
Master 1 Internship Report

Automatic Note Detection
in Monophonic Sound Files

Author:
Laura Dale

Master 1 Candidate
Sciences de l’Ingénieur, Mécanique
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1 Summary

Reliable fundamental frequency (f0) estimation of monophonic sounds has existed for years.
However, most of the existing algorithms require manual adjustment of input parameters
for optimal performance on a given sound file. Additionally, though near-perfect accuracy
has been attained for relatively clean sound files, performance is known to decline drasti-
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cally for cases with background percussion, noise, or reverberation. The first goal of this
work was thus to improve upon the current state of monophonic f0 estimation, not by
modifying the estimation algorithm itself, but instead by increasing its automaticity and
robustness. By choosing optimal fundamental frequency estimation input parameters for a
wide range of files or by setting them algorithmically in relation to the content of each file,
the need for user interaction could be eliminated. Additionally, by using an eclectic and
challenging database of sound files including many of which had been the source of com-
plaint for previous users of f0 estimation software, one could hope to improve performance
in more complicated cases.

The output of f0 estimation is an estimate of the fundamental frequency of an audio file at
each point in time. In order to detect notes, this f0 contour must be analyzed, segmented,
and converted into musical notes. The second goal of this work was thus to devise an
algorithm that would take, as input, the f0 estimation of a given audio file, and output the
set of musical notes contained in the file.

The fundamental frequency estimation software, the algorithms developed to automate the
choice of some of its inputs, and the segmentation and note detection algorithms devised
to process its outputs, all required the choice of parameters whose optimal settings were
yet to be determined. Thus, a final algorithm was developed to evaluate the performance
of the combined f0 estimation and note segmentation protocols by comparing the detected
note set with the notes in the original sound file. To rate the success of the complete note
detection algorithm for a given parameter set, its results were averaged over the full set of
audio files in the database. Finally, a genetic algorithm was employed so that the parameter
settings resulting in the best average per-file performance could be found without testing
every possible parameter set. The final product of this internship is a relatively robust,
automatic note detection algorithm for monophonic and near-monophonic audio files.

This report is divided into the following sections. In the introduction, IRCAM’s Analy-
sis/Synthesis team will be presented, followed by some key concepts necessary for com-
prehension of the presented algorithms. Next, the completed project will be described in
stages, from manual segmentation and database compilation to parameter choice. Finally,
results will be presented and discussed.

Les logiciels qui estiment la fréquence fondamentale f0 pour des sons monophoniques exis-
tent déjà depuis longtemps. Cependant, ces logiciels requièrent que l’utilisateur spécifie des
paramètres d’entrés pour qu’ils fonctionnent de façon optimale pour chaque fichier audio.
Même si la précision presque parfaite a été atteinte pour des fichiers sons relativement
propres, la performance décline rapidement pour les cas où l’enregistrement est bruité, ou
lorsqu’il existe un fond de percussion ou une réverbération. Le premier but de ce travail a
donc été d’améliorer l’estimation f0 monophonique en augmentant sa robustesse et son au-
tomaticité. En choisissant les entrées optimales pour une grande variété de fichiers audio,
ou en les choisissant automatiquement avec un algorithme en relation avec le contenu de
chaque fichier, le besoin de l’interaction de l’utilisateur pourrait être supprimé. De plus, en
compilant une base de données éclectiques incluant les fichiers audio dont les utilisateurs
des logiciels précédents se sont plaints pour l’estimation de f0, on peut espérer améliorer
la performance de cas plus complexes.
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Le paramètre de sortie de l’analyse f0 est une estimation de la fréquence fondamentale à
chaque instant du fichier audio. La courbe f0 est ensuite analysée, segmentée, et convertie
en notes musicales. Le deuxième but de ce projet a donc été de créer un algorithme qui
prendrait comme entrée l’estimation f0 d’un tel fichier audio, et sortirait les notes musicales
contenues dans le fichier.

Le logiciel d’estimation de la fréquence fondamentale, l’algorithme développé pour automa-
tiser le choix de certains de ses paramètres d’entrés, et l’algorithme pour détecter les notes
à partir de sa courbe f0 de sortie, tous trois avaient encore des paramètres dont leurs
réglages optimaux n’étaient pas encore trouvés. Alors un programme a été conçu pour
comparer l’ensemble des notes détectées automatiquement avec les vraies notes du fichier
son. Ainsi, il est possible d’évaluer la performance combinée des algorithmes d’estimation
de f0 et de sa segmentation en notes. Pour évaluer la performance d’un ensemble donné
de paramètres, les résultats de la détection de notes ont été évalués et moyennés sur tous
les fichiers de la base de données. Finalement, un algorithme génétique a été utilisé pour
trouver les réglages de tous les paramètres donnant le meilleur résultat pour l’ensemble des
fichiers, sans avoir besoin de tester toutes les combinaisons possibles. Le produit final de
ce stage est un algorithme automatique et robuste qui détecte les notes musicales pour des
fichiers sonores monophoniques et presque-monophoniques.

Ce rapport est divisé en différentes sections. Pour commencer, l’équipe Analyse/Synthèse
de l’IRCAM sera d’abord présentée, suivi par la description des concepts clés nécessaires à
la bonne compréhension des algorithmes conçus. Ensuite, le projet sera détaillé étape par
étape, de la segmentation manuelle et la compilation de la base de données au choix des
paramètres. Finalement, les résultats seront présentés et discutés.

2 Introduction

2.1 Analysis/Synthesis team and software development

The Analysis/Synthesis team at IRCAM is involved in the research and development of
sound signal processing techniques aimed at analyzing and extracting relevant content,
such as pitch, tempo, timbre, syllables, or expressivity, and in modifying that content in
order to synthesize new sounds. Since its conception, the Analysis/Synthesis team has
developed a wide range of software, allowing its analysis, synthesis, and transformation
techniques to be used both internally at IRCAM and also externally. Three of these
software packages were utilized in this project - AudioSculpt, SuperVP, and F0. F0, a
software developed by Matthias Krauledat and Axel Roebel in 2003 [2], estimates the
fundamental frequency at all points in an audio file. A more detailed description of the
software will be given in section 2.4. SuperVP or Super Phase Vocoder, is a command
line program that implements various analysis, filtering and re-synthesis techniques for
uncompressed sound files. For example, the F0 software is included as one of the analysis
modules. During this project, two analysis modules were used extensively: the short
term Fourier transform (STFT) and, of course, F0. Additionally, the band pass filtering
module and the noise extraction and re-synthesis module were employed in a window size
choice algorithm described in section 3.3.1. AudioSculpt is a user-friendly program allowing
most of the functionality of SuperVP in a more user-friendly format. In AudioSculpt, one
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can visualize, sonorize, and edit the spectogram, perform f0 estimations, view and edit
results, and notate files with a variety of marker-types, including midi notes, temporal
point and region markers, and text markers. Other Analysis/Synthesis software, such as
IrcamBeat1, are also included in AudioSculpt, such that the program truly incorporates a
nice collection of the more mature sound analysis, synthesis, and transformation techniques
developed at IRCAM. The output files of both SuperVP and AudioSculpt are in Sound
Description Information Format (SDIF), an open source file type that consists of a series
of frames, which contain matrices or single points of data with a customizable header
designating the type of information2. Frame types containing f0 estimation data and
temporal marker frames were used throughout this project. The position of IRCAM and its
Analysis/Synthesis group at the center of music technology research, and the opportunity
to interact on a daily basis with the developers of the software utilized was most certainly
advantageous to the author throughout her three month stay at IRCAM.

