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Abstract: In this paper, a modal analysis is performed for the slide flute modeled in
[d’Andréa-N et al.(2009)] using the linearized boundary conditions which can also be used
to compute the suitable blowing pressure (linked to the mouth delay) and the suitable pipe
length (linked to the pipe delay) to obtain a desired fundamental frequency or equivalently a
desired note. This will constitute the basis of our control algorithm. Concerning the simplified
trumpet-like instrument also described in [d’Andréa-N et al.(2009)] as a so-called nonlinear
neutral state space system, we elaborate a local asymptotic observer of the state, the stability
of which being proved using Lyapunov techniques.
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1. INTRODUCTION

Musical instruments such as wind or bowed string instru-
ments depend crucially on non-linear excitation mecha-
nisms (self-oscillations), driven by low frequency energy
supplied by a performer, and are directly linked to the
problem of control. The development of theoretical mod-
els with a high degree of refinement with respect to the
asymptotic regime as well as transient behavior is of great
musical importance. Moreover, related numerical simula-
tion methods, as well as joint experimental work are fun-
damental. In [d’Andréa-N et al.(2009)] we have developed
numerical models for a slide flute taking into account a
realistic behavior of the air jet dynamics and also a model
for a trumpet-like instrument.

-) Concerning the case of the slide flute, we are interested
in the present paper to propose a control algorithm to
compute the suitable blowing pressure and pipe length to
obtain a desired note. This will be done through a modal
analysis using the linearized boundary conditions.

-) Concerning the example of the brass instrument, it
must be pointed out that the problem of recovering
the musician’s control parameters from a target sound
is sometimes important. Therefore, the inversion of the
model appears as a natural tool to cope with this
problem which has yet been investigated in the past

⋆ Supported by an ANR french project “CONSONNES”

[Wold(1987),Hélie et al.(1999)] using control engineering
techniques but significant improvements are still needed.

A problem to cope with consists in recovering both the
vibro-acoustic state and the musician’s control parame-
ters from a unique observation, namely, the sound. The
difficulty is increased by the fact that self-sustained ins-
truments are able to generate a large variety of regimes
and, possibly, complex regimes such as chaotic ones
[Vergez, Rodet(1998)]. Nevertheless, what can be noticed
for these systems is the fact that two separate time-scales
can be considered. Mainly, vibrating variables x (such as
acoustic pressure, reed or lips motion, etc) oscillate at high
frequencies compared to the control variables associated to
the player’s gestures G (pressure in the mouth, reed or lips
stiffness, etc).

Then, assuming some usual quantities are measured on
the system, such as the radiated pressure at the end of the
instrument, called the “output” y, the inversion could be
performed in two steps :

(P1) the first one consists in recovering the full oscillating
internal state x of the instrument from the knowledge
of y, considering the control G as locally constant.
This step is achieved by building a so-called “state
observer” in control systems theory;

(P2) the second one consists in computing the accessible
parameters G from this observed state. This step
could be achieved using adaptive filtering techniques
[Ljung(1999)].

This paper addresses in section 2 the control of the slide
flute and in section 3, the first problem (P1) of elaborating



a state observer for a simplified brass instrument model,
assuming that the output y is the pressure at the end of
the pipe. Finally we conclude in section 4.

2. MODAL ANALYSIS OF THE LINEARIZED
BOUNDARY CONDITIONS AND CONTROL

ALGORITHM FOR THE SLIDE FLUTE

Let us recall that a model of the slide flute has been
elaborated in [d’Andréa-N et al.(2009)]. We have shown
that the slide flute is completely described using the
control model (1) :
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and the one at the end of the resonator (4) :

α̃(1, t) + β̃(1, t) = 2SpL̇, (4)

where c denotes the sound velocity in the fluid, ρ0 the
fluid density at rest, Sp the constant section of the pipe
which is supposed to be cylindrical, L the pipe length, Uj

denotes the jet velocity in the flue channel, lc the length
of the channel, Se the cross section of the channel at the
flue exit and pf the excitation pressure at the entrance of
the channel, generated for example by the mouth of the
musician.

The physical constants c1, c2 and c3, as well as the ex-
pression of the pressure jump ∆p responsible of the sound
production, are detailed in [d’Andréa-N et al.(2009), Sec.
3].

