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Pitch perception models

Alain de Cheveigné

1 Introduction

This chapter discusses models of pitch, old and recent. The aim is to chart
their common points — many are variations on a theme — and differences,
and build a catalog of ideas for use in understanding pitch perception. The
busy reader might read just the next section, a crash course in pitch theory
that explains why some obvious ideas don’t work and what are currently the
best answers. The brave reader will read on as we delve more deeply into
the origin of concepts, and the intricate and ingenious ideas behind the
models and metaphors that we use to make progress in understanding pitch.

2 Pitch Theory in a Nutshell

Pitch-evoking stimuli usually are periodic, and the pitch usually is related to
the period. Accordingly, a pitch perception mechanism must estimate the
period T (or its inverse, the fundamental frequency FO) of the stimulus.
There are two approaches to do so. One involves the spectrum and the other
the waveform. The two are illustrated with examples of stimuli that evoke
pitch, such as pure and complex tones.

2.1 Spectrum

The spectral approach is based upon Fourier analysis. The spectrum of a
pure tone is illustrated in Figure 1A. An algorithm to measure its period
(inverse of its frequency) is to look for the spectral peak and use its position
as a cue to pitch. This works for a pure tone, but consider now the sound
illustrated in Figure 1B, that evokes the same pitch. There are several peaks
in the spectrum, but the previous algorithm was designed to expect only
one. A reasonable modification is to take the largest peak, but consider now
the sound illustrated in Figure 1C. The largest spectral peak is at a higher
harmonic, yet the pitch is still the same. A reasonable modification is to
replace the largest peak by the peak of lowest frequency, but consider now
the sound illustrated in Figure 1D. The lowest peak is at a higher harmonic,
yet the pitch is still the same. A reasonable modification is to use the
spacing between partials as a measure of period. That is all the more



reasonable as it often determines the frequency of the temporal envelope of
the sound, as well as the frequency of possible difference tones (distortion
products) due to nonlinear interaction between adjacent partials. However,
consider now the sound illustrated in Figure 1E. None of the inter-partial
intervals corresponds to its pitch, which (for some listeners) is the same as
that of the other tones.

This brings us to a final algorithm. Build a histogram in the following
way: for each partial, find its subharmonics by dividing the frequency of the
partial by successive small integers. For each subharmonic, increment the
corresponding histogram bin. Applied to the spectrum in Figure 1E, this
produces the histogram illustrated in Figure 1F. Among the bins, some are
larger than the rest. The rightmost of the (infinite) set of largest bins is the
cue to pitch. This algorithm works for all the spectra shown. It illustrates the
principle of pattern matching models of pitch perception.

2.2 Waveform

The waveform approach operates directly on the stimulus waveform.
Consider again our pure tone, illustrated in the time domain in Figure 2A.
Its periodic nature is obvious as a regular repetition of the waveform. A way
to measure its period is to find landmarks such as peaks (shown as arrows)
and measure the interval between them. This works for a pure tone, but
consider now the sound in Figure 2B that evokes the same pitch. It has two
peaks within each period, whereas our algorithm expects only one. A trivial
modification is to use the most prominent peak of each period, but consider
now the sound in Figure 2C. Two peaks are equally prominent. A tentative
modification is to use zero-crossings (e.g. negative-to-positive) rather than
peaks, but then consider the sound in Figure 2D, which has the same pitch
but several zero-crossings per period. Landmarks are an awkward basis for
period estimation: it is hard to find a marking rule that works in every case.
The waveform in Figure 2D has a clearly defined temporal envelope with a
period that matches its pitch, but consider now the sound illustrated in
Figure 2E. Its pitch does not match the period of its envelope (as long as the
ratio of carrier to modulation frequencies is less than about 10, see Plack
and Oxenham, Chapter 2).

This brings us to a final algorithm that uses, as it were, every sample as a
“landmark”. Each sample is compared to every other in turn, and a count is
kept of the inter-sample intervals for which the match is good. Comparison
is done by taking the product, which tends to be large if samples x(#) and
x(t-7) are similar, as when T is equal to the period 7. Mathematically:

r(T) =fx(t)x(t —-T)dt (1

defines the autocorrelation function, illustrated in Figure 2F. For a periodic
sound, the function is maximum at =0, at the period, and at all its
multiples. The first of these maxima with a strictly positive abscissa can be
used as a cue to the period. This algorithm is the basis of what is known as
the autocorrelation (AC) model of pitch. Autocorrelation and pattern
matching are both adequate to measure periods as required by a pitch model,
and they form the basis of modern theories of pitch perception.



We reviewed a number of principles, of which some worked and others
not. All have been used in one pitch model or another. Those that use a
flawed principle can (once the flaw is recognized) be ruled out. It is harder
to know what to do with the models that remain. The rest of this chapter
tries to chart out their similarities and differences. The approach is in part
historical, but the focus is on the future more than on the past: in what
direction should we take our next step to improve our understanding of
pitch?

2.3 What is a model?

An important source of disagreement between pitch models, often not
explicit, is what to expect of a model. The word is used with various
meanings. A very broad definition is: a thing that represents another thing
in some way that is useful. This definition also fits other words such as
theory, map, analogue, metaphor, law, etc., all of which have a place in this
review. “Useful” implies that the model represents its object faithfully, and
yet is somehow easier to handle and thus distinct from its object. Norbert
Wiener is quoted as saying: “The best material model of a cat is another, or
preferably the same, cat.” I disagree: a cat is no easier to handle than itself,
and thus not a useful model. Model and world must differ. Faithfulness is
not sufficient. Figure 3 gives an example of a model that is obviously
“wrong” and yet useful.

There are several corollaries. Every model is “false” in that it cannot
match reality in all respects (Hebb 1959). Mismatch being allowed, multiple
models may usefully serve a common reality. One pitch model may predict
behavioral data quantitatively, while another is easier to explain, and a third
fits physiology more closely. Criteria of quality are not one-dimensional, so
models cannot always be ordered from best to worst. Rather than pit them
one against another until just one (or none) remains, it is fruitful to see
models as tools of which a craftsman might want several. Taking a
metaphor from biology, we might argue for the “biodiversity” of models,
which excludes neither competition nor the concept of “survival of the
fittest”. Licklider (1959) put it this way:

The idea is simply to carry around in your head as many formulations as
you can that are self-consistent and consistent with the empirical facts
you know. Then, when you make an observation or read a paper, you
find yourself saying, for example, “Well that certainly makes it look bad
for the idea that sharpening occurs in the cochlear excitation process”.

Beginners in the field of pitch, reading of an experiment that contradicts a
theory, are puzzled to find the disqualified theory live on until a new
experiment contradicts its competitors. De Boer (1976) used the metaphor
of the swing of a pendulum to describe such a phenomenon. An
evolutionary metaphor is also fitting: as one theory reaches dominance, the
others retreat to a sheltered ecological niche (where they may actually
mutate at a faster pace). This review attempts yet another metaphor, that of
“genetic manipulation”, in which pieces of models (“model DNA”) are
isolated so that they may be recombined, hopefully speeding the evolution
of our understanding of pitch. We shall use a historical perspective to help
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isolate these significant strands. Before that, we need to discuss two more
subjects of discord: the physical dimensions of stimuli and the
psychological dimensions of pitch.

2.4 Stimulus descriptions

A second source of discord is stimulus descriptions. There are several ways
to describe and parameterize stimuli that evoke a pitch. Some fit a wide
range of stimuli, others a narrower range but with some other advantage.
The “best choice” depends on the problem at hand. Whatever the choice, it
is important to realize that the stimulus usually differs more or less from its
idealized description (one could speak of a “model” of the stimulus). We
use this opportunity to introduce some notations that will be useful later on.

A first description is the periodic signal (Fig. 4A). A signal x(¢) is
periodic if there exists a number T#0 such that x(¢)=x(¢-T) for all time ¢. If
there is one such number, there is an infinite set of them, and the period is
defined as the smallest strictly positive member of that set (others are
integer multiples). This representation is parameterized by the period T and
by the shape of the waveform during a period: x(¢), O<t¢<T. Stimuli differ
from this description in various ways: they may be of finite duration,
inharmonic, modulated in frequency or amplitude, or mixed with noise, etc.
The description is nevertheless useful: stimuli that fit it well tend to have a
clear pitch that depends on T

A second description is the sinusoid, defined as x(#)=Acos(ft+¢$) where A
is amplitude, f frequency and ¢ the starting phase (Fig. 4B). A sinusoid is
periodic with period T=1/f, so this description is a special case of the
previous one. Sinusoids have an additional useful property: feeding one to a
linear time-invariant system produces a sinusoid at the output. Its amplitude
is multiplied by a fixed factor and its phase is shifted by a fixed amount, but
it remains a sinusoid and its frequency is still f. Many acoustic processes are
linear and time invariant. This makes the sinusoid an extremely useful
description.

Supposing our stimulus is almost, but not quite, sinusoidal, should we
use the better-fitting periodic description, or the more tractable sinusoidal
description? The advantages of the latter might make us tolerate a less good
fit. Disagreement between pitch perception models can be traced, in part, to
a different answer to this question.

A third way of describing a pitch-evoking stimulus is as a sum of
sinusoids. Fourier’s theorem says that any time-limited signal may be
expressed as a sum of sinusoids:

x(t) = ¥ A cosQaf,t — ¢,) @

The number of terms in the sum is possibly infinite, but a nice property
is that one can always select a finite subset (a “model of the model”) that fits
the signal as closely as one wishes. The parameters are the set (f;,A;.¢). The
appeal of this description is that the effect of passing the stimulus through a
linear time-invariant system may be predicted from its effect on each
sinusoid in the sum. It thus combines useful features of the previous two
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descriptions, but adds a new difficulty: each of the frequencies (f;) could
plausibly map to pitch.

A special case is the harmonic complex, for which all (f) are integer
multiples of a common frequency FO. Parameters then reduce to FO and
(A4,9). Fourier’s theorem tells us that the description is now equivalent to
that of a periodic signal. It fits exactly the same stimuli, and the theorem
allows us to translate between parameters x(¢), 0<¢t<T and (A,¢,). This
description fits many pitch-evoking stimuli and is very commonly used.

A fourth description is sometimes useful. The formant is a special case
of a sum-of-sinusoids in which amplitudes A, are largest near some
frequency fiocus (Fig. 4E). Its relevance is that a stimulus that fits this
model may have a pitch related to f;cys, and if the signal is also periodic
with period T=1/F0, pitches related to FO and f;cys may both be heard
(some people tend to hear one more easily than the other).

These various parameterizations appear repeatedly within the history of
pitch. None is “good” or “bad”: they are all tools. However, multiple
stimulus parameterizations pose a problem, as parameters are the “physical”
dimensions that psychophysics deals with.

2.5 What is pitch?

A third possible source of discord is the definition of pitch itself (Plack and
Oxenham, Chapter 1). The American National Standard Institute defines
pitch as that attribute of auditory sensation in terms of which sounds may be
ordered on a scale extending from low to high (ANSI 1973). It doesn’t
mention the physical characteristics of the sounds. The French standards
organization adds that pitch is associated with frequency and is low or high
according to whether this frequency is smaller or greater (AFNOR 1977).
The former definition is psychological, the latter psychophysical.

Both definitions assume a single perceptual dimension. For pure tones
this makes sense, as the relevant stimulus parameter (f) is one-dimensional.
Other perceptual dimensions such as brightness might exist, but they
necessarily co-vary with pitch (Plomp 1976). For other pitch-evoking
stimuli the situation is more complex. Depending on the stimulus
representation (see Section 2.4), there might be several frequency
parameters. Extrapolating from the definitions, one cannot exclude the
possibility of multiple pitch-like dimensions. Indeed, a stimulus that fits the
“formant” signal model may evoke a pitch related to f;cys instead of, or in
addition to, the pitch related to FO. Listeners may attend more to one or the
other, and the outcome of experiments may be task- and listener-dependent
(Smoorenburg 1970). For such stimuli, pitch has at least two dimensions, as
illustrated in Figure 5. The pitch related to FO is called periodicity pitch, and
that related to fiocys is called spectral pitch!. A pure tone also fits the
formant model, but its periodicity and spectral pitches are not distinct
(diagonal in Fig. 5). For other formant-like sounds they are distinct. As
illustrated in Figure 5, periodicity pitch exists only within a limited region

! The term spectral pitch is used by Terhardt (1974) to refer to a pitch
related to a resolved partial (Sec. 4.1, 7.2). We call that pitch a partial pitch.
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of the parameter space. Spectral pitch is sometimes said to be mediated by
place cues, and periodicity pitch by temporal cues (see below). However
spectrum and time are closely linked, so it is wise to reserve judgment on
this point.

Periodicity pitch varies according to a linear stimulus dimension
(ordinate in Fig 5) but it has been proposed that the perceptual structure of
periodicity pitch is helical, with pitches distributed circularly according to
chroma and linearly according to tone height. Chroma accounts for the
similarity (and ease of confusion) of tones separated by an octave, and tone
height for the difference between the same chroma at different octaves
(Bigand and Tillmann, Chapter 9). Tone height is sometimes assumed to
depend on f;ycys. However, we saw that fj,cys 1S a distinct stimulus
dimension (abscissa in Fig 5) and correlate of a perceptual quantity that we
called spectral pitch, probably related to the dimension of brightness in
timbre. Tone height and spectral pitch can be manipulated independently
(Warren et al. 2003).