2.2 Harmonicity and fundamental frequency

All sound signals can be represented by a linear combination of sinusoids of different
frequencies. What distinguishes a perfectly harmonic signal, however, is that it can be
modeled by a finite set of sinusoids, whose frequencies are all multiples of the fundamental
frequency, f0.

x(t) =
∑
n

Ansin(2πnf0t) (1)

where n is an integer, and An is the amplitude of a given sinusoid. Harmonic or near-
harmonic signals are perceived as having a pitch, whereas inharmonic signals are not per-
ceived to be pitched. Normally, the perceived pitch of a harmonic signal is that of a single
sinusoid at the fundamental frequency, f0.

An interesting property of harmonic signals is that despite the contributions of higher
frequencies, they are periodic with period T = 1/f0. The period of a higher frequency
component is Tn = 1/(nf0). Thus, each higher frequency component will complete n full
cycles during the period of the fundamental, T . It is only after the fundamental period, T ,
in which all frequency components will have completed an integral number of cycles, and
thus the period of the harmonic signal becomes the fundamental period, T = 1/f0. (See
figure 1.)

As the perceived pitch is associated with the fundamental frequency, fundamental fre-
quency estimation allows us to traverse between the scientific and the musical domain.
Transcription of a musical source involves notation of the sequence and timing of its con-
stituent notes. This is achieved by a variety of formats, including the musical score and
the midi file. However, the most important features of any musical transcription are the
pitch and the start and stop times of each note. Thus, to create an automatic transcription
of a musical sound file, we must first estimate the fundamental frequency at each point in
time. Secondly, we break up the fundamental frequency curve into notes.

1IrcamBeat, developed by Geoffroy Peeters and Frédéric Cornu, estimates the tempo, meter, and the
temporal position of beats in an audio file.

2SDIF was also developed in part by Ircam, in collaboration with the Center for New Music and Audio
Technologies at UC Berkeley and the Music Technology Group at the Universitat Pompeu Fabra.

5



Figure 1: Demonstration of the period of a harmonic signal.
Four sinusoids with frequencies f0 = 0.25 (blue), 2f0 (red), 3f0 (green), and 4f0 (magenta), with varying
amplitudes, are displayed. Their sum (black), a harmonic signal, has a period equal to that of the
fundamental component, 1/f0 = 4.

2.3 Perception and musical distance

The octave is the basic unit of musical distance, spanning from a minimum frequency
to twice that frequency. In most Western music, octaves are divided into 12 half-notes,
and each half-note is subdivided into 100 musical cents, such that an octave spans 1200
cents. However, as perception of pitch and thus, of musical intervals, is logarithmic, these
divisions are equally-spaced on a logarithmic scale, but not on a normal scale. Thus, the
interval between two notes, with frequencies fa and fb is:

n = 1200 · log2(fa/fb) (2)

where n is measured in cents. Four some instruments, the discretization of the range of
possible notes is the half-note, such as woodwind and brass instruments in which the length
of the resolating cavity is discretized (clarinet, trumpet, etc.). For others, there is no inher-
ent discretization in the structure of the insrument and thus the range of possible pitches
is infinite. Examples include the voice, the trombone, non-fretted stringed instruments
like the violin and the cello, and musical synthesizers. In the first group, transcription in
musical notation, with its half-note interval structure, is natural. For the second group, the
half-note discretization of produced notes is often imposed by a well-trained musician, but
as pitches between half-notes can still be produced, the automatic transcription of such
instruments is challenging. On may ask whether another representation would be more
adequate to represent these instruments. For the purposes of this project, however, the
problem was not addressed. All notes were assumed to fit in a half note interval, with a
central frequency, fc and a range of ±50 cents.

2.4 F0 estimation software

Although other reliable monophonic fundamental frequency estimation software exists, F0
was used exclusively throughout this internship. As other options were not explored, it
is possible that use of another software could have produced better results. For those
interested, an overview of available f0 estimation algorithms and a successful alternative
can be found in [1].

F0 can be described as follows. The short-term Fourier Transform (STFT) is calculated
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for successive frames of an audio file, producing a series of spectra. The relative maxima
of each spectrum that lie above a signal-noise threshold are classified as relevant spectral
peaks (RSP). Next, a series of harmonic partial series (HPS), consisting of an f0 candidate
and its multiples, are tested for validity. Three criteria are used to quantify the likelihood
that the given HPS is indeed the correct one–the harmonicity (HAR), the mean spectral
bandwidth (MBW), and the spectral centroid (SCR). The total score, the linear sum of
each criteria,

S = pHAR ·HAR + pMBW ·MBW + pSCR · SCR (3)

is minimal for the optimal HPS.

The harmonicity criteria evaluates how closely the set of relevant spectral peaks (RSP) can
be modeled by a given HPS. For each peak fi of the RSP, the closest peak in the HPS, fh
is determined, and its degree of deviation is calculated:

di =

{ |fi−fh|
αfh

if |fi − fh| < αfh
1 otherwise.

(4)

where α defines a confidence interval, spanning the width of the fundamental frequency
and centered around the given peak in the HPS, fh. The peak salience, speci, defined as
the amplitude of the maximum bin falling within the frequential bounds of the spectral
peak, serves to quantify the size of the peak. The HAR measure is then calculated as the
salience-weighted sum of the set of deviations, di:

HAR =

∑I
i=1 speci · di∑I
i=1 speci

(5)

Since the HPS of subharmonics (f0/n, where n is an integer) of the true fundamental
frequency include all frequencies in the correct HPS, they can produce similarly low HAR
values, as the salience and the deviation of each existing peak in the RSP are equivalent.
In consequence, this effect must be countered by the inclusion of criteria that discourage
the choice of subharmonics.

The MBW and SCR do just that. The MBW attempts to measure the smoothness of the
spectral envelope of a given HPS. The spectral envelope connects the tops of the spectral
peaks found at each value fi in the HPS. The envelope for a subharmonic HPS alternates
between found peaks and nonexistent peaks. Thus, even for a clarinet spectrum, in which
the odd partials are considerably weaker than the even ones, the subharmonic’s envelope
is considerably rougher than that of the true fundamental (See figure 2). In turn, the
MBW quantifies the inverse of the envelope smoothness, such that smoother HPS envelopes
produce lower scores. The SCR, in turn, calculates the energy spread of the envelope of
a given HPS. By weighting the energy explained by a given peak at fh in the HPS by its
index h, subharmonics produce higher values, since the index will be 2n times higher for
each peak. For a more detailed description of these two criteria, refer to Yeh, et. al. [5].

F0’s input parameters include:

• the minimum and maximum f0 candidate frequencies (f0,min and f0,max)

• the maximum frequency in the analysis range (Fmax)
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Figure 2: Spectral smoothness.
Comparison of spectral smoothness between the envelope of the HPS of the correct f0 (solid line) and
that of the HPS of the subharmonic f0/2 (dashed line). The spectrum shown is that of a clarinet playing
the note Bb3. Taken from [5].

• the window size, M

• the signal noise threshold, sn

• the relative weights, pHAR, pMBW , and pSCR of each criteria in the scoring algorithm
(equation. 3)

F0 outputs to an .sdif file containing 3 relevant parameters for each frame:

• the estimated f0, the fundamental frequency of the HPS which obtained the lowest
score.

