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Abstract: In this paper wind instruments are modeled as time delay systems. In fact, a wind
instrument is usually made of a linear acoustic resonator (the pipe) coupled with a nonlinear
oscillator (the mouth of the instrument). The resonator can be modeled through hyperbolic
wave equations. Two kinds of instruments are considered : the first one is a slide flute, (i.e.
a kind of recorder without finger holes but ended by a piston to modify the pipe length), for
which a realistic model of the air jet coupled with the pipe is given. The second example will
concern the case of a simplified trumpet-like instrument composed of a valve (including
the mechanics of the lips, contrary to the case of the flute), an air jet coupled with the valve
dynamics and an acoustic pipe excited by the jet and radiating in the air. The overall system
can be described by a so-called nonlinear neutral state space system

Keywords: Wind instruments; Hyperbolic PDEs; Boundary conditions; Neutral delay system.

1. INTRODUCTION

Many physical models of musical instruments are available
in the literature (see for example [Fletcher, Rossing(1998)],
[Chaigne, Kergomard(2008)]). But obtaining realistic mu-
sical rendering is usually a problem, especially for self-
sustained instruments. Realistic physical models for ana-
lysis and synthesis for flue musical instruments such as
organs or recorders has been an important research sub-
ject for a few decades. We will not be exhaustive, but
we can mention paper [Cremer, Ising(1968)] giving a first
quasi-stationary model of the jet drive, which has been
later improved by many authors (see e.g. [Fletcher(1976)]).
The works of [Howe(1975)] pointed out the importance of
vortex shedding at the labium. In fact, in steady blowing
conditions, models not taking into account this effect (e.g.
in [Fletcher(1976)]) led to an overestimation of the ampli-
tude of the pressure oscillation in the pipe. Therefore, as
in [Verge, Caussé et al.(1994)], we have taken into account
these interactions jet/labium, but as already mentioned,
the system we are studying is different: the resonator’s
length is time-varying, controlled through the piston me-
chanism and there is no finger hole. The whole structure
can then be described by two linear PDEs coupled with
nonlinear ODEs describing the boundary conditions:

- for the mouth, taking into account the jet dynamics,
- and for the piston.

We will also consider another kind of wind instrument :
a simplified trumpet-like instrument which, contrary
⋆ Supported by an ANR french project “CONSONNES”
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Fig. 1. The slide flute

to the case of the flute, is composed of a valve including
the mechanics of the lips. The lips vibrations modulate the
air inflow which will excite the acoustic wave in the pipe
and then radiate in the air at the output of the resonator
(see Fig.2).

The structure of the paper is as follows : in section 2 we
recall our pipe model. In section 3 we give the physical
models of the jet channel and the mouth in the case of the
two instruments. Section 4 is devoted to the computation
of the boundary conditions at the end of the resonator and
at its entrance as well as a state-space representation for
both instruments.

2. PHYSICAL MODEL OF THE PIPE

If ρ0 denotes the fluid (here the air) density at rest, Sp

the constant section of the pipe which is supposed to be
cylindrical, and assuming the flow rate u(x, t) at time t
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Fig. 2. The dynamics of the musician’s lips is modeled by
that of a solid mass subjected to pressure forces, a
damping, and a spring.

and point x in the pipe and the relative pressure p(x, t) =
P − Patm (Patm denoting the atmospheric pressure) are
uniform on a section, the Euler equation, giving the fluid
dynamical properties can be written:

∂u

∂t
= −

Sp

ρ0

∂p

∂x
(1)

neglecting the viscous and thermal effects near the walls.

The mass conservation law has the following form :

∂ρ

∂t
= −

ρ0

Sp

∂u

∂x
. (2)

Finally, assuming that the transformation is adiabatic, we
have the following equation, c being the sound velocity in
the fluid :

p = c2ρ (3)

which allows to link the relative pressure and the density
of the fluid in which the acoustical wave evolves.

