible hypothe-
sis that the signal is stationary in a finite and continuous
time-interval under some model θk and described through
P (x1, . . . ,xn|θk). Within our information manifold, this
draws down to the geometric intuition that a set of continuous
data points on our manifold are concentrated around a single
point representative of θk.

Definition 3 (Models). Given (S, g,∆D,∆D∗
) on a regular

exponential family formed on Xk, a model θi consists of a set
Xi = {Xk|k ∈ N ,N ⊂ N} that forms a minimum enclosing
Bregman Ball Br(µi, Ri).

A model defined and constructed on an audio stream refers
to continuous data points on the information manifold that
are self-contained in an information theoretic sense, and cor-
responds to a quasi-stationary chunk of audio in the stream.
Therefore, the distinction between data points and models on
an audio stream manifold is structural: data points refer to
micro-structures of the audio whereas models correspond to
macro-structures that give sense to the global structure of
the stream. In this manner, it makes little sense to directly
compute between data points where their model parameters
provide enough information for intra-structural comparisons.
For similarity computing, it is more useful to structurally refer
to model parameters first and if needed, refer to the data points
within the model. Therefore, providing a metric space as in
section III is crucial for between-model comparisons.

The above definition requires us to formalize the following
aspects: (1) How to form a minimum enclosing ball once
model data-points Xi are given, (2) How to quantify the
information rate carried from one model to another, and
(3) how to incrementally achieve a segmentation of audio
streams to information entities or models as defined above. The
following subsections would address each question separately.

C. Centroid Computation

An important tool in both quantizer design and cluster
analysis techniques is the generalized centroid of a cluster of
data points. Given a cluster of points, this is the best single
representative of the cluster and defined as the optimizer of the
minimum average distance for the entire set of points in the
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cluster. Banerjee et al [5] have proven the following important
theorem for Bregman centroids:

Theorem 2 ( [5]). Let X be a random variable that takes
values in X = {xi}ni=1 ⊂ Rd following a probability ν. Given
a Bregman divergence DF , the right type centroid of X or

cFR(X ) = argmin
c

n∑
i=1

νiDF (xi, c) (11)

is unique, independent of F and coincides with µ = Eν [X]

or for νi = 1/n to center of mass µ = 1
n

n∑
i=1

xi.

It is important to notice the equivalence between eq. 11 and
that of Bregman Information on uniform distributions with
additional optimization. In other words, a computed centroid
on an information geometric framework represents a minimum
enclosing ball in terms of information content, or minimum
distortion point of the given set. Given this, we can safely
adopt the Bregman centroid computation for forming balls
representing models of our information geometric framework.

In addition to the above definition and due to general
asymmetry of Bregman divergences, we can define a left-
type centroid by reversing the order of computation in eq. 11.
Obviously, theorem 2 does not hold for the left-type centroid
and the optimization becomes non-trivial. We can however
employ the dualistic structure of our information manifold to
obtain cFL . Combining theorem 2 and property 1 we obtain:

cFL(X ) = (∇F )−1(
n∑
i=1

∇F (xi)) = (∇F )−1(cF
∗

R (X ′)) (12)

stating that the left-type centroid is obtained by calculating the
right-type centroid in the dual manifold using theorem 2 and
converting it back to the original space.

For asymmetric Bregman divergences, a symmetrized Breg-
man centroid on the set P = {pi}ni=1 ⊂ X can be defined by
the following optimization problem:

cF (P) = argmin
c∈X

n∑
i=1

DF (c,pi) +DF (pi, c)
2

(13)

conforming to the symmetrization scheme in eq. 8. This
optimization problem has been previously addressed in [16]
for Kullback-Leibler divergences and by employing convex
optimization techniques. It is shown in [9] that it can be
extended to general Bregman divergences and simplified to
a constant-size system relying on the right-type and left-
type centroids by employing duality and a geodesic-walk
dichotomic approximation algorithm; hence, well adapted to
information manifolds of exponential distributions.

Solving eq. 13 requires an optimization framework in con-
trary to most literature that define (for example) symmetrized
KL divergence centroids as arithmetic or normalized geometric
mean of the left-type and right-type. Both approaches in
[16] and [9] empirically prove this remark on image and
audio processing applications. For our framework, we adopt
the geodesic-walk algorithm in [9] to solve for an optimal
symmetric Bregman ball. The radius of a given Bregman ball
Br with centroid cFR on the set P = {pi}ni=1 ⊂ X is simply the

Bregman Information of eq. 3 on the set P . For the symmetric
construction above, it is shown that this radius is equal for the
right-sided and left-sided centroids [9, Corollary 3.3].