• the harmonicity value, harm, calculated by demodulating the signal within a tem-
poral window of 4/f0 such that the f0 is constant over the segment, calculating the
unbiased, normalized estimation of the autocorrelation of the demodulated segment,
and finally, selecting the local maximum in the vicinity of t = 1/f0. As a harmonic
function is periodic with period T = 1/f0 (see section 2.2), the autocorrelation func-
tion of a correct estimate will have a local maximum at t = T . Normalization of
autocorrelation function is performed to ensure that the degree of this periodicity,
and thus, the degree of harmonicity of the signal, is expressed as a value between 0
and 1. However, if f0 varies over the analysis frame, the period T will also vary, and
thus the desired peak in the autocorrelation function will be diffused over the range
of fundamental periods, T . Thus, the signal is demodulated over the analysis frame
so that f0 remains constant.

• the energy amplitudes value, ener, defined as the sum of the squared amplitudes of
the saliencies of the RSP.

ener =
∑
i

spec2i (6)

2.5 Importance of window size choice

The choice of window size for a STFT analysis frame has a direct impact on the minimum
detectable fundamental frequency of the outputted spectra. This minimum fundamental
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frequency (fmin) is approximately equal to the bandwidth (Bw) of the main lobe of the
window function:

fmin = Bw = c/M (7)

where c is a factor which depends on the windowing function chosen and M is the window
size, in seconds. The windowing function, w[n], is applied to the signal in the current
frame, s[n], to give the output in the temporal domain, x[n]:

x[n] = w[n] · s[n]

Application of the discrete Fourier transform gives the convolution product of the window
and the signal in the frequency domain:

X[k] = W [k] ∗ S[k]

For a perfectly harmonic, monophonic source with fundamental frequency f0, the spec-
tral peaks of S[k] can be approximated as delta functions, spaced f0 apart. Convolution
replicates the window spectrum W [k] at each of the delta functions, to form the output
spectrum, X[k]. If f0 = fmin, the main lobes centered at each harmonic (mf0, where m is
an integer) will not overlap, and the correct fundamental frequency, f0, will be discernible.
However, if f0 is much less than fmin, the main lobes will overlap considerably and thus
the fundamental frequency will not be detected. (See figure 3.)

Figure 3: Effect of window size on minimum discernible fundamental frequency.
Idealized frequency spectra for a harmonic source of frequency f0 (red) and the output spectrum after
the application of a window function (blue). When f0 = fmin (see equation 7) (left), adjacent lobes do
not overlap, whereas when f0 is much less than fmin (right), the lobes overlap considerably and thus the
harmonic structure is no longer distinguishable.3

The Hann window, with its main lobe bandwidth factor c = 4, was used throughout this
project. Thus, the lowest frequency for which there will be no overlap is:

fmin = 4/M (8)

However, as a small amount of overlap between adjacent lobes will not immediately inhibit
detection, the true minimum detectable fundamental frequency may be slightly lower than
this value.

If the window size is not properly set, and fmin lies above some of the notes in the file,
these notes cannot be detected, no matter how effective the following note segmentation
algorithm may be. Thus, it is of utmost importance to choose an adequate window size
before further analysis is performed.

3Only the main lobe of the window function is represented.
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3 Project Description

Figure 4: Schematic representation of project

The project can be summarized as follows. First, a database of 132 monophonic and nearly
monophonic audio files was compiled (described in section 3.1). These files were manually
segmented to create a ground truth database comprised of .sdif files containing the start
times and pitches of each note (see section 3.2). Once the ground truth database was
created, an automatic note segmentation scheme was developed, consisting of performing
an f0 estimation on a given sound file from the database, segmenting the f0 output curve
into notes, and transferring the relevant note start and pitch information into an equivalent
file format so as to allow for easy comparison with the corresponding .sdif file in the ground
truth database (described in sections 3.3 and 3.4). An evaluation routine was written which
compares the pitches and onset times detected by the automatic pathway (f0 estimation
and note segmentation), against the true pitches and onset times contained in the ground
truth database, outputting a score (F-measure) from 0 to 1 (described in detail in section
3.5). As both the F0 software and the note segmentation algorithm require a large set of
input parameters, a genetic adaptation algorithm was used, optimizing parameter choice
to achieve the highest possible average per-file F-measure (see section 3.6). A schematic
representation of the project can be viewed in figure 4.

3.1 Sound file database

The database of .wav and .aif audio files compiled for this project includes excerpts from
a wide variety of instruments and musical styles, such as computer synthesized sounds,
vocal extracts with and without effects, whistling, classical and electric guitar, piano,
xylophone, jazz trumpet and saxophone, and tribal chants. Many of the sound files were
submitted by prior users of various f0 estimation programs, complaining that performance
was inadequate. Effects such as reverberation and note overlap, and the existence of
background percussion and speech mean that many of these files could be classified, strictly
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speaking, as polyphonic. The final database aims to push the limits of monophonic f0
estimation.

3.2 Manual segmentation

The first phase of the project consisted of manually segmenting each audio file in the
database. AudioSculpt 3.0, a software developed by IRCAM, was used to create .sdif files
containing each note’s start time and fundamental frequency. Two approaches were used.
The first, the marker approach, consisted of performing a fundamental frequency analysis,
and for each note, placing a marker at the onset, and specifying a range over which the
fundamental frequency estimation had been successful for that note. The output of this
approach was two .sdif files, one containing the fundamental frequency estimation at each
point in time, and the other containing the marker information. However, for certain files,
the fundamental frequency estimation was largely unsuccessful, and thus, another approach
was necessary. In the midi approach, midi notes were drawn on the spectrogram over the
frequential and temporal bounds of each note. The output of this approach was, again, an
.sdif file, but with a different internal format. Thus, a python program was written that
read the output of the two different approaches and wrote an sdif file of a standardized
format, including a frame for the start time of each note, followed by a frame containing
its fundamental frequency. The final product of the manual segmentation process, the
completed ground truth database, comprised one standard-format .sdif file, sndfile-gt.sdif,
for each file in the sound file database.

3.3 Fundamental frequency estimation

3.3.1 Window size and frequency range choice algorithm

In order to run an f0 estimation, the window size (M) and the frequency range parame-
ters (f0,min,f0,max, and Fmax) must be specified, among other parameters (see section 2.4)
Ideally, the chosen window size should be just large enough that the minimum detectable
frequency, fmin, falls right below the minimum f0 in the sound file (see equation 7). Once
an appropriate window size is chosen, f0,min can be set to any value greater or equal to fmin.
Thus, f0,min was automatically set equal to fmin. For the purposes of comparing window
size choice algorithms, f0,max was set 4 octaves above f0,min, and Fmax was set to twice the
value of f0,max. To limit program run times, the number of window sizes, Nws, was limited.
The minimum window size, Mmin = 4/800 corresponds to a minimum frequency of 800 Hz
for a Hann window, with c = 4. The maximum window size, Mmax = 4/25 corresponds to
a minimum frequency of 25 Hz. The window sizes were equally spaced on a logarithmic
scale:

Mp = exp

(
p(logMmax − logMmin)

Nws

)
(9)

where p ≤ Nws is an integer. In order to test window size choice algorithms, Nws was set to
6, corresponding to fmin’s, one octave apart. However, the number of window sizes (Nws),
the window size factor (c in equation 7), the number of octaves between f0,minandf0,max
(Noct), and the multiplicative factor between f0,max and Fmax (FF ), were eventually taken
as variables to be set by the Genadapt parameter choice program.
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Two algorithms were developed to automatically choose an appropriate window size, the
signal energy algorithm and the harmonicity-energy amplitudes algorithm.