The pitch attribute is thus more complex than suggested by the
standards, and further complexities arise as one investigates infonation in
speech, or interval, melody and harmony in music (see Bigand and
Tillmann, Chapter 9). We may usefully speak of models of the pitch
attribute of varying complexity. The rest of this chapter assumes the
simplest model: a one-dimensional attribute related to stimulus period.

3 Early Roots of Place Theory

Pythagoras (6th century BC) is credited for relating musical intervals to
ratios of string length on a monochord (Hunt 1992). The monochord is a
device comprising a board with two bridges between which a string is
stretched (Fig. 6). A third and movable bridge divides the string in two parts
with equal tension but free to vibrate separately. Consonant intervals of
unison, octave, fifth and fourth arise for length ratios of 1:1, 1:2, 2:3, 3:4,
respectively. This is an early example of psychophysics, in that a perceptual
property (musical interval) is related to a ratio of physical quantities. It is
also an early example of a model.

Aristoxenos (4th century BC) gives a clear, authoritative description of
both interval and pitch (Macran 1902). A definition of a musical note that
parallels our modern definition of pitch (ANSI 1973) was given by the Arab
music theorist Safi al-Din (13th century): “a sound for which one can
measure the excess of gravity or acuity with respect to another sound” (Hunt
1992). The qualitative dependency of pitch on frequency of vibration was
understood by the Greeks (Lindsay 1966) but the quantitative relation was
established much later by Marin Mersenne (1636) and Galileo Galilei
(1638). Mersenne proceeded in two steps. First he confirmed experimentally
the laws of strings, according to which frequency varies inversely with the
length of a string, proportionally to the root of its tension, and inversely with
the square root of its weight per unit length. This done, he stretched strings
long enough to count the vibrations and, halving their lengths repeatedly, he
derived the frequencies of every note of the scale.



Du Verney (1693) offered the first resonance theory of pitch perception
(although the idea of resonance within the ear has earlier roots):

...[the spiral lamina,] being wider at the start of the first turn than the end
of the last ... the wider parts can be caused to vibrate while the others do
not ... they are capable of slower vibrations and consequently respond to
deeper tones, whereas if the narrower parts are hit, their vibrations are
faster and consequently respond to sharper tones...

Du Verney thought that the bony spiral lamina, wide at the base and narrow
at the apex, served as a resonator. Note the concept of selective response.

...In the same way as the wider parts of a steel spring vibrate slowly and
respond to low tones, and the narrower parts make more frequent and
faster vibrations and respond to sharp tones...

Du Verney used a technological metaphor to convince himself, and others,
that his ideas were reasonable.

...according to the various motions of the spiral lamina, the spirits of the
nerve which impregnate its substance [that of the lamina] receive
different impressions that represent within the brain the various aspects
of tones

Thus was born the concept of tonotopic projection to the brain. This short
paragraph condenses many of the concepts behind place models of pitch.
The progress of anatomical knowledge up to (and beyond) Du Verney is
recounted by von Békésy and Rosenblith (1948).

Mersenne was puzzled to hear, within the sound of a string or of a voice,
pitches corresponding to the first five harmonics. He couldn’t understand
how a string vibrating at its fundamental could at the same time vibrate at
several times that rate. He did however observe that a string could vibrate
sympathetically to a string tuned to a multiple of its frequency, implying
that it could also vibrate at that higher frequency.

Sauveur (1701) observed that a string could indeed vibrate
simultaneously at several harmonics (he coined the words fundamental and
harmonic). The laws of strings were derived theoretically in the 18th
century (in varying degrees of generality) by Taylor, Daniel Bernoulli,
Lagrange, d’Alembert, and Euler (Lindsay 1966). A sophisticated theory to
explain superimposed vibrations was built by Daniel Bernoulli, but Euler
leap-frogged it by simply invoking the concept of linearity. Linearity
implies the principle of superposition, and that is what Mersenne lacked to
make sense of the several pitches he heard when he plucked a string2.

Mersenne missed the fact that the vibration he saw could reflect a sum of
vibrations, with periods at integer submultiples of the fundamental period.
Any such sum has the same period as the fundamental, but not necessarily
the same shape. Indeed, adding sinusoidal partials produces variegated
shapes depending on their amplitudes and phases (A;,¢;). That any periodic

2 Mersenne pestered Descartes with this question but was not satisfied
with his answers. Descartes finally came up with a qualitative explanation
based on the idea of superposition in 1634 (Tannery and de Waard, 1970).
Superposition can be traced earlier to Leonardo da Vinci and Francis Bacon
(Hunt 1992).



wave can be thus obtained, and with a unique set of (A;.¢,), was proved by
Fourier (1822). The property had been used earlier, as many problems are
solved more easily for sinusoidal movement. For example, the first
derivation of the speed of sound by Newton in 1687 assumed “pendular”
motion of particles (Lindsay 1966). Euler’s principle of superposition
generalizes such results to any sum of sinusoids, and Fourier’s theorem adds
merely that this means any waveform. This result had a tremendous impact.

4  Helmholtz

The mapping between pitch and period established by Mersenne and Galileo
leaves a question open. An infinite number of waves have the same period:
do they all map to the same pitch? Fourier’s theorem brings an additional
twist by showing that a wave can be decomposed into elementary sinusoids.
Each has its own period so, if the theorem is invoked, the period-to-pitch
mapping is no longer one-to-one.

“Vibration” was commonly understood as a regular series of excursions
in one direction separated by excursions in the other, but some waves have
exotic shapes with several such excursion pairs per period. Do they too map
to the same pitch? Seebeck (1841, Boring 1942) found that stimuli with two
or three irregularly-spaced pulses per period had a pitch that matched the
period. Spacing them evenly made the pitch jump to the octave (or octave
plus fifth for three pulses). In all cases the pitch was consistent with the
stimulus period, regardless of shape.

Ohm (1843) objected. In his words, he had “always previously assumed
that the components of a tone, whose frequency is said to be f, must retain
the form a.sin2zft”. To rescue this assumption from the results of Seebeck
and others, he formulated a law saying that a tone evokes a pitch
corresponding to a frequency f if and only if it “carries in itself the form
a.sin2n(ft+p)”3. In other words, every sinusoidal partial evokes a pitch, and
no pitch exists without a corresponding partial. In particular, periodicity
pitch depends on the presence of a fundamental partial of non-zero
amplitude. This is more restrictive than Seebeck’s condition that a stimulus
merely be periodic.

Ohm’s law was attractive for two reasons. First, it drew on Fourier’s
theorem, seemingly tapping its power for the benefit of hearing theory.
Second, it explained the higher pitches reported by Mersenne. Paraphrasing
the law, Helmholtz (1877) stated that the sensation evoked by a pure tone is
“simple” in that it does not support the perception of such higher pitches.
From this he concluded that the sensation evoked by a complex tone is
composed of the sensations evoked by the pure tones it contains. A corollary

3 Presence of the “form” was ascertained by applying Fourier's theorem
to consecutive waveform segments of size 1/f. Ohm required that p and the
sign of a (but not its magnitude) be the same for each segment. He said: “the
necessary impulses must follow each other in time intervals of the length
1/f’. This could imply that he was referring to the pitch of the fundamental
partial and not (as was later assumed) other partials. Authors quoting Ohm
usually reformulate his law, not always with equal results.
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is that sensation cannot depend on the relative phases of partials. This he
verified experimentally for the first eight partials or so, while expressing
some doubt about higher partials.

To summarize, the Ohm/Helmholtz psychoacoustic model of pitch
refines the simpler law of Mersenne: (a) Among the many periodic
vibrations with a given period, only those containing a nonzero fundamental
partial evoke a pitch related to that period; (b) Other partials might also
evoke additional pitches; (c) Relative partial amplitudes affect the quality
(timbre) of the vibration, but not its pitch, as long as the amplitude of the
fundamental is not zero; (d) Relative phases of partials (up to a certain rank)
affect neither quality nor pitch.

The theory also included a physiological part. Sound is analyzed within
the cochlea by the basilar membrane (BM) considered as a bank of radially
taut strings, each loosely coupled to its neighbors. Resonant frequencies are
distributed from high (base) to low (apex), and thus a sound undergoes a
spectral analysis, each locus responding to partials that match its
characteristic frequency. From constraints on time resolution (see Section
10.2) Helmholtz concluded that selectivity must be limited. Thus he viewed
the cochlea as an approximation of the Fourier transformer needed by the
psychoacoustic part of the model. Limited frequency resolution was actually
welcome, as it helped him account for roughness and consonance, bringing
together mathematics, physics, elementary sensation, harmony, and
aesthetics into an elegant unitary theory.

Helmholtz linked the decomposition of the stimulus to a decomposition
of sensation, extending the principle of superposition to the sensory domain,
and to the psychoacoustic mapping between stimulus and sensation. In
doing so, he assumed compositional properties of sensation and perception
for which his arguments were eloquent but not quite watertight. True, his
theory implies the phase-insensitivity that he observed, but to be conclusive
the argument should show that it is the only theory that can do so. It
explains Mersenne’s upper pitches (each suggestive of an elementary
sensation) but begs the question of why they are so rarely perceived. More
seriously, it predicts something already known to be false at the time. The
pitch of a periodic vibration does not depend on the physical presence of a
fundamental partial. That was known from Seebeck’s experiments, from
earlier observations on beats (see Section 10.1), and from observations of
contemporaries of Helmholtz cited by his translator Ellis (traduttore
traditore!).

Helmholtz was aware of the problem, but argued that theory and
observation could be reconciled by supposing nonlinear interaction within
the ear (or within other people’s sound apparatus). Distortion within the ear
was accepted as an adequate explanation by later authors (von Békésy,
Fletcher) but, as Wever (1949) remarks, it does not save the psychoacoustic
law. The coup de grdce was given by Schouten (1938) who showed that
complete cancellation of the fundamental partial within the ear leaves the
pitch unchanged. Licklider confirmed that that partial was dispensable by
masking it, rather than removing it. The weight of evidence against the
theory as the sole explanation for pitch perception is today overwhelming
(Plack and Oxenham, Chapter 2).

Nevertheless the place theory of Helmholtz is still used in at least four
areas: (1) to explain pitch of pure tones (for which objections are weaker),
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(2) to explain the extraction of frequencies of partials (required by pattern
matching theories as explained below), (3) to explain spectral pitch
(associated with a spectral locus of power concentration), (4) in textbook
accounts (as a result of which the “missing fundamental” is rediscovered by
each new generation). Place theory is simmering on a back burner in many
of our minds.

It is tempting to try to “fix” Helmholtz’s theory retrospectively. The
Fourier transform represents the stimulus according to the “sum of
sinusoids” description (Section 2.4), but among the parameters f; of that
description none is obviously related to pitch. We’d need rather an operation
that fits the “periodic” or “harmonic complex” signal description.
Interestingly, a string does just that. As Helmholtz (1857) himself explained,
a string tuned to FO responds to all harmonics kFO. By superposition it
responds to every sum of harmonics and therefore to any periodic sound of
period 1/ FO (Fig. 7). Helmholtz used the metaphor of a piano with dampers
removed (or a harpsichord as suggested by Le Cat 1758) to explain how the
ear works, and his physiological model invoked a bank of “strings” within
the cochlea. However he preferred to treat cochelar resonators as spherical
resonators (which respond each essentially to a single sinusoidal
component). Had he treated them as strings there would have been no need
for the later introduction of pattern matching models. The “missing
fundamental” would never be missed. Period-tuned cochlear resonators
were actually suggested by Weinland in 1894 (Bonnier 1901). Of course,
such a "fixed" theory holds only as long as one sees the ear as a bank of
strings.

Helmholtz invoked for his theory the principle of “specific energies” of
his teacher Johannes Miiller, according to which each nerve represents a
different quality (in this case a different pitch). To illustrate it, he drew upon
a technological metaphor: the telegraph, in which each wire transmits a
single message. Alexander Graham Bell, who was trying to develop a
multiplexing telegraph to overcome precisely that limitation (Hounshell
1976), read Helmholtz and, getting sidetracked, invented the telephone that
later inspired to Rutherford (1886) a theory that he opposed to that of
Helmholtz...

The next section shows how the missing fundamental problem was
addressed by modern pitch theory.

5 Pattern Matching

The partials of a periodic sound form a pattern of frequencies. We are good
at recognizing patterns. If they are incomplete, we tend to perceptually
“reconstruct” what is missing. A pattern matching model assumes that pitch
emerges in this way. Two parts are involved: one produces the pattern and
the other looks for a match within a set of templates. Templates are indexed
by pitch, and the one that gives the best match indicates the pitch. The best-
known theories are those of Goldstein (1973), Wightman (1973) and
Terhardt (1974).
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5.1 Goldstein, Wightman and Terhardt

For Goldstein (1973) the pattern consists of a series f; of partial frequency
estimates. Each estimate is degraded by a noise, modeled as a Gaussian
process with mean f;, and a variance that is function of f;. Only resolved
partials (those that differ from their neighbors by more than a resolution
limit) are included, and neither amplitudes nor phases are represented. A
“central processor” attempts to account for the series as consecutive
multiples of a common fundamental (the consecutiveness constraint was
later lifted by Gerson and Goldstein 1978). Goldstein suggested that the f;
were possibly, but not necessarily, produced in the cochlea according to a
place model such as that of Helmholtz. Srulovicz and Goldstein (1983)
showed that they can also be derived from temporal patterns of auditory
nerve firing. Interestingly, Goldstein mentions that estimates do not need to
be ordered, and thus tonotopy need not be preserved once the estimates are
known.