D. Model Comparison and Data Membership Check

In our information geoemtry, an audio stream is thus rep-
resented by Bregman Balls Bkr (µk, Rk) which by themselves
contain continuous data points θt. Here, we study the task of
qualifying information rates within models and also member-
ship of data points to models. These operations are important
in many pattern recognition and information retrieval tasks that
require information theoretic comparisons between entities
such as similarity and nearest neighbor seach and clustering.

Following our definition of similarity, we can safely assign
the information rate for passing from one model Bir(µi, Ri)
to another Bjr(µj , Rj) as the distortion between the two
representative centroids of the two clusters or DF (µi,µj)
(and similarly DJ

F (µi,µj) for symmetrized centroids). How-
ever, checking for membership of an arbitrary data point
X to a given ball Bkr (µk, Rk) containing its own set of
points becomes non-trivial mostly due to the lack of tri-
angle inequality. Note that if the triangle inequality holds,
this membership check simply amounts to checking whether
DF (X,µk) ≤ Rk. In the absence of this property, we perform
tests by projecting X onto the Bregman ball Br(µk, Rk).
This projection is the unique minimizer XB such that XB =
argminx∈Bk

r
DF (x,µk). Once XB is established, member-

ship can be obtained by checking whether DF (X,XB) ≤ ε.
It can be easily shown that XB lies on the geodesic line

connecting X and µk [6], [17]. Such geodesic is characterized
as the set of points ΓXµk

= {∇−1F ((1− λ)X ′ + λµ′k) |λ ∈
[0, 1]}. To findXB , we can first check whetherX is inside the
ball or not: DF (X,µ) > Rk. If not, then DF (X,µ) ≤ Rk
and hence the projection is the point itself. Otherwise, XB ∈
ΓXµk

for some arbitrary λB ∈ [0, 1]. Geometrically, such a
point must lie on the boundary of Br and thus combining
ΓXµk

with a bisection can approximate the placement of XB

and can be found by a linear search as proposed in [18]. Note
that this projection procedure assures an approximation of the
Pythagoras equality in eq. 10.

E. Incremental Segmentation/Change Detection

In this section we propose a simple method for online
segmentation of an audio stream to information geometric
models and through a change detection process. Given a set
of data points in S, the problem of finding models according
to definition 3 is a classical clustering problem in S where
each cluster defines a minimum enclosing Bregman ball over
data points. Offline Clustering over Bregman spaces has been
previously addressed in [5] and as an extension to EM algo-
rithms. These methods are in common use for speech and
audio clustering by considering bag of features or bag of
frames models and thus neglecting the importance of temporal
dimensions in retrieval processes. Based on our information
manifolds, we propose a simple online clustering algorithm
for incremental model formation that strongly employs the
temporal morphology of data over the information manifold.
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Following definitions 3, we base our segmentation technique
on detecting information jumps in an ongoing audio streamXt

for forming models or minimum-information Bregman balls
over time. The information radius Rk defines the maximum
information gain around a centroid µk that model k contains
through DJ

F . Employing change detection for incremental
Bregman ball formation on continuous streams has the implicit
assumption that the models’ information gain on audio streams
is a right-continuous with left limit function of time. This
assumption is a direct consequence of our initial consideration
that the signal is stationary in a finite time-frame under a model
θk. This conforms to the intuitive nature of music information
characterized by distinct events with an information onset
implying a discontinuity with regards to the past.

The goal of model formation in our framework is thus to
search for a proper segmentation on audio streams such that
each resulting segment is quasi-stationary and homogeneous
in terms of information content. The detection of a change
is equivalent to accepting a hypothesis H1 of change for
time r ≤ n when testing against the hypothesis H0 of no
change. Algorithm 1 shows a basic online implementation of
the change detection which accepts an observation sequence
of length n, and initialized on Xn

0 with f = 0.