The signal energy algorithm performs an STFT, applies a band pass filter ranging from
f0,min to Fmax, and creates a new sound file after having eliminated all noise, for each
possible window size (see eq. 9). The noise elimination algorithm consists of making a
distinction between noise peaks and harmonic peaks in each spectrum, eliminating the
noise peaks, and resynthesizing a soundfile by combining the inverse DFTs of the set
of noise-eliminated spectra [6]. Next, the signal energy, E, of each resynthesized file is
calculated:

E =
N∑
n

|x[n]|2 (10)

where N is the length, in samples, of the sound file. As the re-synthesized file with the cor-
rect frequency range and window size will contain the energy of as many of the notes in the
original file as possible, the window size (and corresponding frequency range parameters)
which produces the maximum signal energy is selected.

Likewise, the harmonicity-energy amplitudes algorithm performs an STFT and then a
noise-eliminating re-synthesis for each window size. However, instead of calculating the
signal energy, an f0 estimation is performed for each window size. Then, the product
of the harmonicity (harm, see section 2.4) and energy amplitude (ener, see equation 6)
outputs for each frame is summed and normalized by the number of frames, to determine
the HE value:

HE =
J∑
j

harm[j] · ener[j]
J

(11)

where J is the number of frames. The window size (and corresponding frequency range
parameters) producing the maximum HE value becomes the optimal choice. Notes are
often correlated with periods of high harmonicity values; consequently, a high average
harmonicity per frame is desirable. However, very weak signals, such as electrical noise at
25 and 50 Hz, can be highly harmonic and encourage a choice of window size that allows
its detection. Thus, the energy amplitudes value was included to ensure that the harmonic
sources biasing the window size choice were truly significant. Moreover, as different window
sizes result in a different number of output frames for the same sound file, normalization
by J becomes necessary. With these modifications made, it was hypothesized that the f0
estimation with the highest HE value would correspond to an intelligent choice of window
size.

Once designed, the two algorithms were applied to the entire sound file database and
evaluated based on their ability to choose a window size large enough for the minimum
fundamental frequency of the sound file to be detected, and ideally, the largest window
size that would allow such detection, corresponding to the highest possible fmin which lies
below the minimum f0 in the sound file. The ideal window size is thus the one that allows
detection of all notes in the file and minimizes the possibility of subharmonic errors. The
signal energy approach succeeded in choosing a window size that allowed detection of the
full range of f0’s in the file 68.9% of the time, 35.7% of which a smaller window size could
have been selected, while the harmonicity-energy amplitudes approach succeeded for up
to 94.6% of the files, 13% of which a suboptimal but nonetheless functional window size
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was selected. For the 5.4% for which a non-ideal window size was selected, some but not
all of the notes could be detected. Thus the percentage of notes rendered detectable by
the harmonicity-energy amplitudes alrogithm could be considerably higher than 94.6%.
Though the signal energy approach was somewhat faster than the harmonicity-energy
amplitudes approach, as only one fundamental frequency estimation was performed as
opposed to one per window size choice, the 30% increase, on average, in run time was
deemed worth the increased precision, and the harmonicity-energy amplitudes approach
was selected.

As the harmonicity-energy amplitudes approach includes f0 estimation, no furtherf0 analy-
sis is necessary. The sndfile-f0.sdif file derived from the optimal window size is then passed
on to the note segmentation algorithm.

3.4 Segmentation into notes

The note segmentation algorithm is primarily based on two limits, the harmonicity thresh-
old and the relative derivative limit. The use of a harmonicity threshold is a direct product
of this project, whereas the idea for the use of a relative derivative limit can be attributed
to Rossignol, et. al. [3].

Harmonicity is the degree to which a sound can be modeled by a discrete set of harmonics
(see section 2.2). Notes are thus characterized by high harmonicity values, whereas noise is
characterized by low harmonicity values. Additionally, for instruments in which the length
of the resonating cavity is discretized, harmonicity should decline when changing from one
note to the next. Thus, by setting a harmonicity threshold, harmth, for the f0 curve, one
can effectively eliminate noise sections in relatively clean sound files. f0 values for which
the harmonicity is above this level are kept, while f0 values for which the harmonicity level
is below the threshold are thrown out. However, for instruments which do not produce
a discrete set of pitches, another parameter is necessary to differentiate between adjacent
notes.

The relative derivative measures the speed at which the fundamental frequency changes.
A note change is often the cause of a relatively quick change in the fundamental frequency.
Thus, by setting an upper limit on the magnitude of the relative derivative, one can hope
to segment the f0 curve into notes. The relative derivative is defined as follows:

rd =
f0[j + 1]− f0[j]

dt · (f0[j] · f0[j + 1])1/2
(12)

where dt is the time between two samples in the sndfile-f0.sdif file, which is equivalent to
the window size divided by the hop size between adjacent frames (set to M/8). Division by
dt is necessary as different window sizes will produce different time steps, and the optimal
window size for each file will vary based on the contents of the soundfile. Normalization
by the geometric mean of the two samples in question is performed to ensure that a jump
upwards and a jump downwards perceived as equal in musical distance (see section 2.3)
would result in relative derivatives of the same magnitude. Apart from helping to detect
note changes, the relative derivative threshold also serves to eliminate f0 estimates that
vary extremely quickly in frequency, often faster than would be physically possible. Possible
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sources of such a variation include the rapid fluctuation between a subharmonic and the
true f0, and f0 estimates deriving from noise. In both cases, variation of this type should
be removed from analysis.

Two additional parameters, the minimum segment length (msl) and the minimum note
length (mnl) also serve to eliminate undesirable f0 estimates. As extremely short segments
are probably the result of either noise or poor f0 estimation, segments shorter than the
minimum segment length are disregarded. Likewise, notes shorter than a certain threshold
often have a similar origin. Moreover, there exists a temporal minimum in which instru-
mentalists can change notes, and also a perceptual limit to which humans can perceive
note changes. Thus, even in the case of computer synthesized music, it is unlikely that
notes shorter than this perceptual limit would exist. For these reasons, both a minimum
segment length and a minimum note length were utilized.

3.4.1 Combining fixed and adaptive parameters

It is unclear, at first glance, whether the inputs to the note segmentation algorithm
(harmth, rdlim, msl, and mnl) should be the same for all files, or whether they should
be somehow adapted in relation to the content in each audio file. If these thresholds rep-
resent true physical limits, then a constant value for all files is desirable. For example,
if there exists a harmonicity value above which it becomes highly unlikely that a funda-
mental frequency estimate could be the result of noise, then that value would be the ideal
harmonicity threshold. Along those lines, if there exists a relative derivative corresponding
to a certain steepness of curve that can be most likely attributed to a note change, then
that fixed value should be the relative derivative limit. However, if this value is below the
average —rd— values resulting from vibrato, perhaps the rdlim should be set just above
the vibrato-—rd— values, such that vibrato is averaged out over the length of a segment.
Thirdly, if there is indeed a perceptual or physical limit to note change durations, then we
should set our minimum segment and note lengths based on this value.

On the other hand, one can argue that adjusting these parameters in relation to each au-
dio file might produce better results. If in each audio file, there is a clustering of higher
harmonicity values representing notes and a clustering of lower harmonicity values corre-
sponding to the times when no note is present, then we should set our harmonicity threshold
between these two clusters. As a vocalist is more inclined to slide between pitches than
a flutist, the spectrum of rd values produced by a flutist will be different than that of
a vocalist. Additionally, as two instrumentalists may have different tendencies as to the
amplitude of vibrato, or whether they often glide upwards or downwards within a single
note, their rd spectrums will reflect those differences. Consequently, it might be better to
set the relative derivative limit based on the specific rd distribution of a given file. Finally,
if the tempo of an audio file can be reliably detected, the minimum note length could be
set as just inferior to some fraction of the duration of a beat.