For Wightman (1973) the pattern consists of a tonotopic “peripheral
activity pattern” produced by the cochlea, similar to a smeared power
spectrum. This pattern undergoes Fourier transformation within the auditory
system to produce a second pattern similar to the autocorrelation function
(the Fourier transform of the power spectrum). Pitch is derived from a peak
in this second pattern.

For Terhardt (1974) the pattern consists of a “specific loudness pattern”
originating in the cochlea, from which is derived a pattern of partial pitches,
analogous to the elementary sensations posited by Helmholtz*. From the
pattern of partial pitches is derived a “gestalt” virtual pitch (periodicity
pitch) via a pattern matching mechanism. Perception operates in either of
two modes, analytic or synthetic, according to whether the listener accesses
partial or virtual pitch, respectively. Analytic mode adheres strictly to
Ohm’s law: there is a one-to-one mapping between resolved partials and
partial pitches. Partial pitch is presumably innate, whereas virtual pitch is
learned by exposure to speech. Listening is normally synthetic (virtual
pitch).

The three models are formally similar despite differences in detail (de
Boer 1977). The idea of pattern matching has roots deeper in time. It is
implicit in Helmholtz’s notion of “unconscious inference” (Helmholtz 1857;
Turner 1977). According to the “multicue mediation theory” of Thurlow
(1963), listeners use their voice as a template (pitch then equates to the
motor command that best matches an incoming sound). De Boer (1956)
describes pattern matching in his thesis. Finally, pattern matching fits the
behavior of the oldest metaphor in pitch theory: the string (compare figures
1F and 7C).

4 Terhardt called them spectral pitches, a term we reserve to designate
the pitch associated with a concentration of power along the spectral axis.
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5.2 Relation to signal processing methods

Signal processing methods are a source of inspiration for auditory models.
Pattern matching is used in several methods of speech FO estimation (Hess
1983). The “period histogram” of Schroeder (1968) accumulates all possible
subharmonics of each partial (as in Terhardt’s model), while the “harmonic
sieve” model of Duifhuis et al. (1982) tries to find a sieve that best fits the
spectrum (as in Goldstein’s model). Subharmonic summation (Hermes
1988) or SPINET (Cohen et al. 1995) work similarly, and there are many
variants. One is to cross correlate the spectrum with a set of “combs”, each
having “teeth” at multiples of a fundamental. Rather than combs with sharp
teeth, other regular patterns may be used, for example sinusoids. Cross
correlating with sinusoids implements the Fourier transform. The Fourier
transform applied to a power spectrum gives the autocorrelation function
(as in Wightman’s model). Applied to a logarithmic spectrum it gives the
cepstrum, commonly used in speech processing (Noll, 1967). There is a
close connection between pattern matching and these representations.

Cochlear filters are narrow at low frequencies and wide at high.
Wightman took this into account by applying nonuniform smoothing to the
spectrum. Smoother parts of the spectrum require a smaller density of
channels, so the spectrum can be resampled non-uniformly. This is the idea
behind the so-called “mel spectrum” and MFCC (mel-frequency cepstrum
coefficients), popular in speech processing. These are analogous to the
logarithmic spectra of Versnel and Shamma (1998). Non-uniform sampling
causes the regular structure of a harmonic spectrum to be lost and thus is not
very useful for pitch.

A final point is worth mentioning. We usually think of frequency as
positive, but the mathematical operation that relates power spectrum to ACF
(or log power spectrum to cepstrum) applies to spectra that extend over
positive and negative frequencies. The negative part is obtained by
reflecting the positive part over 0 Hz. Spectra are then symmetric and their
Fourier spectra contain only cosines, which always have a peak at 0 Hz. A
similar constraint in a harmonic comb model is to anchor a tooth at 0 Hz,
and it turns out that this is important to account for the pitch of inharmonic
complexes. We know that the pitch of a set of harmonics spaced by Af shifts
if they are all mistuned by an equal amount. Pitch varies in proportion to the
central partial in a first approximation (so-called “first effect”). In a second
approximation it follows a lower frequency, sometimes even lower than the
lowest partial (“second effect”). Without the constraint, the best fitting
comb has teeth spaced by Af regardless of the mistuning, implying no pitch
shift. This led Jenkins (1961) and Schouten et al. (1962) to rule out
spectrum-based pattern matching models. With the constraint, the best fit is
a slightly stretched comb and this allows the pitch shift to be accounted for.

5.3 The learning hypothesis

Pattern matching requires a set of harmonic templates. Terhardt (1978,
1979) suggested that they are learned through exposure to harmonic-rich
sounds such as speech. To explain how, Roederer (1975) proposed that
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spectral patterns from the cochlea are fed to a neural net. At the intersection
between a channel tuned to the fundamental, and channels tuned to its
harmonics, synapses are reinforced through Hebbian learning (Hebb 1949).
Licklider (1959) had earlier invoked Hebbian learning to link together the
period and spectrum axes of his “duplex” model. Learning was also
suggested by de Boer (1956) and Thurlow (1963), and is implicit in
Helmbholtz’s dogma of unconscious inference (Warren and Warren, 1968).

The harmonic patterns needed for learning may be found in the
harmonics of a complex tone such as speech. They exist also in the series of
its “superperiods” (subharmonics). This suggests that one could do away
with Terhardt’s requirement of early exposure to harmonically rich sounds,
since a pure tone too has superperiods. Readers in need of a metaphor to
accept this idea should consider Figure 7. Panel A illustrates the template
(made irregular by the logarithmic axis) formed by the partials of a
harmonic complex tone. Panel B illustrates a similar template formed by the
superperiods of a pure tone. Harmonically rich stimuli are not essential for
the learning hypothesis.

Shamma and Klein (2000) went a step further and showed that template
learning does not require exposure to periodic sounds, whether pure or
complex. Their model is a significant step in the development of pattern
matching models. Ingredients are: (1) an input pattern of phase locked
activity, spectrally sharp or sharpened by some neural mechanism based on
synchrony, (2) a nonlinear transformation such as half-wave rectification,
and (3) a matrix sensitive to spike coincidence between each channel and
every other channel. In response to noise or random clicks, each channel
rings at its characteristic frequency (CF). The nonlinearity creates a series of
harmonics of the ringing that correlate with channels tuned to those
harmonics, resulting in Hebbian reinforcement (reinforcement of a synapse
by correlated activity of pre- and postsynaptic neurons) at the intersection
between channels. The loci of reinforcement form diagonals across the
matrix, and together these diagonals form a harmonic template. Shamma
and Klein made a fourth assumption: (4) sharp phase transitions along the
BM near the locus tuned to each frequency. This seems to be needed only to
ensure that learning occurs also with nonrandom sounds. Shamma and Klein
note that the resulting “template” is not a perfect comb. Instead it resembles
somewhat Figure 7C.

Exposure to speech or other periodic sounds is thus unnecessary to learn
a template. One can go a step further and ask whether learning itself is
necessary. We noted that the string responds equally to its fundamental and
to all harmonics, and thus behaves as a pattern-matcher. That behavior was
certainly not learned. We’ll see later that other mechanisms (such as
autocorrelation) have similar properties. Taking yet another step, we note
that the string operates directly on the waveform and not on a spectral
pattern. So it would seem that pattern matching itself is unnecessary, at least
in terms of function. It may nevertheless be the way the auditory system
works.
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6 Pure Tones and Patterns

Pattern matching allows the response to a complex tone to be treated (in the
pattern stage) as the sum of sensory responses to pure tones. This is
fortunate, as much effort has gone into the psychophysics of pure tones.
Pattern matching is not particular about how the pattern is obtained, whether
by a cochlear place mechanism or centrally from temporal fine structure. It
is particular about its quality: the number and accuracy of partial frequency
estimates it can operate on.

6.1 Sharpening

Helmholtz’s estimate of cochlear resolution (about one semitone) implied
that the response to a pure tone is spread over several sensory cells. Strict
application of Miller’s principle would predict a “cluster” of pitches (one
per cell) rather than one. Gray (1900) answered this objection by proposing
that a single pitch arises at the place of maximum stimulation. Besides
reducing the sensation to one pitch, the principle allows accuracy to be
independent of peak width: narrow or wide, its locus can be determined
exactly (in the absence of noise), for example by competition within a
“winner-take-all” neural network (Haykin 1999). However, if noise is
present before the peak is selected, accuracy obviously does depend on peak
width. Furthermore, if two tones are present at the same time their patterns
may interfere. One peak may vanish, being reduced to a “hump” on the
flank of the other, or its locus may be shifted as a result of riding on the
slope of the other. These problems are more severe if peaks are wide, so
sharpness of the initial tonotopic pattern is important.

Recordings from the auditory nerve or the cochlea (Ruggero 1992) show
tuning to be narrower than the wide patterns observed by von Békésy, which
worried early theorists. Narrow cochlear tuning is explained by active
mechanisms that produce negative damping. The occasional observation of
spontaneous oto-acoustic emissions suggests that tuning might in some
cases be arbitrarily narrow (e.g. Camalet et al. 2000), such as to sometimes
cross into instability. However, these active mechanisms being nonlinear,
one cannot extrapolate tuning observed with a pure tone to a combination of
partials. Sharp tuning goes together with a boost of gain at the resonant
frequency. The phenomenon of suppression, by which the response to a
pure tone is suppressed by a neighboring tone, suggests that the boost (and
thus the tuning) is lost if the tone is not alone. If hyper-sharp tuning requires
that there be only one partial, it is of little use to sharpen the responses to
partials a complex tone. Similar remarks apply to measures of selectivity in
conditions that minimize suppression (Shera et al. 2002).

Indeed, at medium-to-high amplitudes, profiles of auditory-nerve fiber
response to complex tones lack evidence of harmonic structure in cats
(Sachs and Young 1979). However, profiles are better represented in the
subpopulation of low-spontaneous rate fibers (see Winter, Chapter 4).
Furthermore, Delgutte (1996; Cedolin and Delgutte 2004) argues that filters
might be narrower in humans. Psychophysical forward masking patterns
indeed show some harmonic structure (Plomp, 1964). Schofner (Chapter 3)
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discusses the issues that arise when comparing measures between humans
and animal models.

A “second filter” after the BM was a popular hypothesis before modern
measurements showed sharply tuned mechanical responses. A variety of
mechanisms have been put forward: mechanical sharpening (e.g. sharp
tuning of the cilia or tectorial membrane, or differential tuning between
tectorial and basilar membranes), sharpening in the transduction process, or
sharpening by neural interaction. Huggins and Licklider (1951) list a
number of schemes. They are of interest in that the question of a sharper-
than-observed tuning arises repeatedly (e.g. in the template-learning model
of Shamma and Klein). Some of these mechanisms might be of use also to
sharpen ACF peaks (see Section 9).

Sharpening can operate on the cross-frequency profile of amplitudes, on
the pattern of phases, or on both. A simple sharpening operation is an
expansive nonlinearity, e.g. implemented by coincidence of several neural
inputs from the same point of the cochlea (on the assumption that
probability of coincidence is the product of input firing probabilities).
Another is spatial differentiation (more generally spatial filtering) of the
amplitude pattern, e.g. by summation of excitatory and inhibitory inputs of
different tuning. Sharp patterns can also be obtained using phase, for
example by transduction of the differential motion of neighboring parts
within the cochlea, or by neural interaction between phase-locked responses.
The Lateral Inhibitory Network (LIN) of Shamma (1985) uses both
amplitude and phase. Partials of low frequency (<2 kHz) are emphasized by
phase transitions along the BM, and those of high frequency by spatial
differentiation of the amplitude pattern. The hypothesis is made attractive by
a recent model that uses a different form of phase-dependent interaction to
account for loudness (Carney et al. 2002). In the Average Localized
Synchrony Rate (ALSR) or Measure (ALSM) of Young and Sachs (1979)
and Delgutte (1984), a narrowband filter tuned to the characteristic
frequency of each fiber measures synchrony to that frequency. The result is
a pattern where partials stand out clearly. The matched filters of Srulovicz
and Goldstein (1983) operate similarly. These are examples from a range of
ingenious schemes to sharpen peaks of response patterns.

Alternatives to peak sharpening are to assume that a pure tone is coded
by the edge of a tonotopic excitation pattern (Zwicker 1970), or that that
partials of a complex tone are coded using the location of gaps between
fibers responding to neighboring partials (Whitfield 1970).

6.2 Labeling by synchrony

In place theory, the frequency of a partial is signaled by its position along
the tonotopic axis. LIN and ALSR use phase locking merely to measure the
position more finely. Troland (1930) argued that position is unreliable, and
that it is better to label a channel by phase locking at the partial’s frequency,
an idea already put forward by Hensen in 1863 (Boring, 1942). Peripheral
filtering would serve merely to resolve partials, so that frequency can be
measured and each channel labeled clearly. A nice feature of this idea is that
all channels that respond to a partial contribute to characterize it (rather than
just some predetermined set). Tonotopy is not required, as noted by



16

Goldstein (1973), but the “labels” still need to be decoded to whatever
dimension underlies the harmonic templates to which the pattern is to be
matched.

A possible decoder is some form of central filterbank. In the dominant
component scheme of Delgutte (1984), each channel of the neural response
is analyzed over a central filterbank, and the resulting spectral profiles
combined over channels. A related principle underlies the modulation
filterbank (e.g. Dau et al. 1996), discussed later on in the context of
temporal models. An objection is that the hypothesis requires several
filterbanks, one peripheral and one (or more) central. What is gained over a
single filterbank? A possible answer is that transduction nonlinearity
recreates the “missing fundamental” component for stimuli that lack one.
However, one wonders why this is better (in terms of function) than
Helmholtz's assumption of a mechanical nonlinearity preceding the cochlear
filter.