Then, replacing ρ from p in (2), we obtain the second state
equation which completes (1), i.e.:

∂p

∂t
= −

ρ0c
2

Sp

∂u

∂x
. (4)

Differentiating (4) with respect to t, (1) with respect
to x and collecting the resulting equations lead to the
d’Alembert equation :

∂2p

∂t2
− c2 ∂2p

∂x2
= 0. (5)

Equations (1) and (4) allow to write the system dynamics

in the following state-space form with X =

(

u
p

)

:

∂X

∂t
+ A

∂X

∂x
= 0 , with A =

(

0 Sp/ρ0

ρ0c
2/Sp 0

)

. (6)

This representation can be diagonalized :

∂tZ + Λ∂xZ = 0 , with Λ =

(

c 0
0 −c

)

(7)

where the change of coordinates is given by :

Z =

(

α
β

)

=









u +
Sp

ρ0c
p

u −
Sp

ρ0c
p









(8)

and

X =

(

u
p

)

=









α + β

2

ρ0c(α − β)

2Sp









. (9)

The eigenvalues c > 0 and −c < 0 being respectively the
velocity of the ingoing wave α(x, t) and of the outgoing
wave β(x, t). α(x, t) and β(x, t) satisfy two classical wave
equations:

∂α

∂t
+ c

∂α

∂x
= 0 and (10)

∂β

∂t
− c

∂β

∂x
= 0. (11)

The quantities
∂α

∂t
+ c

∂α

∂x
and

∂β

∂t
− c

∂β

∂x
can be seen as

the time derivatives
dα

dt
and

dβ

dt
of α and β in (x, t) along

the solutions of :
dx

dt
= c and

dx

dt
= −c, (12)

called “characteristic curves”. Since α(x, t) and β(x, t)
are constant along these curves, α and β are called the
Riemann invariants.

Let us introduce the following notations :

α0(t) = α(x = 0, t) and β0(t) = β(x = 0, t). (13)

Then, the behavior of α(x, t) is a time delay system from
α0 :

α(x, t) = α0(t −
x

c
) (14)

and conversely we have :

β(x, t) = β0(t +
x

c
). (15)

We will denote in the sequel τp the delay due to the length
of the pipe :

τp =
L

c
. (16)

3. PHYSICAL MODELS OF THE JET CHANNEL
AND THE MOUTH

3.1 The case of the slide flute

Fig. 3. The 1D model of the mouth

In [Verge, Caussé et al.(1994)], the two-dimensional geo-
metry of the mouth is modeled in a low frequency plane
wave approximation by a one-dimensional representation,



by an equivalent pipe segment of length δm (see Fig. 3)
taking into account the constriction of the pipe at the
blowing end.

In this one-dimensional representation, the flue exit, when
the jet is formed, is located at an acoustic distance
δout from the outside and δin from the entrance of the
resonator.

At the flue exit, because the region is compact, one can
apply the mass conservation law :

Qj + Qout = Qin (17)

where Qj, Qout and Qin are respectively the jet flow, the
flow in the portion δout and δin respectively, expressed in
m3/s.

The pressure pm in the mouth at the flue exit can be
related to the flow Qout by the radiation impedance, which
leads in the time domain to the following linear differential
equation :











pm = c2Q̈out − c3Q̇out

c2 =
ρ0r

2
m

4cSm

and c3 =
ρ0δout

Sm

(18)

where Sm is the mouth cross section at the flue exit, and
rm is the radius of a circle having the same mouth cross
section, i.e. such that πr2

m = Sm.

Neglecting friction, the jet at the flue exit is governed by
the Bernoulli equation :

ρ0lc
dUj

dt
+

1

2
ρ0U

2
j = pf − pm (19)

where Uj denotes the jet velocity in the flue channel, lc the
length of the channel, pf denotes the excitation pressure
at the entrance of the channel, generated by the mouth
of the musician e.g. and pm denotes the pressure in the
mouth (see Fig. 1).