To confront this problem, a combined approach was utilised. The distribution of harmonic-
ity values in each sound file is fit by a two-component Gaussian mixture model (GMM).
The Gaussian with the lower mean was expected to model the lower cluster of harmonic-
ity values representative of noise and the lack of notes, and the Gaussian with the higher
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mean is expected to model the upper cluster, representing the presence of notes. The mod-
eled probability distribution is then the sum of the two component Gaussians. The local
minimum of the modeled probability distribution that lies between the two component
Gaussians is then used as a reference point (ref). When no local minimum exists, the in-
tersection point of the two component Gaussians is used. Finally, an additional parameter,
the distance from this reference point (dist) at which to set the harmonicity threshold, is
included, such that the final harmonicity threshold becomes:

harmth = ref + dist (13)

A depiction of the algorithm is provided in figure 5.

Figure 5: Depiction of algorithm used to set harmonicity threshold.
A two-component Gaussian mixture model is used to model the harmonicity distribution of a given
sound file. The sum of the upper Gaussian (dashed line, blue) and the lower Gaussian (dashed line,
magenta) is the modeled probability distribution (red). The local minimum between the two Gaussians
(x, green) is then used as a reference value (ref). When no local minima exists, the intersection of the
two Gaussians (o, green) is used instead. The dist parameter (negative in the diagram) determines the
distance between this reference value and the harmonicity threshold (harmth). All harmonicity values
below this value are excluded from further analysis (shaded in grey).

However, both a strict upper limit (harmmax) and a strict lower limit (harmmin) are
included. If the calculated harmonicity threshold lies above harmmax or below harmmin,
harmth defaults to the closer of the two strict limits. Overlapping ranges of the possible
values for harmmax and harmmin were provided to the genetic parameter choice algorithm.
Thus, if a fixed harmonicity threshold were indeed optimal, then the genetic algorithm
could set the two parameters as equal.

A similar, but somewhat simpler approach is used to set the relative derivative limit. First,
the harmonicity threshold is employed to eliminate certain undesirable portions of the f0
curve. As the rejected portions are not included in the final segmentation, only the rd
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values of the remaining portions of the curve are included when a single-Gaussian is fit
to the {rd} distribution. Finally, a new parameter, the number of standard deviations,
Nstd,rd, is used to set the rd limit, as follows:

rdlim = Nstd,rd · std({rd}) (14)

However, using the same reasoning as for the harmonicity threshold, strict upper (rdmax)
and lower limit (rdmax) parameters are included as well. Therefore, if a fixed rdlim for all
files were optimal, then the genetic algorithm could set these two parameters equal. In this
case, the results of the Gaussian description of the rd values would essentially be ignored
as the default value would always be chosen.

As the tempo cannot be reliably detected for the given set of files in the soundfile database,
the minimum note and segment lengths are not adapted to each file, and are instead lest
as fixed parameters to be set by the genetic adaptation algorithm.

3.4.2 The case of vocal files

As previously mentioned, the voice is a particularly challenging instrument for automatic
note detection as it doesn’t produce a discretized set of fundamental frequencies. The
voice can produce a continuous set of pitches between the upper and lower limits of the
singer’s range.4 Although unfretted stringed instruments and the trombone also share this
quality, most instrumentalists constrain the set of notes produced to half-note intervals to
conform with current musical culture. However, it is both more challenging for singers to
hit half-note intervals perfectly, and also more culturally and stylistically acceptable for
singers to slide into and out of notes. Thus the magnitude of the relative derivative would
be, on average, considerably less at note changes in vocal files than for other instruments.
Additionally, of all instruments, vibrato extent (amplitude) reaches its maximum in vocal
music, ranging from up to ± 100 cents, whereas for bowed strings is is usually contained
to ± 50 cents [4]. With a rate of vibrato ranging from 4 to 7 Hz [4], it is possible for the
magnitude of the relative derivative within sung notes containing vibrato to reach higher
values than at note changes. Thus, ideally, significant vibrato should be removed before
the rd distribution is compiled and before the rdlim is calculated.

Since the robustness of the automatic note detection was of chief importance in this study,
removing all vocal files from the analysis was deemed undesirable. The vocal files were
retained in the database, and were included when optimal parameters were chosen for the
completed note detection algorithm. However, a case study was performed on the subset of
files containing monophonic voice excerpts. The parameters of the original algorithm were
optimized by the genetic algorithm for just the subset of vocal files, and additionally, an
alternative algorithm was developed that included vibrato suppression, and its parameters
were also optimized, to see if the results for vocal files could be ameliorated. The alternative
algorithm is described as follows.

First, the f0 curve is divided into a set of preliminary segments by the harmonicity threshold
and an initial, fixed relative derivative limit (rdlim,prelim), intended to remove poor f0

4Excepting, of course, a change in quality and a potential gap due to the switch from chest voice to
head voice, and for male singers, from head voice to falsetto.
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estimates and noise, but retain vibrato. A back-of-the-envelope calculation estimates the
maximum rd value that would be obtained in a vibrato-containing segment to be 5.55. For
the detailed calculation, see section A, in annex. With this in mind, the range of possible
{rdlim,prelim} given to the genadapt algorithm was from 4 to 15.

To suppress vibrato, the method of interpolation and averaging between the local maxima
and local minima trajectories in regions of significant vibrato was adopted from Rossignol,
et. al. [3]. Here, the Mvalue, or the mean discrepancy between the interpolated local
minima and interpolated local maxima trajectories is calculated for each segment. An
Mvalue threshold parameter, Mth is included. Segments with Mvalue’s above this limit
undergo vibrato removal, while those whose Mvalue’s are inferior to the limiting value are
left untouched. In Rossignol, et. al. [3], the Mvalue for a vocal audio file containing
significant vibrato was 0.087, and 0.032 for a file containing no vibrato. Thus, the set of
potential threshold values, {Mth}, passed on to the genadapt parameter choice algorithm
ranged from 0.04 to 0.09. For the successful implementation of Rossignol, et. al.’s vibrato
suppression algorithm, two other parameters were deemed necessary. Even in vibrato
sections, the f0 curve produced by F0 is not perfectly smooth, often containing minute
internal variations in a single period. The targeted local maxima and minima are not
those of these internal variations, but instead the peaks and valleys of the vibrato pulse.
Thus, a minimum extent of a local extrema, in number of samples (Npts), was adopted;
consequently, local extrema resulting from a single or small number of misplaced estimates
above or below the vibrato curve could be eliminated. Additionally, a minimum temporal
distance between adjacent extrema, dtmin,ext, was also included. After vibrato suppression,
the distribution of rd values is compiled, the rdlim is calculated as described in section
3.4.1, and a final segmentation of the f0 curve is obtained.