Algorithm 1 Online model Segmentation/Change Detection
Require: Audio stream Xt, ongoing model Bk(µk, Rk), ob-

servation window n, first index f
Ensure: t− f ≥ n (minimum observation length)

1: Initialize observation vectors {Oi}t−f−1
i=0 to Xt

t−f
2: Detect change point r∗ in {Oi} with regards to Bk

3: if No change is detected then
4: set f = t
5: else
6: Initiate a new Bregman ball Bk+1 on {Oi}n−1

i=r∗

7: set f = r∗, k = k + 1
8: end if
9: return next starting index f , ongoing ball Bk(µk, Rk)

The change detection algorithm proposed here is an adopted
version of the CuSum algorithm [19] which has been employed
in various segmentation schemes such as audio [20]. In a
generic CuSum algorithm, the likelihood ratio of the condi-
tional probabilities of the observations under the hypothesis
H1 and H0 is estimated, then the maximum of the sum of
the log-likelihood ratio of the sequence of observations is
compared to a threshold λ to determine whether a boundary
exists between two segments of the sequence. Concretely,
given n observations, cn = maxr

∑n
k=r `k where `k is the

log-likelihood ratio of conditional probabilities with respect
to H0 and H1, and compared to λ to assess the change point.

The CuSum algorithm assumes that the conditional proba-
bilities of observations under both hypothesis H1 and H0 are
known. While this is a difficulty for most applications, it does
not pose any in our framework. Concretely, given an ongoing
model Bk(µk, Rk) and n observations, H0 hypothesis at r
assumes that Or

0 are all members of Bk(µk, Rk) as explained
in section IV-D, and H1 at r assumes that On

r constructs a

new ball. Therefore, the likelihood ratio `k becomes

`k = DJ
F (cF

[{
µk ∪ {Ok−1

0 }
}]
, cF [{On

k }]) (14)

where cF is the symmetric Bregman centroid. The first argu-
ment of DJ

F refers to the inclusion of data points {On
k } within

Bk and the second is the hypothesis of forming a new ball.
The change point threshold λ applied to `k of eq. 14 has a

direct geometrical interpretation. It corresponds to the minimal
discrimination information distance between two consecutive
models on the audio stream. In other words, using the change
detection algorithm above and for two consecutive models k
and k + 1, we would always have DJ

F (µk,µk+1) ≥ λ.
Figure 1 shows the result of this segmentation on an audio

excerpt corresponding to the first theme of Beethoven’s 1st

Piano sonata performed by Friedrich Gulda. The information
geometry employed for this excerpt corresponds to amplitude
spectrum, assumed without lack of generality to be generated
by Multinomial distributions with the bijected Bregman as
Kullback-Leibler. The normalized audio waveform is super-
posed by `t or change point likelihoods as well as detected
model onsets. This example consists of 583 data points (analy-
sis frames) and leads to 44 disjoint and variable length models.

0 1 2 3 4 5 6 7 8 9
0
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0.4

0.6
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1 2 3 4 5 6 7 89 10 11 12 13 1415 16171819 20 21 2223 24 25 2627 28 29 30 31 32 33 343536 37 3839404142 43 44

 

 

Audio
CuSum Likelihood
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Fig. 1. Segmentation result on the first theme of Beethoven’s first sonata,
performed by Friedrich Gulda with λ = 0.1.

V. SAMPLE APPLICATIONS

To motivate the theoretical framework discussed above, we
present two sample applications in pattern recognition and
music information retrieval on audio streams. More results of
these sample applications (on different types of sounds and
music) can be found on our project website1.

A. Online Audio Structure Discovery

For our first sample application, we are interested in rep-
resenting the repetitions and long-term regularities within an
ongoing audio stream. Music structure analysis from acoustic
signals has been addressed previously by various methods. A
good review of existing approches can be found in [21]. We
aim at obtaining an online procedure that can quickly group
equivalent patterns and find the longest sequence of models
in the past of the audio stream. The first problem is referred
to as clustering and the second as structure discovery. We are
interested in a fast method that can address both in one shot.

1http://imtr.ircam.fr/imtr/Music Information Geometry

http://imtr.ircam.fr/imtr/Music_Information_Geometry
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The idea behind this application is the following: The
Music Information Geometry framework provides us with
information entities as minimum information Bregman balls
over the time series Xt, which can be compared to each
other using the discussed methods as in symbolic equivalence
classes but on a continuous metric and using the similarity
definition on page 4. This brings out the idea of adapting
common symbolic algorithms for the signal world.

Our algorithm for automatic discovery of audio structures
is motivated by a technique for fast indexing of symbolic data
such as text and DNA called Factor Oracle (FO) [22]. A time
series of symbols S = σn1 in a FO is learned as a state-space
diagram, whose states are indexed by from 0 to n. There is
always a transition called the factor link labelled by symbol
σi going from state i−1 to state i. Navigating a FO from state
0 to n incrementally would generate the original sequence S.
Depending on the structure of S, other labelled factors links as
forward transitions might be created, as well as some backward
transitions called suffix links with no label.