From this discussion, it appears that the frequency of a pure tone (or
partial) might be derived from either place or time cues. To decide between
them, Siebert (1968, 1970) used a simple model assuming triangle-shaped
filters, nerve spike production according to a Poisson process, and optimal
processing of spike trains. Calculations showed that place alone was
sufficient to account for human performance. Time allowed better
performance, and Siebert tentatively concluded that the auditory system
does not use time. However, a reasonable form of suboptimal processing
(filters matched to interspike interval histograms) gives predictions closer to
behavior (Goldstein and Srulovicz 1977). In a recent computational
implementation of Siebert’s approach, Heinz et al. (2001) found, as Siebert
did, that place cues are sufficient and time cues more than sufficient to
predict behavioral thresholds. However, predicted and observed thresholds
were parallel for time but not for place (Fig. 8), and Heinz et al. tentatively
concluded that the auditory system does use time. Interestingly, despite the
severe degradation of time cues beyond 5 kHz (Johnson, 1980), useful
information could be exploited up to 10 kHz at least, and predicted and
observed thresholds remained parallel up to the highest frequency measured,
8 kHz. Extrapolating from these results, the entire partial frequency pattern
of a complex might be derived from temporal information.

To summarize, a wide range of schemes produce spectral patterns
adequate for pattern matching. Some rely entirely on BM selectivity, while
others ignore it. No wonder it is hard to draw the line between “place” and
“time” theories! We now move on to the second major approach to pitch:
time.

7 Early Roots of Time Theory

Boethius (Bower, 1989) quotes the Greek mathematician Nicomachus (2nd
century), of the Pythagorean school:

...It is not, he says, only one pulsation which emits a simple measure of
sound; rather a string, struck only one time, makes many sounds, striking
the air again and again. But since its velocity of percussion is such that
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one sound encompasses the other, no interval of silence is perceived, and
it comes to the ears as if one pitch.

We note the idea, rooted in the Pythagorean obsession with number, that a
sound is composed of several elementary sounds. Ohm and Helmholtz
thought the same, but their “elements” were sinusoids. The notion of
overlap between successive elementary sounds prefigures the concept of
impulse response and convolution. Boethius continues:

If, therefore, the percussions of the low sounds are commensurable with
the percussions of the high sounds, as in the ratios which we discussed
above, then there is no doubt that this very commensuration blends
together and makes one consonance of pitches.

Ratios of pulse counts play here the role later played by ratios of frequency
in spectral theories. The origin of the relation between pitch and pulse
counts is unclear, partly because the vocabulary of early thinkers (or
translators, or secondary sources) did not clearly distinguish between rate of
vibration, speed of propagation, amplitude of vibration, and the speed (or
rate) at which one object struck another to make sound (Hunt, 1992).
Mersenne and Descartes clarified the roles of vibration rate and speed of
propagation, finding that the former determines, while the latter is
independent of, pitch. It is interesting to observe Mersenne (1636) struggle
to explain this distinction using the same word (“fast”) for both.

The rate-pitch relation being established, a pitch perception model must
explain how rate is measured within the listener. Mersenne and Galileo both
measured vibrations by counting them, but they met with two practical
difficulties: the lack of accurate time standards (Mersenne initially used his
heartbeat, and in another context the time needed to say “Benedicam
dominum”) and the impossibility of counting fast enough the vibrations that
evoke pitch. These difficulties can be circumvented by the use of calibrated
resonators that we mentioned earlier on, with their own set of problems due
to instability of tuning. Here is possibly the fundamental contrast between
time and place: is it more reasonable to assume that the ear counts
vibrations, or contains calibrated resonators?

This question overlaps that of where measurement occurs within the
listener, as the ear seems devoid of counters but possibly equipped with
resonators. Counting, if it occurs, occurs in the brain. The disagreement
about where things happen can be traced back to Anaxagoras (5th century
BC) for whom hearing depended simply on penetration of sound to the
brain, and Alcmaeon of Crotona (5th century BC) for whom hearing is by
means of the ears, because within them is an empty space, and this empty
space resounds (Hunt, 1992). The latter sentence seems to “explain” more
than the first: the question is also how much “explanation” we expect of a
model.

The doctrine of internal air, “aer internus”, had a deep influence up to
the 18th century, when it merged gradually into the concepts of resonance
and “animal spirits” (nerve activity) that eventually culminated in
Helmholtz’s theory. The telephone theory of Rutherford (1886) was
possibly a reaction against the authority of that theory (and its network of
mutually supporting assumptions, some untenable such as Ohm’s law). In
the minimalist spirit of Anaxagoras, Rutherford proposed that the ear merely
transmits vibrations to the brain like a telephone receiver. The contrast



18

between his modest theory (2 pages), and the monumental opus of
Helmbholtz that it opposed, is striking. To its credit, Rutherford’s two-page
theory was parsimonious, to its discredit it just shoved the problem one
stage up.

An objection to the telephone theory was that nerves do not fire fast
enough to follow the higher pitches. Rutherford observed transmission in a
frog motor nerve up to relatively high rates (352 times per second). He did
not doubt that the auditory nerve might respond faster. The need for high
rates was circumvented by the volley theory of Wever and Bray (1930),
according to which several fibers fire in turn such as to produce, together, a
rate several times that of each fiber. Later measurements within fibers of the
auditory nerve proved the theory wrong, in that firing is stochastic rather
than regular (Galambos and Davis 1943, Tasaki 1954), but right in that
fibers can indeed represent frequencies higher than their discharge rate.
Steady-state discharge rates in the auditory nerve are limited to about 300
spikes per second, but the pattern of instantaneous probability can carry
time structure that can be measured up to 3-5 kHz in the cat (Johnson,
1980). The limit is lower in the guinea pig, higher in the barn owl (9 kHz,
Koppl 1997), and unknown in humans.

A pure tone produces a BM motion waveform with a single peak per
period, a simple pattern to which to apply the volley principle (in its
probabilistic form). However, Section 2.2 showed the limits of peak-based
schemes for more complex stimuli. The idea that pitch follows their
temporal envelope (Fig. 2E), via some demodulation mechanism, was
proposed by Jenkins (1961) among others. It was ruled out by the
experiments of de Boer (1956) and Schouten et al. (1962) in which the
partials of a modulated-carrier stimulus were mistuned by equal amounts,
producing a pitch shift (as mentioned earlier). The envelope stays the same,
and this rules out not only the envelope as a cue to pitch (except for stimuli
with unresolved partials, Plack and Oxenham, Chapter 2), but also inter-
partial spacing or difference tones. De Boer (1956) suggested that the
effective cue is the spacing between peaks of the waveform fine structure
closest to peaks of the envelope, and Schouten et al. (1962) pointed out that
zero-crossings or other “landmarks” would work as well.

The waveform fine structure theory was criticized on several accounts,
the most serious being that it predicts greater phase-sensitivity than is
observed (Wightman 1973). The solution to this problem was brought by
the autocorrelation (AC) model. Before moving on to that, I’ll describe an
influential but confusing concept: the residue.

8 Schouten and the Residue

In the tradition of Boethius, Ohm and Helmholtz thought that a stimulus is
composed of elements. They believed that the sensation it evokes is
composed of elementary sensations, and that a one-to-one mapping exists
between stimulus elements and sensory elements. The fundamental partial
mapped to periodicity pitch, and higher partials to higher pitches that some
people sometimes hear. Schouten (1940a) agreed to all these points but one:
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periodicity pitch should be mapped to a different part of the stimulus, called
the residue. He reformulated Ohm’s law accordingly.

Schouten (1938) had confirmed Seebeck’s observation that the
fundamental partial is dispensable. Manipulating individual partials of a
complex with his optical siren, he trained his ear to hear them out (as
Helmholtz had done before using resonators). He noted that the fundamental
partial too could be heard out. The stimulus then seemed to contain two
components with the same pitch. Introspection told him that their qualities
were identical, respectively, to those of a pure tone at the fundamental and
of a complex tone without a fundamental. The latter carried a salient low
pitch. From his new law, Schouten reasoned that the missing-fundamental
complex must either contain or be the residue. He noticed that removing
additional low partials left the sharp quality intact. Low partials can be
heard out, and each carries its own pitch, so Schouten reasoned that they are
not part of the residue, whereas removing higher partials reduces the sharp
quality that Schouten associated with the residue. Thus he concluded that
the residue must consist of these higher partials perceived collectively. It
somehow escaped him that periodicity pitch remains salient when the higher
partials are absent.

Exclusion of resolvable partials from the residue put Schouten’s theory
into trouble when it was found that they actually dominate periodicity pitch
(Ritsma 1967; Plomp 1967a). Strangely enough, Schouten gave as an
example a bell with characteristic tones fitting the highly resolvable series
2:3:4 (Schouten 1940b,c). Its strike note fits the missing fundamental, yet all
of its partials are resolvable. De Boer (1976) amended Schouten’s definition
of residue to include all partials, which is tantamount to saying that the
residue is the sound, rather than part of it. Schouten (1940a) had mentioned
that possibility, but he rejected it as causing “a great many difficulties”
without further explanation. Possibly, he believed that interaction in the
cochlea between partials, strong if they are unresolved, is necessary to
measure the period. The AC model (next Section) shows that it is not.

The residue concept is no longer useful and the term “residue pitch”
should be avoided. The concept survives in discussions of stimuli with
“unresolved” components, commonly used in pitch experiments to ensure a
complete absence of spectral cues (Section 10.4). Their pitch is relatively
weak, which confirms that the residue (in Schouten’s narrow definition) is
not a major determinant of the periodicity pitch of most stimuli.

9 Autocorrelation

Autocorrelation, like pattern matching, is the basis of several modern
models of pitch perception. It is easiest to understand as a measure of self-
similarity.

9.1 Self-similarity

A simple way to detect periodicity is to take the squared difference of pairs
of samples x(t), x(¢-t) and smooth this measure over time to obtain a
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temporally stable measure of self-similarity:
d(t)= (1/2) [x(1) - x(t =) di 3

This is simply half the Euclidean distance of the signal from its time-shifted
self. If the signal is periodic, the distance should be zero for a shift of one
period. A relation with the autocorrelation function or ACF (Eq. 1) may be
found by expanding the squared difference in Equation 3. This gives the
relation:
d(t)=e-r(7) “

where e represents signal energy and r the autocorrelation function. Thus,
r(t) increases where d(T) decreases, and peaks of one match the valleys of
the other. Peaks of the ACF (or valleys of the difference function) can be
used as cues to measure the period. The variable 7 is referred to as the lag or
delay. The difference function d and ACF r are illustrated in Figs. 9B and C,
for the stimulus illustrated in A.

9.2 Licklider

Licklider (1951, 1959) proposed that autocorrelation could explain pitch.
Processing occurs within the auditory nervous system, after cochlear
filtering and hair-cell transduction. It can be modeled as operating on the
half-wave rectified basilar-membrane displacement. The result is a 2-
dimensional pattern with dimensions characteristic frequency (CF) and lag
(Figure 9D). If the stimulus is periodic, a ridge spans the CF dimension at a
lag equal to the period. Pitch may be derived from the position of this ridge,
but Licklider didn’t actually give a procedure for doing so.

Meddis and Hewitt (1991a,b) repaired this oversight by simply summing
the 2D pattern across frequency to produce a “summary ACF” (SACF) from
which the period may be derived (Fig. 9E). They also included relatively
realistic filter and transduction models in their implementation, and showed
that the model could account for many important pitch phenomena. “AC
model” in this chapter designates a class of models in the spirit of Licklider,
and Meddis and Hewitt. The SACF is visually similar to the ACF of the
stimulus waveform (Fig. 9C), which has been used as a simpler predictive
model (de Boer 1956; Yost 1996).

Licklider imagined an elementary network made of neural delay
elements and coincidence counters. A coincidence counter is a neuron with
two excitatory synapses, that fires if spikes arrive within some short time
window at both synapses. Its firing probability is the product of firing
probabilities at its inputs, and this implements the product within the
formula of the ACF. Licklider supposed that this elementary network was
reproduced within each channel from the periphery. It is similar to the
network proposed by Jeffress (1948) to explain localization on the basis of
interaural time differences.

Figure 9 illustrates the fact that the AC model works well with stimuli
with resolved partials. Individual channels do not show fundamental
periodicity (D), and yet the pattern that they form collectively is periodic at
the fundamental. The period is obvious in the SACF (E). Thus, it is not
necessary that partials interact on the BM to derive the period, a fact that
escaped Schouten (and perhaps even Licklider himself). In the absence of
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half-wave rectification, the SACF would be equal to the ACF of the
waveform (granted mild assumptions on the filterbank). Differences
between ACF and SACF (Figs. 9C and E) reflect the effects of nonlinear
transduction and amplitude normalization.

9.3 Phase Sensitivity

Excessive phase sensitivity was a major argument against temporal models
(Wightman, 1973). Phase refers to the parameter ¢ of the sinusoid model, or
¢, of the sum-of-sinusoids model (Section 2.4). Changing ¢ is equivalent to
shifting the time origin, which doesn’t affect the sound. Likewise, a change
of ¢ by an amount proportional to the frequency f; is equivalent to shifting
the time origin. For a steady-state stimulus, manipulations that obey this
property are imperceptible. This is de Boer’s (1976) phase rule. However,
phase changes that do not obey de Boer’s rule may also be imperceptible.
This is Helmholtz’s rule, corollary of Ohm’s law (if perception is composed
from sensations, each related to a partial, there is no place for interaction
between partials, and thus no place for phase effects). Helmholtz limited its
validity to resolved partials. For stimuli with non-resolved partials, phase
changes may be audible and may affect pitch, primarily the distribution of
matches for ambiguous stimuli (such as illustrated in Fig. 2 E). For example,
a complex with unresolved partials in alternating sine/cosine (ALT) phase
may have a pitch at the octave of its true period (Plack and Oxenham,
Chapter 2).