3.4.3 Segment addition

The relative derivative limit and the harmonicity threshold serve to break up the original,
contiguous f0 curve into segments for which harm ≥ harmth and for which |rd| ≤ rdlim.
Under stringent conditions, the curve will be divided into many more segments than the
number of notes in the file. However, the remaining segments will be more likely to rep-
resent valid information. To allow for such conditions, an algorithm must be implemented
that compiles a set of notes from a potentially larger set of segments. To this end, the
average fundamental frequency of each segment is calculated, to form a list of segment
pitches, {pi}. If pi+1 is within a half note range of pi (pi+1 = pi± 25 cents), then the two
segments are “added together” to form the same note. If the pitch of the i+ 2th segment
also falls within a half note range of the original ith segment (pi+2 = pi± 25 cents), then
it too is ”added” to the other two segments to form a single note. This process continues
until a segment is found whose pitch, pj, lies outside the half note range of the original
segment pitch, pi; in this case, a new note is started, with pj as the new reference pitch.
The ”addition” of segments amounts to a simple prolongation of the note in the temporal
domain, and the duration-weighted average pitch in the frequency domain. The pitch of
the compiled note becomes:

pnote =

∑j−1
i pi · di∑

i di
(15)
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where di is the temporal duration of a given segment. A schematic representation of the
”segment addition” process can be viewed in figure 6. As only the onset times of each
note are saved in the Ground Truth Database, notes are extended until the start of the
following note.

Figure 6: Segment addition.
Segments of a typical f0 curve are displayed in blue, above. The average pitch of the first segment in a
group (x) determines the frequency bounds of the set of segments that will eventually form one note (red
lines). Once a segment’s average pitch falls outside of these bounds, a new note is created, and a new set
of frequency bounds are calculated. The set of notes derived from the segmentation addition algorithm is
displayed in blue, below.

One obvious downside of such a segment addition algorithm is that repeated notes, or
consecutive notes with pitches within a half note of each other, cannot be detected. The
assumption was made that the increased reliability of stringent harmonicity and relative
derivative conditions would be worth the loss in repeated note detectability. Additionally,
repeated note detection would require the development of new algorithms such as the search
for small dips in harmonicity or the division of syllables in sung files, which are unnecessary
if the repeated note problem is ignored. Due to time constraints, these approaches were
not elaborated.

3.5 Evaluation

The evaluation routine developed serves to compare the set of notes detected in a single
audio file by the automatic pathway to the set of notes stored in the ground truth database.5

Each note in the ground truth database consists of a pitch and a start time, and thus can
be represented by a point in frequency-time space. A detected note, also consisting of a
pitch and a start time, is compared to the closest note in the ground truth file. If it is
within ±20ms on the temporal axis and within ±25 cents on the frequency axis, the note is
given the full score, 1. If the note is within ±100ms, and within ±50 cents on the frequency

5As the segment addition algorithm (described in section 3.4) is incapable of detecting repeated notes,
the repeated notes in the ground truth file were combined in a similar fashion, such that multiple notes
within a half-note range of the original note were joined to become just one note.
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axis, but outside the aforementioned inner bounds, the note is given a score between 0 and
1, based on the magnitude of its error in both the frequency and temporal dimensions (See
figure 7). The bounds were chosen so as to allow for the imperfect detection of notes, while
demanding a precision that is perceptually satisfying. In this outer target zone, the final
note score, sc, is the average of the temporal score, tscore, and the frequency score, cscore.

tscore =
100−∆t

100− 20
, cscore =

100−∆c

100− 50
, sc =

1

2
(tscore + cscore)

where ∆t is the difference, in ms, between the detected note’s start time and the closest
start time in the ground truth file, and ∆c is the difference, in cents, between the detected
note’s pitch and the ground truth pitch. The scores of the “correctly” detected notes
(falling within the outer bounds of a note in the ground truth file) are summed to equal
the true positive rate, tp. The number of detected notes lying outside of the outer target
zone is the false positive rate, fp. The number of notes in the ground truth file that are
not detected by the automatic pathway gives the false negative rate, fn. These three
measures are then combined to calculate the precision, prec, the recall, rec, and finally,
the F measure (F ) for the sound file.

prec =
tp

tp+ fp
, rec =

tp

tp+ fn
, F =

2 · prec · rec
prec+ rec

(16)

As neither the imprecise over-detection of notes (allowing for the detection of close to
all notes in the ground truth file, but many false notes as well), nor the precise under-
detection of notes (nearly all detected notes are true notes but many of the true notes are
left undetected) is desirable, the F measure provides an accurate score for the performance
of the automatic pathway for a given audio file. The total F score (Ftotal) is then the
average F measure for all sound files.

Ftotal =
1

N

∑
n

Fn (17)

where N is the number of sound files in the database. With the the sound file and ground
truth databases compiled, and the window size choice algorithm, the F0 software, the
note segmentation algorithm and the evaluation routine in place, the final step is to select
optimal input parameters for the f0 estimation and note segmentation chain.

3.6 Genadapt, a genetic adaptation algorithm

Genadapt, written by Axel Roebel, is an genetic adaptation code that efficiently calculates
optimal or near-optimal parameter sets given a list of possible values for each parameter.
Instead of evaluating the performance of every possible combination of input parameters,
Genadapt uses a process modeled off of natural selection and genetic adaptation to “evolve”
towards optimal parameter choice. First, a generation of 80-100 random parameter sets,
or individuals, is created. The performance of each parameter set is then evaluated, and
the best 25 individuals are selected, forming the parents of the next generation. Through
a series of recombinations and mutations from these parent sets, the next generation of
80-100 individuals is formed. In this manner, the performance of the best individuals
slowly increases until the variation in parameters, or traits of the population diminishes.
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Figure 7: Calculation of the F-measure.
In comparing an automatically detected note to a note in the ground truth database (red x), two target
zones are designated. A note found in the inner target zone (blue) within ±25 cents of the true
fundamental frequency and within ±20ms of the true start time is given a full score of 1. A note found
within the outer target zone (grey) but outside of the inner target zone, is given a score on a sliding scale
from 0 to 1 based on its distance from the inner target zone in both the frequency and the temporal
dimensions. A note found outside of the outer target zone earns a score of 0.

Eventually, the results will stabilize, trait variation will reach a minimum, and the best
performing individual is deemed representative of the optimal parameter set.

In our case, the input parameters to the window size choice algorithm, the remaining
parameters for f0 estimation not selected by the window size choice algorithm6, as well
as the input parameters to the note segmentation algorithm were inputted to the genetic
adaptation algorithm. A complete description of each parameter, its function, and its
source is given in table 1.

4 Results

After 56 generations of the Genadapt algorithm, the best individual for the general algo-
rithm had a 76.5% success rate, that is, that on average, 76.5% of the notes in each file
were satisfactorily detected. As different instruments typically have different spectra and
different note change characteristics, it is quite possible that the overall results would be
maladapted to certain instruments types, and better adapted to others. Thus, the results
were sorted in terms of instrument type. (See table 2.) Unsurprisingly, vocal files were the
most challenging to segment.

6The default values of the relative weights of the HAR, MBW, and SCR criteria were used for all tests.
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Instrument type Favg

voice 0.640
whistling 0.775
bass synthesizer 0.935
soprano synthesizer 0.823
woodwinds and brass 0.693
plucked strings 0.739
bowed strings 0.838
piano 0.704
multiple 0.681
total 0.765

Table 2: Results by instrument type.

After 46 generations, the best individual for the voice specific algorithm had a 70.0%
success rate. When compared to the success of the vocal files in the general algorithm, this
represents a 6% improvement. However, since all the other parameters were also catered
to just the subset of 37 vocal files, the addition of vibrato suppression cannot account
for all of this improvement. When the sound file database was restricted to vocal files,
and the parameters of the original algorithm were optimized, the success rate was 66.4%.
Thus, inclusion of a preliminary relative derivative limit, followed by vibrato suppression,
improves results by a total of 3.6%.