Let us also recall that the Riemann invariants α(x, t),
β(x, t) are related to the physical flow rate u(x, t) and the
acoustic pressure p(x, t) at time t and point x in the pipe
through the following relations :
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We have denoted u0 = u(0, t). Finally, to transform the
system in a one with a fixed spatial domain for σ, i.e.
σ ∈ [0, 1], we have considered :

x = Lσ (7)

so that α̃(σ, t) and β̃(σ, t) are given by :{
α̃(σ, t) = α(x, t) = α(L(t)σ, t)

β̃(σ, t) = β(x, t) = β(L(t)σ, t).
(8)

First we perform a modal analysis and then we will present
our control algorithm for the flute.

2.1 Modal analysis

To compute the natural modes of the system, we have to
keep only linear terms in the boundary conditions. Writing
Uj, α̃ and β̃ on the following form, where U0 is the steady
state value of the jet velocity i.e. :

U0 =
√

2pf/ρ0, (9)






Uj = U0 + Ueiωt

α̃(x, t) = aeiωte−iωx/c

β̃(x, t) = beiωteiωx/c

(10)

replacing Uj , α̃ and β̃ in (2) and (3) at x = 0 and (4) at
x = L and keeping only linear terms, we have to solve an
homogeneous linear system of 3 equations with 3 complex
unknowns (U, a, b) of the form :

A(ω)

(
a

b

U

)
= 0 , with A(ω) =

(
Zc + κ(ω, τl) −Zc + κ(ω, τl) 2ρ0(U0 + iωlc)

c3iω + c2ω2 c3iω + c2ω2
−2(ρ0U0 + iωc0)

e−iωτp eiωτp 0

) (11)

where κ(ω, τl) = (c1 + K̄e−iωτl)iω, τp = L
c denoting the

delay due to the pipe and τl the delay due to the labium
considered as a constant (W being the distance between
the flue exit and the labium) :

τl =
W

0.3U0
(12)

and the constant K̄ is obtained by linearizing ∆pjd,
the pressure jump due to the jet-drive (see for details
[d’Andréa-N et al.(2009), Sec. 3]). In fact, after some com-
putations, we obtain the linearized expression ¯∆pjd:

∆̄pjd = K̄u̇0(t − τl), (13)

K̄ being a constant. See [d’Andréa-N et al.(2008)] or
[d’Andréa-N et al.(2009)] for more details.

Therefore, to obtain a non trivial solution, the complex
modes ω = λ + iǫ must satisfy:

det(A(ω)) = 0, (14)

namely, the real numbers λ and ǫ must be solutions of the
two real equations:{

Re(det(A(λ, ǫ))) = 0
Im(det(A(λ, ǫ))) = 0.

(15)



In Fig. 1, we can see the 2D-surfaces Re(det(A(λ, ǫ))) = 0
and Im(det(A(λ, ǫ))) = 0 parameterized by λ and ǫ.
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Fig. 1. Re(det(A)) and Im(det(A)) w.r.t. λ and ǫ

For L = 0.20 m, the four first frequencies fic, i = 1, · · · , 4,
corresponding to the four first modes λic = 2πfic, i =
1, · · · , 4 are approximately, in Hz:

f1c ≃ 378 , f2c ≃ 1088 , f3c ≃ 1922 , f4c ≃ 2753. (16)

The corresponding values of ǫic are, in s−1:

ǫ1c ≃ −52 , ǫ2c ≃ 165 , ǫ3c ≃ −72 , ǫ4c ≃ −100. (17)

It can be noticed that:
f2c

f1c

≃ 2.9,
f3c

f1c

≃ 5.1,
f4c

f1c

≃ 7.3 (18)

i.e. the modes are odd multiples of the fundamental fre-
quency, as expected for a closed-open pipe. For negative
values of ǫ, the modes are oscillating corresponding to
a time growth. Since they are solutions of the linearized
problem, the modes calculated here can predict the oscil-
lating frequency during transient state, at low amplitude.
After this initial period, the saturation mechanisms may
be responsible for a bifurcation in the system.

2.2 Automatic control algorithm of the flute

To realize an automatic control law, we have to compute pf

(or U0 from (9)) and L, or equivalently, the pair of the two
delays taul due to the labium and τp the delay due to the

pipe : (τl = W
0.3U0

; τp = L
c ), such that a desired reference

mode ωr = λr + iǫr (or a desired reference frequency

fr =
λr

2π
) is obtained. Therefore, the control algorithm

can be summarized as follows:

- λr and ǫr being chosen, solve the two equations (15)
with respect to the unknown variables τlr and τpr,
using for example a Newton algorithm.

- The resulting asymptotic jet velocity U0r will be
reached through the servo-valve, asking for a desired

steady-state pressure pf r =
1

2
ρ0U0

2
r.