The factor and suffix links in FO have direct structural
interpretations. A factor link going from state i to j indicates
that a (variable length) history of symbols immediately before
i is a common prefix of the sequence of symbols leading to
j. A Suffix link from state m to an earlier state k indicates
that the two states share the longest suffix. A suffix link goes
from i to j if and only if the longest repeated suffix of si1 is
recognized in j, connecting repeated patterns in S. The length
of each repeating factor for each suffix link can be computed in
linear time and denoted as lrs(i) for each state i. This property
of suffix links alone make FOs attractive on large sequences.
Figure 2a shows schematically how maximum length repeated
factors are interconnected by suffix links. The thickness of the
chunks represents the length of the repeated factor. Following
each suffix link from the head of a Factor Oracle structure to
the very beginning provides a forest of disjoint tree structures
whose roots are the smallest and leftmost patterns appearing in
the trees, thus capturing all redundancies inside the sequence.
Figure 2b shows these linked trees associated to fig. 2a.

SNS0

(a) Suffix Structure Diagram

SNS0

(b) Expanded Suffix Trees

Fig. 2. The Suffix structure and Suffix Link forest of disjoint trees.

To extend Factor Oracles to music information geometry,
symbols σi are replaced by models and symbolic equivalence
to similarity as in definition 2 on bijected and symmetric DJ

F .
Following figure 2, by learning audio structures we are inter-
ested in suffix links and their corresponding lengths. Figure 3
visualizes the learned structures of the Oracle on a recording
of Beethoven’s first piano sonata, 3rd movement performed
by Friedrich Gulda (recorded in 1950s). In this example,
data points are constant-Q power spectrum on logarithmic
musical scales as reported in [23] with an analysis window of
approximately 64ms and an overlap factor of 2. Using these
histogram features, the corresponding Bregman geometry is

that of KL divergences. The information threshold for the
CuSum algorithm is set to 0.15 and the similarity threshold ε
for Oracle to 0.1. The three subplots show the audio waveform,
the suffix structure, and the length of repeating sequence lrs
associated to each state respectively. The suffix subplot is read
as follows: A time t on the x-axis would send a pointer back
to a time t′ (t′ < t) indicating the longest common suffix
between a factor at time t and t′. The corresponding value for
t on the lrs subplot reveals the length of the detected longest
sequence (as number of states) for that state. In this example,
we have superposed the reference structure in terms of labelled
blocks taken from explicit repetitions in the music score.

A A B B C C D D A B

C C

Fig. 3. Incrementally learned Oracle structure along with the segmented
structure in terms of blocks from the orignal symbolic music score;
Beethoven’s Piano Sonata 1-movement 3, interpreted by Friedrich Gulda.

In the classical music example of figure 3, the music
goes through various structural repetitions and recombinations
which are mostly captured by the Oracle structure. Such
repetitions in the context of a human performance of a
piece of music are never exact, but nevertheless detected.
This sample comprises an audio stream of 9500 analysis
frames that leads to 440 learned models and states. Given
this structure, we can construct a traditional similarity matrix
by substituting each found suffix link by its corresponding
distance or sim(i, j) = DJ

F (µi,µj) given that a suffix link
exist between i and j or zero otherwise. Figure 4a shows
this similarity matrix constructed out of the Oracle in figure 3
revealing the recall and similarity structure discussed above.

To compare, figure 4b provides a classical frame-based self-
similarity matrix over the same audio (and same features),
in common use in the MIR literature and as proposed in
[3]. Roughly, this measure is obtained by calculating the
distance between all analysis frames of the entire audio against
each other, using the same distortion. By segmenting the
audio stream into quasi-stationary states and using symbolic
equivalence rather than a distortion, figure 4a can be obtained
more efficiently and online where 4b requires the entire audio.
The similarity described in figure 4a also gives explicit access
to equivalent entities and continuations over time through the
structure of figure 3, whereas the similarity matrix of fig 4b
requires further processing to deduce such relations. Further-
more, the classical similarity matrix contains exhaustive basis
(9500× 9500 versus 440× 440 in fig 4a) for processing.

B. Similarity Queries over Information Streams

We showed in the previous section how long-term infor-
mation flows can be easily captured using our information
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Fig. 4. Structural Similarity matrix using structural segmentation on the music example of figure 3 using two different kernel values.

geometric framework. In this section we showcase the idea
of finding the most similar stream paths on a stream database
given a query. This problem is usually addressed under the
topic of audio matching. Once again, the goal here is not to
compare to all existing methods but to showcase the ease of
algorithmic programming once the problem set is projected
onto an information geometric framework.