It is interesting to compare the best set of parameters chosen for the general algorithm
versus the parameter set chosen for the vocal specific algorithm. (See table 3.) Many
parameter settings are quite similar, such as the minimum window size, Mlim, the window
size factor, c, and the number of octaves included in f0 estimation, Noct. The chosen values
for these parameters are clearly not instrument-specific, and should thus be optimal for all
instrument types. Others, such as the minimum segment and minimum note length, are
larger for the vocal specific algorithm than in the general case. These higher values reflect
the aforementioned fact that minimum vocal note durations are often longer than those
of other instruments for which note change is physically easier to control. Additionally,
the upper and lower harmonicity threshold limits (harmth,min and harmth,max) and the
distance parameter (dist) are set in such a way that the ideal harmonicity limits for vocal
files are usually 10% lower than in the general case. However, as the voice-specific algorithm
included two relative derivative limits, one that contributed to preliminary segmentation
and the other that segmented after significant vibrato was suppressed, it is possible that
some of the noise portions and undesirable f0 estimates were eliminated by the two relative
derivative limits and therefore a higher harmonicity threshold was unnecessary. Though a
higher optimal Nstd,rd for the voice-specific case as opposed to the general case might seem
to indicate that a higher relative derivative limit is optimal in vocal files, meaning that
steeper jumps are left unsegmented, this is not necessarily the case. Due to the preliminary
rd limit, the rd values forming the distribution in the vocal case are smaller in magnitude,
on average, than those in the general case. In this manner, Nstd,rd = 2 standard deviations
from center is often lower than the Nstd,rd = 0.5 standard deviations in the general case,
resulting in a lower rdlim capable of detecting the sliding note changes characteristic of
vocal audio excerpts.

The question was posed in section 3.4.1 whether adaptive or fixed parameters were optimal
for the note segmentation algorithm. To answer, a tally was made of the number of audio
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files whose harmth and rdlim were set adaptively, falling within the strict upper and lower
limits, and how many were set by the default limit values. For the general algorithm, the
harmonicity threshold was set adaptively for 112 audio files, whereas 22 were set equal to
the lower limit, 0.45. Interestingly, the upper limit could have been set almost 10% lower
with no effect on results, as for only one audio file was the harmonicity threshold set above
0.70. In the case of the relative derivative limit, for 56 out of the 132 audio files, harmth

was set equal to the fixed lower limit, while for 3 files it was set equal to the upper limit.
In both cases, the combined approach is clearly advantageous; however, it seems as though
a fixed relative derivative limit would work better than a fixed harmonicity threshold.

parameter general voice-specific
sn 36 32
nl 0.5 0.25
εnl 0.16 0.2
Nws 12 11
Mlim 0.015 0.014
c 4.8 4.7
Noct 3.5 3.5
FF 2 1.5
dist -0.2 -0.3
harmth,min 0.45 0.35
harmth,max 0.8 0.7
Nstd,rd 0.5 2
rdlim,min 2 1.5
rdlim,max 34.5 34.5
msl 0.04 0.058
mnl 0.085 0.11
rdlim,prelim – 14.5
Npts – 5
dtmin,ext – 0.011
Mvalue – 0.09

Table 3: Comparison of optimum parameters for general versus voice-specific algorithm.

As the total score is highly depended on the evaluation routine, it is challenging to compare
the final results to other works. Additionally, the set of audio files used in this study
included many files which would be excluded from other studies as, due to existence of
percussion or reverberation, they could be classified as polyphonic. Consequently, the
final score of 76.5% could be easily improved if these types of files removed from analysis.
Additionally, though a sliding F-measure from 0 to 1 based on the proximity of a detected
note to a true note was useful for training, one could argue that a binary evaluation routine
should be used in calculating the true performance of the alrogithm; the entire frequential
range of the true pitch ±50 cents and the entire temporal range of the true note start time
±100ms should be given a full score of 1, whereas detected notes outside this range would
receive a score of 0. If these modifications were made, the final average F-measure might
be considerably higher than 76.5%. Thus it is hard to say whether 76.5% is “good” or not.
In any case, it is possible to describe the sorts of errors made and to determine whether
results can be easily improved.

By far the most prevalent source of error derived from imprecise, sliding note changes.
Currently, a sliding attack will either be broken up into multiple pitches, be left unseg-
mented and its pitch will be averaged over the length of the segment, or it will produce a
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correctly-pitched but late note that begins when the instrumentalist reaches the final pitch.
In all three cases, despite a correct f0 analysis, the detected note or notes will not be cor-
rect in both pitch and start time, and thus, will result in a lower score. Of the 33 sound
files containing this type of error (25% of the total), 7 were computer synthesized excerpts
containing glissandos, 1 was a violin excerpt with a less-obvious but nonetheless sliding
note change, and 25 were vocal files with the usual, characteristic sliding note changes.
Some of these errors were corrected thanks to vocal-specific parameter choice, allowing for
a more stringent rdlim. Others, such as multi-note glissandos, are not correctable under
the current algorithm, as they are not adequately represented by the discretized 12 half
note per octave grid imposed by current musical notation. An example of this second type
of slide can be viewed in figure 9, in appendix B.

The second most-prevalent source of error was over-segmentation; 15 files, or 11% suffered
from this type of error. A higher-than-desirable harmth or a lower-than-optimal rdlim re-
sulted in many more segments than notes. Although the f0 estimation correctly detected
a note, the application of harmth and rdlim resulted in a segment that was shorter than
the minimum segment length, and thus the segment was cast out and the note was left
undetected. However, in noisy files or those containing background percussion, some of the
correct segments cast out by the msl were indeed shorter than some of the segments due
to percussion or noise (See figure 10, in appendix B). Thus the chosen mnl and the values
for parameters involved in setting the harmonicity threshold and relative derivative limit
represent a compromise between the detection of correct notes and the elimination of noise
and percussion. Additionally, as the previous type of error calls for a more stringent rdlim
and over-segmentation calls for a more lenient rdlim, it seems that the current parameter
settings also attempt to compromise between the detection of gradual note changes and
over-segmentation. In any case, the inclusion of a segment addition algorithm means that
over-segmentation in the case of consecutive segments within a half-note range of each
other are added up to form one note. As such, perhaps the true negative consequences
of over-segmentation are not taken into account. If the segment addition algorithm were
removed from the program, perhaps over-segmentation errors would become less prevalent.
Moreover, it may be advantageous to vary the relative derivative threshold and the mini-
mum segment and note lengths in a given sound file in relation to the harmonicity at each
point in the file. Thus, one could allow more abrupt pitch changes and shorter notes and
segments when harmonicity values were high, but segment fast pitch changes and discard
short segments when harmonicity values were low. This would facilitate the elimination of
noise without hindering the detection of short notes, and would allow portions of vibrato to
remain contiguous segments which could then be easily averaged to find the target pitch.
However, due to time constraints, these ideas were not explored.

The third type of error, occurring in 9 files, was the existence of incorrect notes resulting
from poor f0 estimates. In two of these files, the erroneous f0s were subharmonics of the
true notes; thus, a smaller window size and its corresponding higher minimum detectable
fundamental frequency could have disqualified the subharmonic as a viable f0 estimate and
thus the true pitch would most likely be detected. For an example of this type of error, see
figure 11, in appendix B. However, in the other 7, the window size could not be decreased
without loss of the detection of some of the lowest notes in the file. Though incorrect f0
estimates can sometimes be eliminated if they correspond with low harmonicity values or a
fast variation in the f0 curve, not all the errors of this type can be avoided in this fashion.
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Thus, either other parameters of the F0 algorithm must be varied (such as the relative
weights of the 3 scoring criteria), or F0 itself must be modified if all errors of this origin
are to be avoided.