- The resulting length of the pipe Lr will be reached,
applying the following simple linear control law on
the piston:

L̇ = −k(L − Lr) , k > 0. (19)

For example, to have ωr = 2700, corresponding to fr =
f1ideal = c/4L = 430 Hz, solving equations (15) leads to:
(U0r = 5.74 m/s; Lr = 0.167 ) (Lr has to be compared
with L = 0.20) or equivalently to (τlr = 2.32 10−3 s; τpr =
4.86 10−4 s).

2.3 Numerical scheme and simulation results

The numerical model which will be used for simulation
and control is obtained by (1) together with the boundary
conditions (2), (4) and (3). It is numerically solved using
a first-order un-centered upper scheme for α̃ and down
scheme for β̃. To be more realistic and take into account
visco-thermal losses in the tube, we have also added a small
friction term of the form µu in Euler equation, µ being a
small friction coefficient. More accurate models exist for
visco-thermal damping using non integer time derivative
of the flow rate (see e.g. [Matignon(1994)]). In Fig. 2, we
can see simulation results obtained with L = 0.20 m and
pf = 5 Pa during 0.4 s. It can be checked that the jet
velocity oscillates with the same frequency as that of the

other signals, around a steady value U0 =
√

2pf/ρ0 ≃

2.89 m/s.
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Fig. 2. Simulation results with pf = 5 Pa and L = 0.20 m

A spectral analysis of the pressure at x = 0 gives :

f1s ≃ 397Hz, f2s ≃ 1190Hz, f3s ≃ 1982Hz, f4s ≃ 2774Hz (20)

which are very close to the computed values fic given
in (16). The slight difference is probably due to the fact
that the computed frequencies fic are obtained through
linearized boundary conditions. Nevertheless, equations
(15) constitute a good approximation to compute Lr as
explained before.

We are aware that the blowing pressure range is lower than
in actual pipes. This is mainly due to the simplifications
of the jet and source models (see [d’Andréa-N et al.(2009),
Sec. 3] which overestimate the jet amplification and sound
production at low jet velocities. To solve this problem, we
have implemented in [d’Andréa-N, Fabre, Coron(2009)] a
numerical filter to obtain a more realistic dynamics of the
jet position in the mouth.

Finally, Fig. 3 displays the results we obtain when the
player wants to produce scales by sliding the piston. It
can be seen that the transient time response is about 0.1 s
which is coherent with the attack transient time observed
when the slide is fixed.
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3. ASYMPTOTIC OBSERVER FOR A BRASS
INSTRUMENT

Let us recall that the model for the trumpet-like instru-
ment is the following neutral system :

{
˙̃x = f

(
x̃(t), x̃3(t − τ), ˙̃x3(t − τ), v(t − τp)

)

y(t) =
Zc

2
(1 + λ) x3(t) = Cx(t) , C =

(
0 0

Zc

2
(1 + λ)

)
.

(21)

where the state x, the input v, and the output y are defined
as follows : x1 represents the lip displacement relative
to the equilibrium position ξ − ξe, x2 the lip velocity ξ̇,
x3 = α0(t) the forward propagating wave at the pipe
entrance. The input vector v is made of the mouth pressure
pm and its time derivative delayed by time τp = L

c and
τ = 2τp (see [d’Andréa-N et al.(2009)] for details).

As mentioned in the introduction, the problem which is
considered here is the construction of an asymptotic state
observer, assuming that the physical constant parameters
and the mouth pressure pm are known. The idea is to use
an extended Kalman filter [Kalman(1960)] type observer
elaborated from the nonlinear neutral system presented
in [d’Andréa-N et al.(2009)]. This observer will depend on
the output error but also on its delayed value.

The gain matrices of the observer will be chosen to
stabilize the linear time-varying neutral system governing
the linearized equation of the estimation error vector. The
proof of stability relies on a suitable Lyapunov function.

3.1 Definition of the observer

The following state observer for system (21) is proposed :

˙̂x(t) = f
(
x̂(t), x̂3(t − τ), ˙̂x3(t−τ), v(t − τp)

)

−Λ1

(
y(t) − ŷ(t)

)
− Λ2

(
y(t−τ) − ŷ(t−τ)

)
, (22)

where Λ1 and Λ2 are 3 × 1 gain matrices.