Noticing that the flow continuity is assumed at the en-
trance of the resonator, that is : Qin(0) = u(x = 0, t) =
u0(t), the pressure p(x = 0, t) = p0(t) can also be related
to the pressure pm through momentum conservation:











pm − p0 = c1u̇0 − ∆p

c1 =
ρδin

Sm

(20)

where ∆p represents the pressure jump across the pipe of
length δin. This pressure jump, responsible of the sound
production, can be mainly decomposed in two terms :

∆p = ∆pjd + ∆pa (21)

∆pjd denoting the pressure jump due to the jet drive
mechanism and ∆pa the vortex shedding when the flow
separates at the edge of the labium which appears to be
important to describe nonlinear behavior in the transient
attack.

The term ∆pjd

As explained for example in [Verge, Caussé et al.(1994)],
the pressure due to the jet-drive is determined by the

time derivative of the flow source corresponding to the
portion of the jet flow entering the pipe at the labium. The
correlation between the flue geometry and the resulting
jet velocity profile has been investigated experimentally.
Assuming that the jet has a Bickley profile, analytic
expression can be derived which will be omitted here (see
also [d’Andréa-N et al.(2008)] for computation details). It
is however important to notice that this term depends on
the jet position η in the mouth obtained from recent works
e.g. [de la Cuadra(2005)], denoting h the jet height:

η(t) = 2
u0(t − τl)h

πSmUj

eµW (22)

where µ denotes the spatial amplification of the jet, W
the distance between the flue exit and the labium and the
delay τl is given by :

τl =
W

0.3Uj

, (23)

since the convection velocity has been estimated to be
about the third of Uj.

We can see that the delay in the labium τl is time varying
since it depends on Uj . But, in the transient regime of
the jet velocity, Uj takes values near the origin, so that in
numerical simulations, we have to wait Uj ≥ ǫ for a small
positive value ǫ to consider equation (23). Before that, we
take η = 0. After this transient period, if U0 denotes the
asymptotic value of the jet velocity, we easily see that it
depends on the excitation pressure pf (see equation (19)),
i.e.:

U0 =
√

2pf/ρ0 (24)

and then τl can be considered as constant :

τl =
W

0.3U0
. (25)

The term ∆pa

Using e.g. [Verge, Caussé et al.(1994)], one can express
the vortex shedding term induced at the labium by the
transverse acoustic flow of the pipe by the following
expression :

∆pa = −
1

2
ρ0

(

u0

ᾱvSm

)2

sign(u0) (26)

where ᾱv is the vena-contracta factor of the flow. It can
be seen that this term is dissipative, corresponding to the
kinetic energy dissipation of the jet by turbulence.

3.2 The case of the brass instrument

In Fig.2, the lips of the musician are represented by a
valve composed of a moving trapezoid-parallelepiped solid
S with mass m, subjected to pressure forces Fside and Fbot,
a damping ā, and a spring with stiffness k. We consider a
one degree of freedom lip model, with the parallelepiped
moving only in the vertical direction.The bottom of the
mass is located by the variable ξ(t) and an opened valve
corresponds to ξ > 0. The equilibrium position at rest is
denoted ξ(t) = ξe which is supposed to be positive.



The dynamics of the solid S is governed by

mξ̈ + āξ̇ + k(ξ − ξe) = Fside + Fbot. (27)

The force Fside due to the pressure on the sides of S is

Fside = (Aside sin θ) (pm − p0), (28)

denoting pm the mouth pressure and p0 the pressure at
the entrance of the resonator (x = 0). The area Aside of
the lateral sides of S and the angle θ in Fig.2 are supposed
to be constant. The force Fbot applied on the bottom side
of S depends on the sign of ξ:

• If the valve is opened, Fbot is due to the jet pressure
pjet so that

if ξ > 0, Fbot = Abot pjet, (29)

• If the valve is closed, Fbot is a contact force for which
an empirical model can be found in [Vergez(2000)].

The equilibrium position ξe is a constant parameter con-
trolled by the musician such that (27) is satisfied (ξ = ξe)
with pm = pjet = p0 = 0 and (arbitrary) constants m, ā,
k.

Remark 1. Moreover, the mouth pressure pm is charac-
teristic of the musician and takes the role of pf in the
mouth model for the flute.