Finally, the window size choice algorithm was the source of error in 2 audio files, and a
different window size choice could have helped improve results for 2 more. Viewed inversely,
the window size choice algorithm chose an adequate window size allowing for the detection
of all notes 98.4% of the time, and chose an ideal window size, minimizing the potential
for subharmonic errors 97.0% of the time. This is certainly an achievement. However, for
perfect results, the, most-likely noise-based causes of non-ideal window size choice would
have to be taken into account in an improved version of the window size choice algorithm.

As for the voice-specific algorithm, it is clear that vibrato suppression and the application
of two relative derivative limits do improve results. However, the minimum vibrato level,
Mvalue, was set at the top of the range given to Genadapt, which indicates that the pa-
rameter was optimized when the fewest possible number of segments underwent vibrato
suppression. If the upper limit of this range had been higher, perhaps results would have
been even better without much vibrato suppression at all. This indicates that the vibrato
suppression algorithm, as is, is suboptimal. The use of a minimum local extrema extent
(Npts), and a minimum extrema discrepancy (dtmin,ext), to deal with internal variation
within vibrato segments in the f0 curve is a rather imprecise way to achieve the goal of
locating only the relevant local minima and maxima pertaining to the vibrato period. A
better method might be to use a smoothing filter before calculating the local extrema.

5 Conclusion

The final product of this project is a note detection algorithm that takes a monophonic,
uncompressed audio file as input and outputs either a midi file or a set of pitches and start
times. Highlights of this program are its highly successful window size choice program,
and its ability to work reasonably well for a large variety of instruments and to some
extent, even in cases with background percussion, noise, and reverberation. Drawbacks of
the program include its inability to detect repeated notes, and its weaker performance for
voice than for other instruments. As vocal audio files were the most challenging to segment,
an alternative algorithm was developed which included a method for vibrato suppression.
Though this alternative algorithm did lead to marginal improvements in note detection, the
vibrato suppression algorithm must be improved before automatic note detection in vocal
excerpts can attain the same effectiveness as for other instrument types. The improved
vibrato suppression algorithm should then be incorporated into the general note detection
algorithm such that it represents a truly robust algorithm, performing adequately for all
instruments. Alternatively, one could attempt to correlate the relative derivative threshold
and minimum segment and note lengths with the harmonicity values at a given point in
an audio file, which might facilitate vibrato suppression, noise elimination and detection
of short notes. Additionally, the specific case of repeated notes should be studied; the
segment addition process should be replaced by searches for repeated note indicators such
as small dips in harmonicity and transitions between syllables. Finally, a highly reliable
automatic tempo detection program must be incorporated, so that the set of detected notes
can be translated into a musical score.
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Appendices

A Back-of-the-envelope calculation of the maximum relative deriva-
tive resulting from vibrato

The f0 curve in a vibrato-containing segment is modeled as a simple sine function:

f0(t) = Asin(2πfvt)

where fv is the vibrato rate, and A is the vibrato amplitude or extent (See figure 8). It’s
derivative, df0

dt
, is then:

df0
dt

= 2Aπfvcos(2πfvt)

which has a maximum when cos(2πfvt) = 1, with amplitude

max(
df0
dt

) = 2Aπfv
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Figure 8: Idealized vibrato segment.

The maximum rd value is:

max(rd) = max(
f0[j + 1]− f0[j]

dt · (f0[j] · f0[j + 1])1/2
)

= max(
f0[j + 1]− f0[j]

dt
) · 1

min((f0[j] · f0[j + 1])1/2)

≈ max(
df0
dt

) · 1

min((f0[j] · f0[j + 1])1/2)

≈ 2Aπfv ·
1

min((f0[j] · f0[j + 1])1/2)

Taking a maximal vibrato extent of ±125 cents (slightly larger than the value cited in [4]),
the maximum fundamental, fa and the minimum fundamental, fb, can be calculated in
relation to the average pitch, fc (see equation 2):

fa
fc

= 2125/1200,
fb
fc

= 2−125/1200

Rewriting the maximum amplitude in terms of these frequencies, A can be replaced by
fa − fc. Additionally, since no point in the f0 curve falls below fb, f0[j] · f0[j + 1] can be
no smaller than f 2

b Finally, a maximum frequency of fv = 10Hz is used, well above the
usual 7 Hz upper limit for vocal vibrato. Substituting, the maximum rd value is can now
be approximated:

max(rd) ≈ 2π(10)(fa − fc)
fb

≈ 2π(10)(
fa/fc
fb/fc

− fc
fb

) ≈ 5.55

B Examples of different error types.

Guide to understanding:

Each example is presented as a series of 5 graphs. The first graph is the f0 estimation curve
of the given audio file as it is outputted from F0. The second graph displays harmonicity
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with respect to time; the red line represents the harmonicity threshold. The third graph
is the relative derivative of the remaining portions after the application of the harmonicity
threshold; the relative derivative limit is displayed in red. As the magnitude of the relative
derivative is limited to below this value, both the positive and negative of the rdlim are
depicted. In the 4th graph, the remaining segments are displayed in blue; each note in the
ground truth file and its corresponding half-note target range are depicted in black. The
final notes detected by the automatic pathway are displayed in the final graph, in colors
ranging from blue to red based on how closely they match the ground truth notes, again
shown in black.

Figure 9: Example of an uncorrectable note slide.
In the top graph, the f0 estimation curve of a computer synthesized bass loop is displayed. Note that at
0.65 s and again at 1.6 seconds, the f0 arcs, depicting an upwards and downwards glissando. The
harmonicity values corresponding to the glissandos are relatively high. However, the relative derivative
(3rd graph) in these arcs (and especially in the second arc which is punctuated by an erroneous estimate
around 1.75 s), is high enough to be segmented. As the notes in the ground truth file cannot correctly
depict a glissando, final notes detected by the automatic pathway (final graph) during these instances are
incorrect as well.
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Figure 10: Example of trade-off between over-segmentation and noise elimination.
The excerpt “Lilliburlero” begins with 3.3 seconds of timpani solo. At 3.3 seconds, the trumpet enters
with the melody, but the timpani continues to play throughout the whole file. Note the noisy look to the
f0 curve in the first 3.3 seconds, and the corresponding lower harmonicity values. In the 4th graph, many
short segments are found in the first 3.3 s of the file and also below the trumpet notes in the 6th, 7th and
10th second of the piece. These segments are a result of the timpani and not the trumpet melody; thanks
to the minimum segment length parameter, they are all effectively eliminated. However, the 6th and 15th
trumpet notes are detected in the segment depiction, but not in the final note version, because these
segments were also shorter than the minimum note length. Loss of these two notes is the price to pay to
be able to eliminate background percussion.
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Figure 11: Example of a subharmonic errors that could be eliminated with a better window
size choice.
In the top graph, the f0 estimation curve of a flute excerpt is displayed. It appears very noisy, as many
of the estimates alternate quickly between a higher and lower note. In the 4th graph, the segmented
depiction of the curve, evidence of subharmonic f0 estimation becomes clearer, as a set of incorrect
segments seems to follow the true notes and correct segments, roughly one octave below. The final result
is most definitely a sub par representation of the original file. Though this type of error can be
attributed to poor f0 estimation, if a smaller window size was chosen, these subharmonics would lie
below the minimum detectable f0 and thus could be eliminated.
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