3.2 Linearized error equation

Let e denote the estimation error vector:

e = x − x̂. (23)

The matrices Λ1 and Λ2 will be chosen such that the
following linearized dynamical equation of the estimation
error is locally asymptotically stable :

ė(t) = A(t) e(t) + B(t) e3(t − τ) + H(t) ė3(t − τ), (24)

where

A(X, Y, Z, V ) =
∂f

∂X
(X, Y, Z, V ) + Λ1 C, (25)

B(X, Y, Z, V ) =
∂f

∂Y
(X, Y, Z, V ) + Λ2 C3, (26)

H(X, Y, Z, V ) =
∂f

∂Z
(X, Y, Z, V ). (27)

and A(t) = A
(
x̂(t), x̂3(t − τ), ˙̂x3(t − τ), v(t − τp)

)
and

similarly for B(t) and H(t).

This property will be detailed in theorem 1, the proof
of which relying on the following technical lemmas. The
proofs of the lemmas are omitted in the present paper but
can be found in [d’Andréa-N, Coron et al.(2009)].

Lemma 1. The gain matrix Λ2 can be chosen such that
B(t) in equation (24) is zero.

Remark 1. From lemma 1, the gain matrix Λ2, in the
observer equation (22) will be time dependent and function

of X = x̂(t), Y = x̂3(t − τ), Z = ˙̂x3(t−τ), V = v(t − τp).

Lemma 2. The matrix H(t) = H(x(t), x3(t − τ), ẋ3(t −
τ), v(t − τp)) defined from (27) is such that :

| H(t) | ≤ |λ| < 1.

Lemma 3. Let χ > 0. The matrix gain Λ1 can be chosen
such that A(t) in equation (24) takes the following form :

A =




0 1 0

−ω2 −a 0
M31 M32 −χ





where M(t) = M
(
x̂(t), x̂3(t − τ), ˙̂x3(t−τ), v(t − τp)

)
with

M = ∂f
∂X (X, Y, Z, V ). This choice of Λ1 ensures that

ē =

(
e1

e2

)
is decoupled from e3’s dynamics and satisfies

˙̄e = F ē where the constant matrix F is Hurwitz.

3.3 Main stability result

The main stability result is then stated by the following
theorem.

Theorem 1. There exist positive constants κ > 0 and
η > 0, such that for every solution of equation (24), the
following inequality holds :

(
e2
1(t) + e2

2(t) + e2
3(t) +

∫ t

t−τ

ė3
2(s)ds

)
≤

κe−ηt

(
e2
1(0) + e2

2(0) + e2
3(0) +

∫ 0

−τ

ė3
2(s)ds

)
.

(28)

Proof : From lemma 3, F being Hurwitz, define the
symmetric positive definite matrix P solution of the matrix
Lyapunov equation [d’Andréa-N, Cohen de Lara(1994)] :

FT P + PF = −I2×2

I2×2 denoting the 2 × 2 identity matrix.

Now, consider the following Lyapunov function candidate
where C > 0, K > 0 and ν > 0 are suitable positive
constants :



V = C
e2
3

2
+ KēT P ē +

∫ t

t−τ

ė3
2(s)e−ν(t−s)ds. (29)

If the constant C is chosen to be equal to C = 2χ, where
χ > 0 is defined in lemma 3, the time derivative of V along
the solutions of the dynamical equations of the linearized
observation error (24) can be written as follows :

V̇ = T1 + T2 + T3 (30)

where

T1 =−χ2e2
3 − ė3

2(t − τ)(e−ντ − H2
3 (t))

−K(e2
1 + e2

2)

−ν

∫ t

t−τ

ė3
2(s)e−ν(t−s)ds, (31)

T2 = (M31e1 + M32e2)
2, (32)

T3 = 2H3(M31e1ė3(t − τ) + M32e2ė3(t − τ)). (33)

Notice that for all ǫ > 0 and for all e1, e2 and e3(t − τ),
the following inequalities hold for some positive constants
R1 and R2 :

T3 ≤
1

ǫ
(e2

1 + e2
2) + R1ǫ ė3

2(t − τ) (34)

and
T2 ≤ R2(e

2
1 + e2

2). (35)

Moreover, from lemma 2, if the constant ν in V is chosen
sufficiently small, (e−ντ −H2

3 (t)) ≥ e−ντ −λ2 ≥ δ > 0, for
all t and τ ∈ [0, 2L/c], so that :

V̇ ≤−χ2e2
3 − δė3

2(t − τ)

−(K − R2)(e
2
1 + e2

2)

+
1

ǫ
(e2

1 + e2
2) + R1ǫė3

2(t − τ)

−ν

∫ t

t−τ

ė3
2(s)e−ν(t−s)ds. (36)

Choose

ǫ =
δ

2R1
(37)

which leads to :

V̇ ≤−χ2e2
3 −

δ

2
ė3

2(t − τ)