Given a stream query Xt represented as a succession
of models BkX(µ, Rk), and a target stream in T as well
represented by its successive Bregman balls BjT , the problem
of finding the best match of Xt within T can be reduced to
finding the best sequence of balls in T that best constructs the
ball sequence in Xt. The problem then can be formulated as a
regular Approximate Nearest Neighbor search algorithm with
special considerations for temporal continuity between balls.
Given the compact state-space representation presented in the
previous section, and given its inherent temporal and disjoint
tree structures as shown in figure 2b, it would be natural to
choose this data structure instead of a regular ball-tree (such
as in [17]) for the search domain representation. Following
an Oracle representation on the target for a sequential search
has the advantage of providing results with best perceptual
continuity once synthesized since they correspond to natural
continuations and regularities in the original audio.

Bregman Ball sequence matching between a source (query)
and target can be achieved using dynamic programming and
following discussions in section IV-D. At the initialization, the
program chooses the most similar balls to B1

X over all balls in
T , resulting into the next search domain by choosing all factor
and suffix links from the found states following the Oracle of
T . This process is then repeated until either we reach the
end of query BTX or an empty set is found during recursion.
This simple dynamic programming scheme is able to trace
multiple paths in a single run and provides partial matches
where possible. The result is a concatenative tree structure on
the target balls that are able to reconstruct Xt balls.

Figure 5 shows the resulting Concatenative tree for an
audio query corresponding to Beethoven’s Piano Sonata Nr.1’s
first musical theme (corresponding to the model sequence in
Figure 1) and the entire Piano sonatas Oracle ball sequence

obtained as in section V-A. This experiment was done using a
similarity threshold of ε = 0.1. Each numbered state represents
a Bregman ball in the target domain T . The tree reconstructs
the query from left to right by following existing arrows.
Among possible reconstruction paths, the path highlighted
with gray corresponds to the original theme of the exact
construction of the query (balls 1 to 37), which is naturally
expected. Parallel to this main path, two rather continuous and
alternative paths exist consisting of states 169 to 202 and 460
to 511. These paths correspond to the repetition of the main
musical theme in the middle and the end of the Piano Sonata
which is a main characteristic of Sonata form in classical
music. Other sub-paths also correspond to reappearance of
the main theme in one form or another during the development
section of the sonata form. The explosion of states around time
11 and towards the end correspond to a specific model that is
representing a cadential chord which re-appears in various
places throughout the piece as an important stylistic element.

A given path of the concatenative tree result can be easily
re-synthesized to audio by concatenating corresponding audio
frames of data points within each model (ball) using classical
concatenative synthesis techniques [24]. For more audio results
we encourage the reader to check our project website.

VI. CONCLUSION

We proposed a preliminary framework for representation of
temporal dynamics of audio streams on an information mani-
fold. The construction of our information manifold approaches
a similarity metric space where similarity is defined as control
over the rate of change of information content between con-
tinuous data streams, and requires modeling the data streams
as points on an information manifold generated by a family
of exponential distributions. The music information geometry
framework presented of section IV, provides an alternative
representation of data points by incrementally gathering quasi-
stationary data points within Bregman balls that represent
self-contained models in terms of statistical information. The
music information geometry in theory provides the following
facilities: (1) representation of audio entities as well-behaved
geometric objects with intuitive geometric properties, (2) sim-
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Fig. 5. Audio Matching concatenative tree result on Beethoven’s Piano Sonata Nr.1-Mvt.1 (target) and the first musical theme as query – Showing possible
audio reconstruction paths and best path highlighted in light-gray.

plifies optimization problems thanks to duality, (3) provides an
approximate similarity metric space, bridging the gap between
continuous and symbolic aspects of audio streams, (4) fast,
sparse and incremental treatments suitable for data stream
analysis, and (5) provides a generic mathematical framework
extensible to more intricate models and applications.

The major intent of this paper was to lay the theoretical
groundwork for forthcoming experimental results and hope-
fully, for other researchers interested in exploring the new
possibilities offered by methods of information geometry on
audio streams. We however showcased two common and
complex MIR applications using the proposed framework. The
promising sample results demonstrate the intuitive manner
by which complex problems can be addressed within the
proposed information geometry framework, and the facility
to access information entities in our framework similar to
symbolic processing. Further aspects and applications of music
information geometry will be reported in future publications.

The study of audio streams as information geometries pro-
vide a new and challenging way to address complex problems
with rather simple solutions. Besides its theoretical merit,
we believe that its solutions brings out new horizons to the
applications of multimedia information retrieval.
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