Aperture geometry and jet

If ξ ≤ 0, the valve is closed and there is no jet. If ξ > 0, the
valve is open and there is a jet under the solid S. This is the
case of interest that will be considered in the present paper,
the case of a closed valve leading to simpler equations has
been studied for example in [Strong(1990),Vergez(2000)].

The geometry of the aperture is supposed to be rectangular
with an area

A(t) = ℓ ξ(t). (30)

much lower than that of the mouth section Am so that
A ≪ Am. The jet is considered to be governed by the
Bernoulli equation (quasi-steady jet, discarded losses and
particle speed neglected w.r.t. the jet velocity Uj)

pm =
1

2
ρU2

j + pjet, if ξ > 0, (31)

Uj = 0, if ξ ≤ 0. (32)

Remark 2. From (31), pm ≥ pjet so that the jet is
oriented from the mouth towards the pipe, that is,

Uj ≥ 0.

Some extended modelings which authorize also negative
vjet have also been proposed but this case will be discarded
in the present paper.

4. BOUNDARY CONDITIONS AND STATE-SPACE
REPRESENTATIONS

4.1 The case of the slide flute

As it has been done in [d’Andréa-N, Coron.(2002)] in the
case of an overhead crane with a variable length flexible

cable, it is interesting to apply the following change of
variable

x = Lσ (33)

to transform the system in a one with a fixed spatial
domain for σ, i.e. σ ∈ [0, 1].

State-space representation

According to (33), if we denote:
{

α̃(σ, t) = α(x, t) = α(L(t)σ, t)

β̃(σ, t) = β(x, t) = β(L(t)σ, t)
(34)

equations (10) and (11) become:






















∂α̃

∂t
(σ, t) +

(

c − L̇σ

L

)

∂α̃

∂σ
(σ, t) = 0

∂β̃

∂t
(σ, t) −

(

c + L̇σ

L

)

∂β̃

∂σ
(σ, t) = 0.

(35)

We still have two wave equations, but with time variable
velocities depending on the control variable L̇.

Let us now complete the pipe model (35) with the bound-
ary conditions at σ = 0 (i.e. x = 0) and σ = 1 (i.e. x = L).

Boundary condition at the entrance of the resonator

Let us first consider the boundary condition at the en-
trance of the resonator. It can be obtained replacing pm

from equation (20) in equation (19), which leads to:

p0(t) = pf − ρ0lc
dUj

dt
−

1

2
ρ0U2

j − c1u̇0(t) − ∆p. (36)

This boundary condition can be rewritten in the α and β
variables using (9) and in the α̃ and β̃ variables, using (34)
which gives finally:

α̃(0, t) = β̃(0, t)+
2Sp

ρ0c

[

pf − ρ0lc
dUj

dt
−

1

2
ρ0U2

j −

c1

2
( ˙̃α +

˙̃
β)(0, t) − ∆p

]

(37)

Remark 3. In [d’Andréa-N et al.(2006)], the boundary
condition which was previously used was the very simple
one p(x = 0, t) = 0, i.e. α̃(0, t) = β̃(0, t), corresponding to
an ideal case. Taking into account the physical models of
the jet and of the mouth leads to the more realistic above
condition. It can be also noticed that p0(t) now depends
on u̇0(t) but using (21), (26) and (22) also on u0(t) and
u̇0(t − τl) (see [d’Andréa-N et al.(2008)] for details).

Moreover, we need the value of Uj and its time-derivative
to bring up to date the boundary condition (37). So we
have to solve at each time instant, the ordinary differential
equation describing the dynamical evolution of Uj. This
ODE is obtained from (19) where we replace pm by its
expression (18) and using equation (17) which becomes at
x = 0:

Qout = Qin − Qj = u0(t) − SeUj (38)

Se denoting the cross section of the channel at the flue
exit.