How does the AC model fare in this respect? Autocorrelation discards
phase, but it is preceded by transduction nonlinearities that are phase-
sensitive, themselves preceded by narrow-band filters that tend on the
contrary to limit phase-sensitive interaction. These filters are however non-
linear, and they produce combination tones (see Section 10.1) that behave as
extra partials with phase-dependent amplitudes.

Concretely: ACFs from channels that respond to one partial do not
depend on phase (unless that partial is a phase-dependent combination tone).
Channels that respond to two partials are only slightly phase-dependent if
the partials are of high rank. Channels responding to three harmonics or
more are more strongly phase-dependent, but phase affects mainly the shape
of the ACF and usually not the position of the period cue. Its salience may
however change relative to competing cues at other lags. For example,
within channels responding to several partials, the ACF is sensitive to the
envelope of the waveform of their sum. For complexes in ALT phase (Plack
and Oxenham, Chapter 2), the envelope period is half the fundamental
period, which may explain why their pitch is at the octave.

Other forms of phase sensitivity, such as to time reversal, may be
accounted for by invoking a particular implementation of the AC model (de
Cheveigné 1998) or related models (Patterson 1994a.b, see Section 9.5).
Pressnitzer et al. (2002, 2003) describe an interesting quasi-periodic
stimulus for which both the pitch and the AC model period cue are phase-
dependent. To summarize, the limited phase (in)sensitivity of the AC model
accounts in large part for the limited phase (in)sensitivity of pitch (Meddis
and Hewitt, 1992b). See also Carlyon and Shamma (2003).
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9.4 Histograms

Licklider’s “neural autocorrelation” operation is equivalent to an all-order
interspike interval (ISI) histogram, one of several formats used by
physiologists to represent spike statistics of single-electrode recordings
(Ruggero 1973; Evans 1986). Other common formats are first-order ISI,
peristimulus time (PST), and period histograms. ISI histograms count
intervals between spikes. First-order ISIs span consecutive spikes, and all-
order ISIs span spikes both consecutive or not. The PST histogram counts
spikes relative to the stimulus onset, and the period histogram counts them
as a function of phase within the period.

Cariani and Delgutte (1996a,b) used all-order ISI histograms to quantify
auditory nerve responses in the cat to a wide range of pitch-evoking stimuli.
Results were consistent with the AC model. However, first-order ISI
histograms are more common in the literature (e.g. Rose et al. 1967) and
models similar to Licklider’s have been proposed that use them (Moore
1977; van Noorden 1982). In those models, a histogram is calculated for
each peripheral channel, and histograms are then summed to produce a
summary histogram. The “period mode” (first large mode at non-zero lag)
of the summary histogram is the cue to pitch.

Recently there has been some debate as to whether first- or all-order
statistics determine pitch (Kaernbach and Demany 1998; Pressnitzer et al.
2002, 2003). Without entering the debate, we note that all-order statistics
may usefully be applied to the aggregate activity of a population of N fibers.
There are several reasons why one should wish to do so. One is that
refractory effects prevent single fiber ISIs from being shorter than about 0.7
ms, meaning that frequencies above 800 Hz don’t evoke a period mode in
the histogram of a single fiber. Another is that aggregate statistics make
more efficient use of available information, because the number of intervals
increases with the square of N. Aggregate statistics may be simulated from
a single-fiber recording by pooling post-onset spike times recorded to N
presentations of the same stimulus. Intervals between spikes from the same
fiber or stimulus presentation are either included (de Cheveigné 1993) or
preferably excluded (Joris 2001).

In contrast, first-order statistics cannot usefully be applied to a
population because, as the aggregate rate increases, most intervals join the
zero-order mode (mode near zero lag, due to multiple spikes within the
same period). The period mode becomes depleted, an effect accompanied by
a shift of that mode towards shorter intervals (this phenomenon has actually
been invoked to explain certain pitch shifts, Ohgushi 1978, Hartmann 1993).
The all-order histogram does not have this problem and is thus a better
representation.

It is important to realize that any statistic discards information. Different
histograms are not equivalent, and the wrong choice of histogram may lead
to misleading results. For example, the ISI histogram applied to the response
to certain inharmonic stimuli reveals, as expected, the “first effect of pitch
shift” whereas a period histogram locked to the envelope does not (Evans
1978). Care must be exercised in the choice and interpretation of statistics.
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9.5 Related models

The schematic model of Moore (1977, 2003) embodies the essence of
the AC model. Its description includes features (such as an upper limit on
delays) that allow it to account for most important aspects of pitch (Moore
2003).

The cancellation model (de Cheveigné 1998) is based on the difference
function of Eq. 3 instead of the ACF of Eq. 1. Equation 4 relates the two
functions, and cancellation and AC models are therefore formally similar.
Peaks of the ACF (Fig. 10A) correspond to valleys of the difference
function (Fig. 10B). The appeal of cancellation is that it may account also
for segregation of harmonic sources (de Cheveigné 1993, 1997a), which
makes it useful in the context of multiple pitches (see Section 10.6). A
“neural” implementation, on the lines of Licklider’s, is obtained by
replacing an excitatory synapse of the coincidence neuron by an inhibitory
synapse, and assuming that every excitatory spike is transmitted unless it
coincides with an inhibitory spike. Roots of this model are to be found in the
Equalization-Cancellation model of binaural interaction of Durlach (1963),
and the Average Magnitude Difference Function (AMDF) method of speech
FO estimation of Ross et al. (1974) (see Hess 1983 for similar earlier
methods).

The Strobed Temporal Integration (STI) model of Patterson et al. (1992)
replaces autocorrelation by cross-correlation with a train of “strobe” pulses:

STI(t) = f s()x(t —1)dt 5)

where s() is a train of pulses derived by some process such as peak picking.
Processing occurs within each filter channel, and produces a 2D pattern
similar to Licklider’s. In contrast to autocorrelation, the STI operation itself
is phase-sensitive. It thus predicts perceptual sensitivity to time reversal of
some stimuli (Patterson 1994a), although it is not clear that it also predicts
the insensitivity observed for others. A possible advantage of STI over the
ACEF is that the strobe can be delayed instead of the signal:

STI(t) = f s(t = 7)x(t)dt ©)

in which case the implementation of the delay might be less costly (a pulse
is cheaper to delay than an arbitrary waveform). Within the brainstem,
octopus cells have strobe-like properties, and their projections are well
represented in man (Adams 1997). A possible weakness of STI is that it
depends, as do early temporal models, on the assignment of a marker
(strobe) to each period.

The term Auditory Image Model (AIM) refers, according to context,
either to STI or to a wider class including autocorrelation. Thanks to strobed
integration, the fleeting patterns of transduced activity are “stabilized” to
form an image. As in similar displays based on the ACF (e.g. Lyon 1984;
Weintraub 1985; Slaney 1990), we can hope that visually prominent features
of this image might be easily accessible to a central processor. An earlier
incarnation of the image idea is the “camera acustica” model of Ewald
(1898; Wever 1949) in which the cochlea behaved as a resonant membrane.
The pattern of standing waves was supposed to be characteristic of each
stimulus. STI and AIM evolved from earlier pulse ribbon and spiral
detection models (Patterson 1986, 1987).
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The dominant component representation of Delgutte (1984) and the
modulation filterbank model (e.g. Dau et al. 1996) were mentioned earlier.
After transduction in the cochlea, the temporal pattern within each cochlear
channel is Fourier-transformed, or split over a bank of internal filters, each
tuned to its own “best modulation frequency” (BMF). The result is a 2D
pattern (cochlear CF vs. modulation Fourier frequency or BMF). To the
degree that this pattern resembles a power spectrum, modulation filterbank
and AC models are related. The modulation filterbank was designed to
explain sensitivity to slow modulations in the infrapitch range, but it has
also been proposed for pitch (Wiegrebe et al. 2004).

Interestingly, the string can be seen as belonging to the AC model
family. Autocorrelation involves two steps: delay and multiplication
followed by temporal integration, as illustrated in Figure 10A. Cancellation
involves delay, subtraction and squaring as illustrated in Figure 10B.
Delgutte (1984) described a comb-filter consisting of delay, addition and
(presumably) squaring as in Figure 10C. This last circuit can be modified as
illustrated in Figure 10D. The frequency characteristics of both circuits have
peaks at all multiples of f=1I/7, but the peaks of the latter are sharper. A
string is, in essence, a delay line that feeds back onto itself as in Figure 10D.
Cariani (2003) recently proposed that neural patterns might circulate within
recurrent timing nets, producing a build-up of activity within loops that
match the period of the pattern. This too fits the description of a string.

These examples show that autocorrelation and the string (and thus
pattern matching) are closely related. They differ in the important respect of
temporal resolution. At each instant, the ACF reflects a relatively short
interval of its input (sum of the delay = and the duration of temporal
smoothing). The string reflects the past waveform over a much longer
interval, as information is recycled within the delay line. In effect, this
allows comparisons across multiples of T, which improves frequency
resolution at the expense of time resolution. Another way to capture
regularity over longer intervals is the narrowed AC function (NAC) of
Brown and Puckette (1989) in which high-order modes of the ACF are
scaled and added to sharpen the period mode. The NAC was invoked by de
Cheveigné (1989) and Slaney (1990) to explain acuity of pure tone
discrimination. Another twist is to fit the AC histogram to exponentially-
tapered "periodic templates" (Cedolin and Delgutte 2004), the best-fitting
template indicating the pitch. NAC and periodic template can be seen as
"subharmonic" counterparts of "harmonic" pattern-matching schemes. Once
again we find strong connections between different models.

To conclude on a historical note, a precursor of autocorrelation was
proposed by Hurst (1895), who suggested that sound propagates up the
tympanic duct, through the helicotrema, and back down the vestibular duct.
Where an ascending pulse meets a descending pulse, the BM is pressed
from both sides. That position characterizes the period. More recently, Loeb
et al. (1983) and Shamma et al. (1989) invoked the BM as an alternative to
neural delays. The BM is dispersive and behaves as a delay line only for a
narrow-band stimulus. Delay can then be equated to phase, which brings us
very close to some of the spectral sharpening schemes evoked earlier.
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9.6 Selecting the period mode

The description of the AC model is not quite complete. The ACF or SACF
of a periodic stimulus has several modes, one at each multiple of the period,
including zero (Fig. 11A). The cue to pitch is the leftmost of the modes at
positive multiples (dark arrow). To be complete a model should specify the
mechanism by which that mode is selected. A pattern-matching model is
confronted with the similar problem of choosing among candidate
subharmonics (Fig. 1F). This seemingly trivial step is one of the major
difficulties in period estimation, rarely addressed in pitch models. There are
several approaches.

The easiest is to set limits for the period range (Fig. 11B). To avoid
more than one mode within the range (in which case the cue would still be
ambiguous), the range must be at most one octave, a serious limitation given
that musical pitch extends over about 7 octaves. A second approach is to set
a lower period limit and use some form of bias to favor modes at shorter
lags (Fig. 11C). Pressnitzer et al. (2001) used such a bias (which occurs
naturally when the ACF is calculated from a short-term Fourier transform,
as in some implementations) to deemphasize pitch cues beyond the lower
limit of musical pitch. A difficulty is that the period mode is sometimes less
salient than the zero-order mode (or a spurious mode near it) (Fig. 11D).
The difficulty can be circumvented by various heuristics, but they tend to be
messy and to lack generality. A solution recently proposed in the context of
FO estimation (de Cheveigné and Kawahara 2002) is based on the difference
function (Eq. 3, Fig 9B). A normalization operation removes the dip at zero
lag, after which the period lag may be selected reliably.

Once the mode (or dip) has been chosen, its position must be accurately
measured. Supposing there is internal noise, it is not clear how the relatively
wide modes obtained for a pure tone (Fig. 11) can be located with accuracy
consistent with discrimination thresholds (about 0.2% at 1 kHz, Moore
1973). One solution is to suppose that higher-order modes contribute to the
period estimate (e.g. de Cheveigné 1989, 2000). Another is to suppose that
histograms are fed to matched filters (Goldstein and Srulovicz 1977). If the
task is pitch discrimination, it may not be necessary to actually choose or
locate a mode. For example Meddis and O’Mard (1997) used Euclidean
distance between SACF patterns to predict discrimination thresholds.
However, it is not easy to explain on that basis how a subject decides that
one of two stimuli is higher in pitch, or how a manifold of stimuli (with
same period but diverse timbres) maps to a common pitch.

To summarize, the AC model characterizes periodicity by measuring
self-similarity across time, either of the acoustic waveform or of the internal
patterns it gives rise to. At an abstract level, autocorrelation and pattern
matching are linked via an important mathematical theorem, the Wiener-
Khintchine theorem, which says that the ACF is the Fourier transform of the
power spectrum. At a detailed level, they differ considerably in how they
might be implemented in the auditory system. There are also important
conceptual differences. For pattern matching, pure tones have the status of
elementary stimuli. For the AC model they are like any other periodic
stimulus, special only in that they affect a limited set of peripheral channels.
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Pattern matching solves the missing fundamental problem; for the AC
model that problem does not occur. Pattern matching and autocorrelation,
through their many variants, are the main contenders today for explaining
pitch perception.