−(K − R2 −
2R1

δ
)(e2

1 + e2
2)

−ν

∫ t

t−τ

ė3
2(s)e−ν(t−s)ds. (38)

Then, for K = R2 +
4R1

δ
and for a suitable positive

constant η > 0, the following inequality holds:

V̇ ≤ −ηV (39)

which ends the proof. ⋄

Notice that the weight e±νx in the integral term of the
Lyapunov function is essential to get a strict Lyapunov
function. It is similar to the one introduced by Castelan
and Infante [Castelan, Infante(1979)] for matrix difference
differential equations and also by Coron [Coron(1999)]

to stabilize the Euler equation of incompressible fluids.
More recently, it has also been used for linear symmetric
hyperbolic systems [Xu, Sallet(2002)] and for exponential
stabilization of one-dimensional nonlinear hyperbolic sys-
tems [Coron et al.(2007),Coron et al.(2008)].

3.4 Simulation results

Observation results have been performed on outputs y,
simulated using an Euler explicit scheme on (21). To be
more realistic, measurement gaussian noises have been
added to y.

Since the observer (22) is local, the initial conditions of
x̂ must be chosen sufficiently close to the actual initial
condition x(0) = 0.

To test the robustness of this observer, several deviations
on initial conditions and several noise measurements have
been considered.

It is important to notice that, due to lemma 3, the
characteristic damping of ē = [e1, e2]

T is a. Moreover, the
time constant of the observer is governed by a and χ. The
arbitrary damping coefficient χ in A can be preferentially
chosen greater than the fixed constant a. In practice, it is
natural to choose χ ≈ a (or slightly greater than a).

In a quasi ideal situation with initial conditions close
to the actual ones and low measurement noise, the pro-
posed observer x̂ has a pretty good behavior and con-
verges rapidly towards x and the measurement noises
are weakened quite well. For initial conditions quite far
from the ideal ones (e.g. Zc

2 (1 + λ)e3(0) is about 20%
of the mouth pressure pm), the obtained results show
that the transient behavior is longer but the observer
succeeds in retrieving the real value of the state (see
[d’Andréa-N, Coron et al.(2009)]). Finally, Fig. 4 illus-
trates the robustness of the local observer with respect
to larger measurement noises (σnoise/pm is about 3%). In
this case, the limits of the observer are reached.

Notice that since y = Zc

2 (1+λ)x3 is measured, in a simpler
approach, it is not necessary to estimate x3 and it could
have been sufficient to elaborate observer on x1, x2 only.
Nevertheless, since there are noise measurements, the total
observer proposed here proves to be more robust. Indeed
in Fig. 4, the noise on x̂3 has been significantly reduced
compared to that on y.

4. CONCLUSION

We have shown in this paper the interest of using tools
from the theory of time delay systems to deal with some
control and estimation problems for wind instruments.
Two illustrative examples have been considered. First, we
have addressed the problem of controlling a slide flute and
elaborated a control algorithm through a modal analysis,
to compute the blowing pressure and the piston velocity.
On the experimental prototype which is under develop-
ment, a real time spectral analysis will be performed so
that we will be able to adjust the length L of the tube
around the estimated value Lr to improve the accuracy of
the resulting frequency.

Concerning the case of the brass instrument, it has been
proved using Lyapunov function techniques on neutral



0 0.1 0.2 0.3 0.4
−5

0

5

10
x 10

−3

x1

0 0.1 0.2 0.3 0.4
−4

−2

0

2

4

x2

0 0.1 0.2 0.3 0.4
−2

0

2

4

6
x 10

4

x3

0 0.1 0.2 0.3 0.4
−2000

0

2000

4000

6000

y

time (s)

Fig. 4. Simulation of the system (-) and the observer (- -)
from the measured output y (-). The simulations are
performed for the following parameters: a = 150s−1,
χ = 160s−1, L = 1, pm = 1.5e4Pa, ω = 535s−1,
quasi-ideal initial conditions x̂(0) = [1e − 3, 1e −

1, y(0)
1+λ ]T and large noise σnoise/pm = 4e − 2.

systems that the observer gains can be tuned to ensure
the asymptotic stability of the linearized estimation error
equation. Moreover, although the proof ensures only a
local stabilization, simulation results exhibit good robust-
ness properties with respect to wrong initial conditions
and significant noises on the measured output.

A future work will concern the second problem (P2)
described in the introduction, that is, computing the
“player’s gestures” from the measured output and the
proposed observer. It could be processed by using adaptive
filtering techniques, and thus, would complete the global
inversion problem.
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