Finally, the ODE giving the value of Uj(t) can be written:

c2SeÜj − (ρ0lc + c3Se)U̇j + c3u̇0 − c2ü0 =
1

2
ρ0U2

j − pf . (39)

When taking realistic numerical values of the constants
involved in (39) it can be seen that c2Se ≃ 10−9, which

is negligible with respect to the multiplying factor of U̇j .
Therefore, using singular perturbation arguments, one can
neglect the terms in Üj in (39) and we can consider the
following ODE which will be used to evaluate Uj and its
time derivative:

(ρ0lc + c3Se)U̇j = pf −
1

2
ρ0U

2
j + c3u̇0 − c2ü0. (40)

Finally, the boundary condition at the entrance of the
resonator consists in the two equations (37) and (40) at
x = 0.

Boundary condition at the end of the resonator

Considering the piston mechanism which allows the trans-
lation of the slide flute, the boundary condition at the end
of the flute, can be written:

Spp(L, t) + F = mL̈ (41)

F being the force exerted by the motor on the slide and
m the piston mass.

In a first step, one can consider that the control variable
is the piston velocity L̇, linked to the physical control F
homogeneous to L̈, via the integrator (or cascade) system

given by (41). Then if L̇ is known, one can then compute
the physical control F to apply, using e.g. “backstepping”
techniques, classical in systems control theory. One can
therefore consider, without loss of generality, the following
boundary condition at x = L:

u(L, t) = SpL̇ (42)

which can be rewritten in the α̃ and β̃ variables, using (9)
and (34):

α̃(1, t) + β̃(1, t) = 2SpL̇. (43)

Finally, the slide flute is completely described using equa-
tions (35), the two boundary conditions at the entrance of
the resonator (37) and (40) and the one at the end of the
resonator (43).

4.2 The case of the brass instrument

In the case of a brass instrument, this is the reed which
vibrates and modulates the ingoing air jet maintaining the
acoustic wave in the pipe.

Boundary condition at the entrance of the resonator

The boundary condition at x = 0 is nothing but the conti-
nuity of pressure and flow, following remarks of Hirschberg
[Hirschberg(1995)]. Then, using equations (9) and the ex-
pressions (13) for α0(t) and β0(t), we obtain :

pjet(t)=p(0, t) =
Zc

2
(α0(t) − β0(t)), (44)

A(t)Uj=u(0, t) =
α0(t) + β0(t)

2
(45)

where Zc = ρ0c
Sp

denotes the characteristic impedance.

Boundary condition at the end of the resonator

At x = L, we can consider the non homogeneous boundary
condition given by p(L, t) = ZL u(L, t) with a real passive
impedance ZL > 0 for radiation. From (9), (14) and (15),
this expression translates into

β0(t) =−λα0(t − 2τp), (46)

λ = (ZL − Zc)/(ZL + Zc) ∈ (−1, 1), (47)

where, for an opened pipe, ZL ≫ Zc so that 1 > λ > 0.

State-space representation

A neutral system [Michiels, Niculescu(2007)] is a differ-
ential delay system with general expression

ẋ(t) = f
(

x(t), x(t − τ), ẋ(t − τ), v(t)
)

(48)

y(t) = g
(

x(t), x(t − τ), ẋ(t − τ), v(t)
)

(49)

where τ ≥ 0 is a time delay, function f is responsible for
the dynamics of the system and g defines the measured
quantity. As we will show, the model of the brass instru-
ment can be represented by such a neutral system.

Let us introduce the state x, the input v, and the output
y as follows : x1 represents the lip displacement relative
to the equilibrium position ξe, x2 the lip velocity, x3 the
forward propagating wave at the pipe entrance. The input
vector v is made of the mouth pressure and its time
derivative and the measured output y is the pressure at
the output of the pipe, i.e. p(L, t). Using (9), (14), (15)
and (46) we deduce the following expressions :

x(t) := [ξ(t) − ξe, ξ̇(t), α0(t)]
T , (50)

v(t) := [pm(t), ṗm(t)], (51)

y(t) =
Zc

2
(1 + λ)α0(t − τp). (52)

Note that y is a delayed version of the pressure measured
at the entrance of the pipe, with delay τp.