10 Advanced Topics

Modern pitch models account for major phenomena equally well. To decide
between models, one must look at more arcane phenomena, second-order
effects and implementation constraints. A model should ideally be able to fit
them all; should it fail we may look to alternate models. In a sense, here is
the cutting edge of pitch theory. The casual reader should skip to Section 11
and come back on a rainy day. Brave reader, read on.

10. 1 Combination Tones

When two pure tones are added, their sum fluctuates (beats) at a rate equal
to the difference of their frequencies. Young (1800) suggested that beats of
the appropriate frequency could give rise to a pitch, and thus explain the
“Tartini” tones sometimes observed in music (Boring 1942). By
construction, the stimulus contains no partial at the beat frequency. The
pitch that it evokes is therefore a counter-example to Ohm’s law.

If the medium is nonlinear, distortion products (harmonics and
combination tones) may arise at the beat frequency and various other
frequencies. If such were the case every time a pitch is heard, then Ohm’s
law could be saved. Perhaps for that reason, there seems to have been a
strong tendency to believe this hypothesis, and to assign any pitch not
accounted for by a partial to a distortion product.

If the stimulus is a pure tone of frequency f, distortion products are
harmonics nf. If the stimulus contains two partials at f and g, they also
include terms of the form +nf + mg (where m and n are integers). Their
amplitudes depend on the amplitudes of the primaries and the shape of the
nonlinearity. If the nonlinearity can be expanded as a Taylor series around
zero, these amplitudes can be calculated relatively easily (Helmholtz 1877;
Hartmann 1997). The first term (linear) determines the primaries f and g.
The second term (quadratic) determines the even harmonics and the
difference tone g-f. The third (cubic) determines the odd harmonics and the
“cubic difference tone” 2f-g. Higher-order terms introduce other products.
Amplitudes increase at a rate of 2 dB per dB for the difference tone, and 3
dB per dB for the cubic difference tone, as a function of the amplitude of the
primaries. However all this holds only if the nonlinearity can be expanded
as a Taylor series. There is no reason why that should always be the case.
As a counter-example, distortion products of a half-wave rectifier vary in
direct proportion to the amplitude of primaries.

The difference tone g-f played an important role in the early history of
pitch theory. Its frequency is the same as that of beats, so it could account
for the pitches that they evoke (“Tartini tones”), and also for the pitch of a
“missing-fundamental” stimulus. Helmholtz argued that distortion might
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arise (a) within equipment used to produce “missing-fundamental” stimuli,
(b) within the ear. The first argument faded with progress in
instrumentation. It was already weak because periodicity pitch is salient at
low amplitudes, and apparently unrelated to measurements or calculations
of the difference tone.

We already noted that the second argument does not save Ohm’s law, as
that law claims to relate stimulus components (as opposed to internally
produced) to pitches. Not only that, it is possible to cancel (and at the same
time estimate) any difference tone produced by the ear, by adding an
external pure tone of equal frequency, opposite phase, and appropriate
amplitude (Rayleigh 1896). Adding a second low-amplitude pure tone at a
slightly different frequency, and checking for the absence of beats, makes
the measurement very accurate (Schouten 1938, 1970). After this very weak
distortion product is canceled the pitch remains the same, so the difference
tone g-f cannot account for periodicity pitch.

The harmonics nf played a confusing role. Being higher in frequency
than the primaries they are expected to be more susceptible to masking than
difference tones. Indeed, they are not normally perceived except at very
high amplitudes. Yet Wegel and Lane (1924) found beats between a primary
and a probe tone near its octave. This, they thought, indicated the presence
of a relatively strong second harmonic. They estimated its amplitude by
adjusting the amplitude of the probe tone to maximize the salience of beats.
This method of best beats was widely used to estimate distortion products.
Eventually, the method was found to be flawed: beats can arise from the
slow variation in phase between nearly harmonically related partials (Plomp
1967b). Beats do not require closely spaced components, and thus do not
indicate the presence of a harmonic.

This realization came after many such measurements had been
published. As “proof” of non-linearity, aural harmonics bolstered the
hypothesis that the difference-tone accounts for the missing fundamental.
Thus they added to confusion (on the role of difference products, see
Pressnitzer and Patterson 2001). Similarly confusing were measurements of
distortion products in cochlear microphonics (Newman et al. 1937), or
auditory nerve-fiber responses. They arise because of nonlinear mechanical-
to-nervous or electrical transduction, and do not reflect BM distortion
components equivalent to stimulus partials, and thus are not of significance
in the debate (Plomp 1965).

In contrast to other products, the cubic difference tone 2f-g is genuinely
important for pitch theory. Its amplitude varies roughly in proportion with
the primaries (and not as their cube as expected from a Taylor-series
nonlinearity). It increases as f and g become closer, but it is only measurable
(by Rayleigh’s cancellation method) for g/f ratios above 1.1, at which point
it is about 14 dB below the primaries (Goldstein 1970). Amplitude
decreases rapidly as the frequency spacing increases. A combination tone,
even if weak, can strongly affect pitch if it falls within the dominance
region (Plack and Oxenham, Chapter 2). Difference tones of higher order (f-
n(g-f)) can also contribute (Smoorenburg 1970).

Combination tones are important for pitch theory. They are necessary to
explain the “second effect” of pitch shift of frequency-shifted complexes
(Smoorenburg 1970; de Boer 1976). As their amplitudes are phase sensitive,
they allow spectral theories to account for aspects of phase sensitivity. Their
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effect can be conveniently “modeled” as additional stimulus components,
with parameters that can be calculated or measured by the cancellation
method (e.g. Pressnitzer and Patterson 2001). To avoid having to do so,
most pitch experimenters now add lowpass noise (e.g. pink noise) to mask
distortion products.

10. 2 Temporal integration and resolution

A question has puzzled thinkers on and off: waves (or pulses, or particles)
follow each other in time, how is it that we hear a continuous sound?
Bonnier (1901), for example, argued that unipolar excitation of cochlear
sensory cells would evoke an intermittent sensation if the BM did not act as
a delay line (of 30-50 ms): at every instant, at least one cell along the delay
line is excited by the excitatory phase of the waveform, allowing sensation
to be continuous at least for FOs above about 20-30 Hz. Here we have the
notion that patterns must be integrated over time to ensure smoothness (or
stability of estimates over time). All models need temporal integration. It
may be explicit as here, or implicit via build-up and decay of resonance.

On the other hand, Helmholtz argued that smoothing must not be
excessive, because the ear needs to follow “shakes” of up to 8 notes per
second that occur in music. Using 1/8 s as an upper limit on the response
time of the resonators in his model, he derived a lower limit on their
bandwidth, anticipating the time-frequency tradeoff of Géabor (1947)
(analogous to Heisenberg’s principle of uncertainty in quantum mechanics).
The tradeoff is expressed as:

AfAt = k 7

where Af and At are frequency and time uncertainties respectively, and k is a
constant that depends on how they are measured. Fine spectral resolution
thus requires a long temporal analysis window. Moore (1973) calculated the
resolution Af with which pure tones of duration d could be discriminated on
the basis of excitation pattern amplitude changes of at least 1 dB. He found
the relation Af.d=0.24, analogous to Equation 7. He also found that
psychophysical frequency difference limens were about 0 times better than
the relation implies. As Gébor’s relation is so very fundamental, this is
puzzling.

The puzzle was explained by Nordmark (1968, 1970). The word
“frequency” commonly carries two different meanings. One is the reciprocal
of the interval between two events of equal phase, called phase frequency by
Kneser (1948; Nordmark 1968, 1970). The other is group frequency as
measured by Fourier analysis:

For a time function of limited duration, [Fourier] analysis will yield a
series of sine and cosine waves grouped around the phase frequency. No
exact value can be given [to] the group frequency, which is thus subject
to the uncertainty relation (Nordmark, 1970).

In contrast to group frequency, phase frequency can be determined with
arbitrary accuracy by measuring time between two “events”. This strong
claim seems to imply the superiority of event-based (temporal) over spectral
models, but we argued earlier that events themselves are hard to extract
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reliably (Section 2.2). Could a similar claim be made for a model that does
not use events, say, for autocorrelation?

Take an ongoing signal x(#) that is known to be periodic with some
period T. Given a signal chunk of duration D, suppose that we find T<D/2
such that x(¢) = x(t+T) for every ¢ such that both ¢ and #+T fall within the
chunk. T might be the period, but can we rule out other candidates T'#T?
Shorter periods can be ruled out by trying every T'<T and checking if we
have x(t) = x(t+T') for every ¢ such that both ¢ and #+T"' fall within the
chunk. If this fails we can rule out a shorter period. However, we cannot
rule out that the true period is longer than D-T, because our chunk might be
part of a larger pattern. To rule this out we must know the longest expected
period Ty.x, and we must have D=T+T,,,x. If this condition is satisfied,
then there is no limit to the resolution with which T is determined. These
conditions can be transposed to the short-term running ACF:

r@=[ Zox(t)x(t _T)dt ®)

Two time constants are involved: the window size W, and the maximum lag
Tyax for which the function is calculated. They map to T,y and T
respectively in the previous discussion. The required duration is their sum,
and depends thus on the lower limit of the expected FO range. A rule of
thumb is to allow at least 27, -

As an example, the lower limit of melodic pitch is near 30 Hz (period =
33 ms) (Pressnitzer et al. 2001). To estimate arbitrary pitches requires about
66 ms. If the FO is 100 Hz (period =1/10 ms) the time can be shortened to
33+10=43 ms. If we know that the FO is no lower than 100 Hz, the duration
may be further shortened to 10+10=20 ms. These estimates apply in the
absence of noise. With noise present, internal or external, more time may be
needed to counter its effects.

We might speculate that pattern matching allows even better temporal
resolution, because periods of harmonics are shorter and require (according
to the above reasoning) less time to estimate than the fundamental.
Unfortunately, harmonics must be resolved, and for that the signal must be
stable over the duration of the impulse response of the filterbank that
resolves them.

Suppose now that the stimulus is longer than the required minimum. The
extra time can be used according to at least three strategies. The first is to
increase integration time to reduce noise. The second is to test for self-
similarity across period multiples, so as to refine the period estimate. The
third (so-called “multiple looks” strategy) is to cut the stimulus into
intervals, derive an estimate from each, and average the estimates. The
benefit of each can be quantified. Denoting as E the extra duration, the first
strategy increases integration time by a factor n,=(E+W)/W, and thus
reduces variability of the pattern (e.g. ACF) by a factor of Vn,. The second
reduces variability of the estimate by a factor of at least n,=(E+T)/T, by
estimating the period multiple n,T and then dividing. It could probably do
even better by including also estimates of smaller multiples of the period.
The third allows n;=(E+D)/D multiple looks (where D=T+W is interval
duration), and thus reduces variability of the estimate by a factor of Vn,. The
benefit of the first strategy is hard to judge without knowledge of the
relation between pattern variability and estimate variability. The second
strategy seems better than the third (if r, and n; are comparable). Studies
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that invoke the third strategy often treat intervals as if they were surrounded
by silence and thus discard structure across interval boundaries. This is
certainly suboptimal. A priori, the auditory system could use any of these
strategies, or some combination. The second strategy suggests a roughly
inverse dependency of discrimination thresholds on duration (as observed
by Moore 1973 for pure tones up to 1-2 kHz), while the other two imply a
shallower dependency.

What parameters should be used in models? Licklider (1951) tentatively
chose 2.5 ms for the size of his exponentially shaped integration windows
(roughly corresponding to W). Based on the analysis above, this size is
sufficient only for periods shorter than 2.5 ms (frequencies above 250 Hz).
A larger value, 10 ms, was used by Meddis and Hewitt (1992). From
experimental data, Wiegrebe et al. (1998) argued for two stages of
integration separated by a nonlinearity. The first had a 1.5 ms window and
the second some larger value. Wiegrebe (2001) later found evidence for a
period-dependent window size of about twice the stimulus period, with a
minimum of 2.5 ms. These values reflect the minimum duration needed.

In Moore’s (1973) study, pure tone thresholds varied inversely with
duration up to a frequency-dependent limit (100 ms at 500 Hz), beyond
which improvement was more gradual. In a task where isolated harmonics
were presented one after the other in noise, Grose et al. (2002) found that
they merged to evoke a fundamental pitch only if they spanned less than 210
ms. Both results suggest also a maximum integration time.

Obviously, an organism does not want to integrate for longer than is
useful, especially if a longer window would include garbage. Plack and
White (2000a,b) found that integration may be reset by transient events.
Resetting is required by sampling models of frequency modulation (FM) or
glide perception. Resetting is also required to compare intervals across time
in discrimination tasks. Those tasks also require memory for the result of
sampling, and it is conceivable that integration and sensory memory have a
common substrate.

10. 3 Dynamic pitch

Aristoxenos distinguished the stationarity of a musical note, with a pitch
from deep to high, from the continuity of the spoken voice or transitions
between notes, with qualities of tension or relaxation. The exact terms
chosen by the translator (Macran 1902) are of less interest than the fact that
the concepts of static and dynamic pitch were so carefully distinguished. It
is indeed conceivable that dynamic pitch is perceived differently from static
pitch. For example FM might be transformed to amplitude modulation (AM)
and perceived by an AM-sensitive mechanism (Moore and Sek 1994), or
frequency glides might be decoded by a mechanism directly sensitive to the
derivative of frequency (Sek and Moore 1999). The alternative is that
frequency is sampled by the mechanism used for static pitch, and the
samples compared across time (Hartmann and Klein 1980; Dooley and
Moore 1988). For this to work, the estimation mechanism must be tolerant
to frequency change.

Estimation is not instantaneous (Section 10.2), so frequency “sampling”
makes sense only in a limited way. Frequency change impairs periodicity,
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and this makes estimation more difficult. Integration over time of unequal
frequencies "blurs" the estimate of the frequency at any instant. A shorter
window reduces the blur, but at the expense of the accuracy of the
estimation process (Section 10.2).

Discrimination of frequency-modulated patterns is thus expected to be
poor. Strangely, Demany and Clément (1997) observed what they called
“hyperacute” discrimination of peaks of frequency modulation. Thresholds
were smaller than expected given the lack of stable intervals long enough to
support a sampling model. A possible explanation is that periods shrink
during the up-going ramp, and expand during the down-going ramp. Cross-
period measurements that span the modulation peak are therefore relatively
stable, leading to relatively good discrimination (de Cheveigné 2001).

The case might be made for the opposite proposition, that tasks
involving static pitch (such as frequency discrimination) actually involve
detectors sensitive to frequency change (Okada and Kashino 2003; Demany
and Ramos 2004). It is often noted that weak pitches become more salient
when they change (Davis 1951), so change may play a fundamental role in
pitch. In the extreme one could propose that pitch is not a linear perceptual
dimension, but rather some combination of sensitivities to pitch-change and
to musical interval. Whether or not this is the case, we still need to explain
the extraction of the quantity that changes.

If listeners are asked to judge the overall pitch of a frequency-modulated
stimulus, the result can usually be predicted from the average instantaneous
frequency. If amplitude changes together with frequency, overall pitch is
well predicted by the intensity- or envelope-weighted average instantaneous
frequency (IWAIF or EWAIF) models (Anantharama et al. 1993; Dai et al.
1996). Even better predictions are obtained if frequency is weighted
inversely with rate of change (Gockel et al. 2001).

10. 4 Unresolved partials

For Helmholtz, Ohm’s law applied only to resolved partials. Schouten later
extended the law by assigning the remaining unresolved partials to a new
sensory component, the residue. The resolved vs. unresolved distinction is
crucial for pattern matching because resolved partials alone can offer a
useful pattern. It was once crucial also for temporal models, because
unresolved partials alone can produce, on the BM, the fundamental
periodicity that was thought necessary for a “residue pitch”.

The distinction is still made today. Many modern studies use only
stimuli with unresolved partials (to rule out "spectral cues"). Others contrast
them with stimuli for which at least some partials are resolved. “Unresolved
stimuli” are produced by a combination of high-pass filtering, to remove
any resolved partials, and addition of low-pass noise to mask the possibly
resolvable combination tones. Reasons for this interest are of two sorts.
Empirically, pitch-related phenomena are surprisingly different between the
two conditions (Plack and Oxenham, Chapter 2). Theoretically, pattern
matching is viable only for resolved partials, so phenomena observed with
unresolved partials cannot be explained by pattern matching.
Autocorrelation is viable for both, but the experiments are nevertheless used
to test it too. The argument is: “Autocorrelation being equally capable of
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handling both conditions, large differences between conditions imply that
autocorrelation is not used for both”. It applies to any unitary model. I find
the argument not altogether convincing for two reasons: other accounts
might fit the premises, and the premises themselves are not clear-cut.

Auditory filters have roughly constant Q, and thus unresolved partials
are necessarily of high rank. Rank, rather than resolvability, might limit
performance. Indeed, Moore (2003) suggested a maximum delay of 15/CF
in each channel, implying a maximum rank of 15. Other possible accounts
are: (a) Spectral region staying the same, unresolved stimuli must have
longer periods, and longer periods may be penalized. (b) Period staying the
same, unresolved stimuli must occupy higher spectral regions, and high-
frequency channels might represent periodicity less well. (c) Lowpass noise
added to lower spectral regions (that normally dominate pitch) in unresolved
conditions may have a deleterious effect that penalizes those conditions. (d)
The auditory system may learn to ignore channels where partials are
unresolved, for example because they are phase sensitive (and thus more
affected by reverberation), etc. These accounts need to be ruled out before
effects are assigned to resolvability.

A clear behavioral difference between resolved and unresolved
conditions is the order-of-magnitude step in FO discrimination thresholds
between complex tones that include lower harmonics and those that don’t.
The limit occurs near the 10th harmonic and is quite sharp (Houtsma and
Smurzynski 1990; Shackleton and Carlyon 1994; Bernstein and Oxenham
2003). Higher thresholds are attributed to the poor resolvability of higher
harmonics.

If such is the case, we expect direct measures of partial resolvability to
show a breakpoint near this limit. A resolvable partial must be capable of
evoking its own pitch (at least according to Terhardt’s model). An isolated
partial certainly does, but two are individually perceptible only if their
frequencies differ by at least 8% at 500 Hz, and somewhat more at higher or
lower frequencies (Plomp 1964). Closer spacing yields a single pitch,
function of the centroid of the power spectrum (Dai et al. 1996) (this
justifies the assertion made in Sect. 2.5 that spectral pitch depends on the
locus of a spectral concentration of power). The 10th harmonic is about 9%
from its closest neighbor, so this measure is roughly consistent with the
breakpoint in complex FO discrimination.

However, with neighbors on both sides, a partial is less well resolved.
Harmonics in a complex are resolved only up to rank 5-8 (Plomp 1964).
This does not agree with a breakpoint at rank 10. By pulsating the partial
within the complex, Bernstein and Oxenham (2003) found a higher
resolvability limit (10-11) that fit well with FO discrimination thresholds in
the same subjects. However, when even and odd partials were sent to
different ears (thus doubling their spacing within each cochlea), partials
were resolvable to about the 20th, and yet the breakpoint in FO
discrimination limens still occurred at a low rank. The two measures of
resolvability do not fit.

Various other phenomena show differences between resolved and
unresolved conditions: frequency modulation detection (Plack and Carlyon
1995; Carlyon et al. 2000), streaming (Grimault et al. 2000), temporal
integration (Plack and Carlyon 1995; Micheyl and Carlyon 1998), pitch of
concurrent harmonic sounds (Carlyon 1996), FO discrimination between
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resolved and unresolved stimuli (Carlyon and Shackleton 1994; see also
Oxenham et al. 2004), etc. If breakpoints always occurred at the same point
along the resolved-unresolved continua, the resolvability hypothesis would
be strengthened. However the parameter space is often sampled too sparsely
to tell. A popular stimulus set (FOs of 88 and 250Hz and frequency regions
of 125-625, 1375-1875, and 3900-5400 Hz) offers several resolved-
unresolved continua but each is sampled only at its well-separated
endpoints. Inter-partial distances are drastically reduced if complex tones
are added; yet “resolvability” (as defined for an isolated tone) seems to
govern the salience of pitch within a mixture (Carlyon 1996). The lower
limit of musical pitch increases in higher spectral regions, as expected if it
was governed by resolvability, but the boundary follows a different trend,
and extends well within the unresolvable zone (Pressnitzer et al. 2001).
Some data do not fit the resolvable/unresolvable dichotomy.

To summarize, many modern studies focus on stimuli with unresolved
partials. Aims are: (a) to test the hypothesis of distinct pitch mechanisms for
resolved and unresolved complexes (next Section), (b) to get more proof (if
needed) that pitch can be derived from purely temporal cues, or (¢) to obtain
an analogue of the impoverished stimuli available to cochlear implantees
(Moore and Carlyon, Chapter 7). This comes at a cost, as it focuses efforts
on a region of the parameter space where pitch is weak, quite remote from
the musical sounds that we usually take as pleasant. It is justified by the
theoretical importance of resolvability.

10. 5 The two-mechanism hypothesis

Pattern matching and autocorrelation each has its strengths and followers. It
is tempting to adopt both and assign to each a different region of parameter
space: pattern matching to stimuli with resolved harmonics, and
autocorrelation to stimuli with no resolved harmonics. The advantages are a
better fit to data, and better relations between tenants of each approach. The
disadvantages are that two mechanisms are involved, plus a third to
integrate the two.

The temptation of multiple explanations is not new. Vibrations were
once thought to take two paths through the middle ear: via ossicles to the
oval window, and via air to the round window. Milller’s experiment reduced
them to one (Fig. 3). Du Verney (1683) believed that the trumpet-shaped
semicircular canals were tuned like the cochlea, while Helmholtz thought
the ampullae handled noise-like sounds until he realized that cochlear
spectral analysis could take care of them too. Bonnier (1896-98) assigned
the sacculus to sound localization (as a sort of "auditory retina") and the
cochlea to frequency analysis. Bachem (1937) postulated two independent
pitch mechanisms, one devoted to tone height, the other to chroma, the latter
better developed in possessors of absolute pitch. Wever (1949) suggested
that low frequencies are handled by a temporal mechanism (volley theory)
and high frequencies by a place mechanism, and Licklider’s duplex model
implemented both (with a learned neural network to connect them together).
The motivation is to obtain a better fit with phenomena, and perhaps
sometimes also to find a use for a component that a simpler model would
ignore.
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There is evidence for both temporal and place mechanisms (e.g. Gockel
et al. 2001; Moore 2003). The assumption of independent mechanisms for
resolved and unresolved harmonics is also becoming popular (Houtsma and
Smurzynski 1990; Carlyon and Shackleton 1994). It has also been proposed
that a unitary model might suffice (Houtsma and Smurzynski 1990; Meddis
and O’Mard 1997). The issue is hard to decide. Unitary models may have
serious problems (e.g. Carlyon 1998a,b) that a two-mechanism model can
fix. On the other hand, assuming two mechanisms is akin to adding free
parameters to a model: it automatically allows a better fit. The assumption
should thus be made with reluctance (which does not mean that it is not
correct). A two-mechanism model compounds vulnerabilities of both, such
as lack of physiological evidence for delay lines or harmonic templates.

10. 6 Multiple pitches

Pitch models usually account for a single pitch, but some stimuli evoke
more than one: (a) stimuli with an ambiguous periodicity pitch, (b) narrow-
band stimuli that evoke both a periodicity pitch and a spectral pitch, (c)
concurrent voices or instruments, (d) complex tones in analytic listening
mode.

Early experiments with stimuli containing few harmonics sometimes
found multimodal distributions of pitch matches (de Boer 1956; Schouten et
al. 1962). Pitch models usually produce multiple or ambiguous cues for such
stimuli (e.g. Fig. 2F), and with appropriate weighting they should account
for “multiple” pitches of this kind.

A formant-like stimulus may produce a spectral pitch related to the
formant frequency (Section 2.5). The spectral pitch may coexist with a
lower periodicity pitch if the stimulus is a periodic complex. For pure tones
the two pitches are confounded. In so-called diphonic singing styles of
Mongolia or Tibet, spectral pitch carries the melody while periodicity pitch
serves as a drone. Some listeners may be more sensitive to one or the other
(Smoorenburg 1970). It is common to attribute periodicity pitch to temporal
analysis, and spectral pitch to cochlear analysis, reflecting two different
mechanisms. However one cannot exclude a common mechanism. A sharp
spectral locus implies quasi-periodicity in the time domain, and this shows
up as modes at short lags in the ACF (insert in Figure 5).

In music, instruments often play together, each with its own pitch, and
appropriately gifted or trained people may perceive their multiple pitches
(see Darwin, Chapter 8). Reverberation may transform a monodic melody
into polyphony of two parts or more (the echo of a note accompanies the
next). Sabine (1907) suggested that this is why scales appropriate for
harmony emerged before polyphonic style. Models described so far address
only the single pitch of an isolated tone, and cannot account for more
without modification. A simple idea is to take the pattern that produced a
pitch cue for an isolated tone, and scan it for several such cues. As an
example, Assmann and Summerfield (1990) estimated the FOs of two
concurrent vowels from the largest and second-largest peaks of the SACF.
Unfortunately, distinct peaks do not always exist (simulations based on this
procedure gave comparatively poor results; de Cheveigné 1993).
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A better procedure is to estimate pitches iteratively (de Cheveigné and
Kawahara 1999), by estimating first one period and then removing it. In the
context of pattern matching, this is known as the ‘“harmonic sieve”
(Duifhuis et al. 1982; Parsons 1976). An initial FO estimate is derived from
the pattern of partials. Partials that fit its harmonic series (within some
tolerance) are removed, and a second FO is estimated from the remainder.
The process may be iterated, each FO controlling the sieve in turn. Scheffers
(1983) tested the idea using spectral analysis similar to that of the ear, but
found that FOs were rarely both estimated correctly. The reason given was
lack of spectral resolution. As discussed in Section 10.4, partials within 8-
10% of another partial are not readily resolved (they tend to merge and give
rise to a single, intermediate pitch). Since many partials of a mixture have
closer spacing, the applicability of a “harmonic sieve” is limited.

Iterative estimation works also with the AC model. A first period is
estimated from the SACF, channels dominated by that period are discarded,
and a second period is estimated from the remainder. Weintraub (1985) and
Meddis and Hewitt (1992) used this procedure to segregate speech sounds.
Cancellation (Section 9.5) can be used in place of autocorrelation, but it
offers additional options. A period may be suppressed within a channel, for
example to estimate a tone too weak to dominate any channel. The steps of
suppression and estimation may also be merged into a joint estimation
procedure (de Cheveigné and Kawahara 1999).