In this paper, the instrument is considered to be at rest
before t = 0 so that x, v, and y are zero for t < 0. Moreover,
quantities ξe, m, ā, k, Aside, Abot, θ introduced in section
3.2 (equation (27)) are supposed to be constant. The
equations of the neutral system for the brass instrument
are derived below.

Mechanics of the lips

Combining equations (27) and (46) yields the following
equations, assuming as we have already explained ξ > 0:

ξ̈ = −aξ̇ − ω2(ξ − ξe) + b0(α0(t) + λα0(t − 2τp)) + bmpm(t) (53)



where coefficients are given by :














a =
ā

m
; ω2 =

k

m

b0 =
Zc(Abot − Aside sin θ)

2m
; bm =

Aside sin θ

m

(54)

Jet and acoustics

We always consider the case of interest ξ > 0. Using (30)
and (44-46), equations (31) rewrite as follows:

pm(t) =
µ

2

(α0 − λα0(t − 2τp))2

ξ2(t)
+

Zc

2
(α0 + λα0(t − 2τp)) (55)

where µ =
ρ0

4ℓ2
. Then, denoting

D(t) =
Zc

2
+

µ

ξ2
(α0(t) − λα0(t − 2τp)), (56)

and isolating α0(t) from the time derivative of (55) yields

α̇0(t)=
ṗm(t)−λZcα̇0(t−2τp)+µ

ξ̇(t)
(

α0(t)−λα0(t−2τp)
)

2

ξ(t)3

D(t)

+ λα̇0(t − 2τp).

Then, using (55) to substitute
(

α0(t)−λα0(t−2τp)
ξ(t)

)2

in the

above equation leads to :

α̇0(t)=
ṗm(t)−λZcα̇0(t−2τp)+

2ξ̇(t)

(

pm(t)−
Zc
2

(α0(t)−λα0(t−2τp))

)

ξ(t)

D(t)

+λα̇0(t − 2τp). (57)

Remark 4. For initial condition on (pm, α0, ξ) satisfying
(55) at t = 0, the trajectory of (57) satisfies also (55)
for t > 0. Equation (57) is then weaker than (55) but
will be useful to derive the expected neutral state-space
representation.

Finally, we can rewrite (53) and (57) under the expected
neutral differential form (48), denoting the time delay :

τ = 2τp (58)

and using notations (50) :

ẋ = f
(

x(t), x3(t − τ), ẋ3(t − τ), v(t)
)

(59)

with

f1 =
(

0 1 0
)

x

f2 =
(

−ω2
−a b0

)

x + b0λx3(t − τ) + bmv1

f3 =
v2−λZcẋ3(t−τ)+

2x2

(

v1−
Zc
2

(x3(t)+λx3(t−τ))

)

x1+ξe

D(t)

with D(t) =
Zc

2
+

µ

x2
1

(x3(t) − λx3(t − τ))

(60)

From (52), we recall that the output y(t) is given by :

y =
Zc

2
(1 + λ) x3(t − τp) = Cx(t − τp) , C =

(

0 0
Zc

2
(1 + λ)

)

.(61)

If we want to obtain a non delayed version of the output,
we can introduce the following variable :

x̃(t) = x(t − τp) (62)

so that (59) and (61) can be rewritten :
{

˙̃x = f
(

x̃(t), x̃3(t − τ), ˙̃x3(t − τ), v(t − τp)
)

y(t) = Cx̃(t).
(63)

We can notice that the only formal difference between (59),
(61) and (63) is that the input in (63) is delayed with time
τp, which is nothing but the fact that we can observe the
physical output, i.e. the pressure at the end of the pipe,
only when the traveling pressure wave has reached the
end of the pipe. Therefore, we will consider in the sequel
that (63) constitutes the neutral differential representation
of our brass instrument for which we will elaborate an
asymptotic observer in paper [d’Andréa-N et al.(2009)] for

t ≥ τp =
τ

2
. For sake of simplicity, we will keep in (63) the

notation x(t) in place of x̃(t).
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