The harmonic sieve requires that partials be spaced wide enough to be
resolved. Meddis and Hewitt's scheme requires spectral envelopes, with
features (e.g. formants) broad enough to be resolved. Cancellation (if
implemented perfectly) does not depend on peripheral resolution. Carlyon
(1996) found that subjects could not perceive two pitches within pairs of
“unresolved” complexes (see Section 10.4) so the effectiveness of
cancellation, if used by the auditory system, must have limits.

As noted by Mersenne (1636), careful listening to a complex reveals
higher pitches in addition to the fundamental. Helmholtz (1857, 1877)
attributed each partial pitch to an elementary sensation produced by a
sinusoidal partiald. Partial pitches are not commonly heard, but for
Helmholtz they nevertheless underlie all musical perception. We access the
lowest partial pitch to perceive the note, the next partial pitches to hear
overtones, and the ensemble of partial pitches to hear timbre (Watt 1917
used the word “pitch-blend”). Schouten instead mapped the note to the
residue, and Terhardt mapped it to the pattern of partial pitches (his
“spectral pitches”), but neither disagreed with Helmholtz’s compositional
model of auditory perception.

To account for partial pitches, a pattern-matching model must access the
inputs of the pattern-matching stage in addition to its output (e.g. Terhardt et
al. 1982; see also Martens 1982). The AC model instead accounts for them
by restricting its processing to particular channels from the periphery.

5 Helmholtz's translator Ellis remarked that a partial pitch might
correspond instead to a series of harmonically related partials. For example,
the partial pitch at the octave might correspond to the series (2, 4, 6, etc.)
rather than to the 2nd harmonic, and might even exist in the absence of
harmonic 2...
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Helmholtz (1857) noted that partials are easier to hear out if mistuned.
Mistuning also produces a systematic shift of the partial pitch (Hartmann
and Doty 1996) for which an explanation, based on a time-domain process
akin to the harmonic sieve, was proposed by de Cheveigné (1997b, 1999).

To summarize, there are several ways to allow pitch models to handle
more than one pitch. Pattern matching models split patterns according to a
“harmonic sieve” before matching. AC models divide cochlear channels
among sources before periodicity estimation. Cancellation models allow
joint estimation of multiple periods. For pattern matching, a partial pitch is a
preexisting sensory element, perceptible if it manages to escape fusion. For
AC models, it results from a segregation mechanism that involves peripheral
(and possibly central) filtering. There are are close relations between pitch
and segregation (Hartmann 1996; Darwin, Chapter 8). More behavioral data
are needed to understand multiple pitch perception.

10. 7 Harmony, melody and timbre

Music science was central to science up to the 17th century. The work of
Beeckmann, Descartes, Mersenne, the Galilei, and others, were largely
aimed at questions such as musical consonance and musical scales (Cohen
1985). Later progress required isolating pitch from the musical context, but
it obviously remains relevant and a pitch model should account for its
effects. Chroma, intervals, harmony, tonality, effects of context, or the
relation between pitch and timbre (Bigand and Tillmann, Chapter 9) are a
challenge for pitch models.

Chroma designates a set of equivalence classes based on the octave
relation. In some cases chroma seems the dominant mode of pitch
perception. For example, absolute pitch appears to involve mainly chroma
(Bachem 1937; Miyazaki 1990; Ward 1999). Demany and Armand (1984)
found that infants treated octave-spaced pure tones as equivalent. A spectral
account of octave equivalence is that all partials of the upper tone belong to
the harmonic series of the lower tone. A temporal account is that the period
of the lower tone is a superperiod of the higher. In both cases the relation is
not reflexive (the lower tone contains the upper tone but not vice-versa) and
is thus not a true equivalence. Furthermore, similar (if less close) relations
exist also for ratios of 3, 5, 6, etc., for which equivalence is not usually
invoked. Octave equivalence is not an obvious emergent property of pitch
models.

Absolute pitch is rare. BM tuning and neural delays being relatively
stable, it should be the rule rather than the exception. Relative pitch involves
the potentially harder task of abstracting interval relations between period
cues along a periodotopic dimension. Some intervals involve simple
numerical ratios for which coincidence between partials or subharmonics
might be invoked, but accurate interval perception appears to be possible for
nonsimple ratios too. Interval perception is not an obvious emergent
property of pitch models.

Some aspects of harmony may be "explained" on the basis of simple
ratios between period counts or partial frequencies (Rameau 1750;
Helmholtz 1877; Cohen 1985). Terhardt et al. (1982, 1991) and Parncutt
(1988) explain chord roots on the basis of Terhardt’s pattern-matching
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model. To the extent that pattern-matching models are equivalent to each
other and to autocorrelation, similar accounts might be built upon other
pitch perception models (e.g. Meddis and Hewitt 1991a), but it is not clear
how they account for the strong effects of tonal context described by Bigand
and Tillmann in Chapter 9. Dependency of pitch on context or set was
emphasized by de Boer (1976).

Section 2.5 pointed out that certain stimuli may evoke two pitches, one
dependent on periodicity, and another on the spectral locus of a
concentration of power. The latter quantity also maps to a major dimension
of timbre (brightness) revealed by multidimensional scaling (MDS)
experiments (e.g. Marozeau et al. 2003). Historically there has been some
overlap in the vocabulary and concepts used to describe pitch (e.g. “low” vs.
“high”) and timbre (e.g. “sharp” vs. “dull”) (Boring 1942). In an MDS
experiment Plomp (1970) showed that periodicity and spectral locus map to
independent subjective dimensions. Tong et al. (1983) similarly found
independent dimensions for place and rate of stimulation in a subject
implanted with a multielectrode cochlear implant, while McKay and
Carlyon (1999) found independent dimensions for carrier and modulator
with a single electrode (see Moore and Carlyon, Chapter 7). As stressed by
Bigand and Tillmann (Chapter 9), the musical properties of pitch must be
taken into account by pitch models.

10. 8 Binaural Effects

Binaural hearing has more than once played a key role in pitch theory. The
proposal that sounds are localized on the basis of binaural time of arrival
(Thompson 1882) implied that time (and not just spectrum) is represented
internally. Once that is granted, a temporal account of pitch such as
Rutherford’s telephone theory becomes plausible. Binaural release from
masking (Licklider 1948; Hirsh 1948) later had the same implication. In the
"Huggins’ pitch" phenomenon (Cramer and Huggins 1958), a pitch is
evoked by white noise, identical at both ears apart from a narrow phase
transition at a certain frequency. As there is no spectral structure at either
ear, this was seen as evidence for a temporal account of pitch.

Huggins’ pitch had prompted Licklider (1959) to formulate the triplex
model, in which his own autocorrelation network was preceded by a
network of binaural delays and coincidence counters, similar to the well-
known localization model of Jeffress (1948). A favorable interaural delay
was selected using Jeffress’s model, and pitch was then derived using
Licklider's model. The triplex model used the temporal structure at the
output of the binaural coincidence network.

Jeffress's model involves multiplicative interaction of delayed patterns
from both ears. Another model, the Equalization-Cancellation (EC) model
of Durlach (1963) invoked addition or subtraction of patterns from both
ears. These could also have been used to produce temporal patterns to feed
the triplex model. However Durlach chose instead to use the profile of
activity across CFs as a static tonotopic pattern. It turns out that many
binaural phenomena, including Huggins’ pitch, can be interpreted in terms
of a “central spectrum”, analogous to that produced monaurally by a
stimulus with a structured (rather than flat) spectrum (Bilsen and Goldstein
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1974; Bilsen 1977; Raatgever and Bilsen 1986). Phenomena seen earlier as
evidence of a temporal mechanism were now evidence of a place
mechanism situated at a central level.

In a task involving pitch perception of two-partial complexes, Houtsma
and Goldstein (1972) found essentially the same performance if partials
went to the same or different ears. In the latter case there is no fundamental
periodicity at the periphery. They concluded that pitch cannot be mediated
by a temporal mechanism and must be derived centrally from the pattern of
resolved partials. These data were a major motivation for pattern matching.
However, we noted earlier that Licklider’s model does not require
fundamental periodicity within a peripheral channel. It can derive the period
from resolved partials, and it is but a small step to admit that they can come
from both ears. Houtsma and Goldstein found that performance was no
better with binaural presentation, despite the better resolution of the partials,
favorable to pattern matching. Thus, their data could equally be construed as
going against pattern matching.

An improved version of the EC model gives a good account of most
binaural pitches (Culling et al. 1998a,b; Culling 2000). As in the earlier
models of Durlach, or Bilsen and colleagues, it produces a tonotopic profile
from which pitch cues are derived, but Akeroyd and Summerfield (2000)
showed that the temporal structure at the output of the EC stage could also
be used to derive a pitch (as in the triplex model). A possible objection to
that idea is that it requires two stages of time domain processing, which
might be costly in terms of anatomy. However, de Cheveigné (2001)
showed that the same processing may be performed as one stage. The many
interactions between pitch and binaural phenomena (e.g. Carlyon et al.
2001) suggest that periodicity and binaural processing may be partly
common.

10. 9 Physiological models

Models reviewed so far proceed by working out an account of how pitch
might be extracted. The hope is that physiology will eventually provide
support, but so far it has not obliged (Winter, Chapter 4). A strong objection
to the AC model is the lack of evidence of autocorrelation patterns, or
delays of the duration required (at least 30 ms). There is likewise little
evidence in favor of pattern matching. A different approach is to start from
known anatomy and physiology, and work towards a functional model. This
seems a sound approach, as it only allows ingredients known to exist in the
auditory system. Weaknesses are: (a) sparse sampling or technical
difficulties may prevent the observation of an indispensable ingredient, (b)
experiment design and reporting are model-driven, and in particular (c) the
wrong choice of stimuli or descriptive statistics might bias model building
in an unhelpful way.

The model of Langner (1981, 1998) tries to explain pitch and at the
same time account for physiological responses to amplitude-modulated
sinusoidal carriers. The basic circuit has two inputs. One is a pulse train
phase-locked to the stimulus carrier (period T,=1/f.). The other is a strobe
pulse locked to the modulation envelope (period 7,=1/f,). The strobe
triggers two parallel delay circuits that converge upon a coincidence neuron
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that activates if the delay difference between pathways equals the
modulation period (or an integer multiple n,, T, of that period). An array of
such circuits covers periods in the pitch range.

The model has elements reminiscent of those of Licklider and Patterson
(Section 9). A distinctive feature is the use of two delay circuits rather than
one. One (called an “integrator” or “reductor”), accumulates carrier pulses
up to some threshold and thus produces a delay (relative to the strobe) equal
to an integer multiple of the carrier period (n . 7). The other is an oscillator
circuit that produces a burst of spikes triggered by the strobe, with a
particular “intrinsic oscillation” period ;, (a small integer multiple of a
synaptic delay of 0.4 ms). The circuit thus actually outputs several delayed
spikes, all integer multiples of the oscillator period (n, 7). Putting things
together, coincidence can only occur if the “periodicity equation” is true:

nmrm = nCT(‘ - nOTD
Since the required integers might not always exist, certain periods might be
missing. From this one might predict a step-like trend of psychophysical
pitch matches, that Langner (1981) did indeed observe but that Burns (1982)
failed to replicate. On the other hand, the equation allows many possible
combinations of the six quantities that it involves. As a consequence, the
behavior of the model is hard to analyze and compare with other models.

This example illustrates a difficulty of the physiology-driven approach.
The physiological data were gathered in response to amplitude-modulated
sinusoids, which don’t quite fit the stimulus models of Section 2.4. Pitch
varies with (f,, f,,), but the parameter space is non-uniform: regions of true
and approximate periodicity alternate, evoking either clear or weak and
ambiguous pitch. The choice of parameters leads naturally to posit a model
that extracts them in order to get at the pitch, but in this case the task is hard.
In contrast, a study starting from pitch theory might have used stimuli with
parameters easier to relate to pitch, and produced data conducive to a
simpler model.

In a different approach, Hewitt and Meddis (1994), and more recently
Wiegrebe and Meddis (2004) suggested that chopper cells in the cochlear
nucleus (CN) converge on coincidence cells in the central nucleus of the
inferior colliculus (ICC). Choppers tend to fire with spikes regularly spaced
at their characteristic interval. Firing tends to align to stimulus transients
and, if the period is close to the characteristic interval, the cell is entrained.
Cells with similar properties may align to similar features and thus fire
precisely at the same instant within each cycle, leading to the activation of
the ICC coincidence cell. A different stimulus period would give a less
orderly entrainment, and a smaller ICC output, and in this way the model is
tuned. It might seem that periodicity is encoded in the highly regular
interspike intervals. Actually, it is the temporal alignment of spikes across
chopper cells, rather than ISI intervals within cells, that codes the pitch. A
feature of this approach is the use of computational models of the auditory
periphery and brainstem (Meddis 1988; Hewitt et al. 1992) to embody
relevant physiological knowledge. Winter (Chapter 4) discusses
physiologically based models more deeply.
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10. 10 Computer models

Material models were once common (e.g. Fig. 3), but nowadays the
substrate of choice is software. The many available software packages will
not be reviewed, because progress is rapid and information quickly
outdated, and because up-to-date tools can easily be found using search
tools (or by asking practitioners in the field). The computer allows models
of such a complexity that they are not easily understood (a situation that
may arise also with mathematical models). The scientist is then in the
uncomfortable position of requiring a second model (or metaphor) to
understand the first. This is probably unavoidable, as the gap is wide
between the complexity of the auditory nervous system and our limited
cognitive abilities. We should nevertheless perhaps worry when a researcher
treats a model as if it were as opaque as the auditory system. Special
mention should be made of the sharing of software and source code. In
addition to making model production much easier, it allows models to be
communicated, including those that are not easily described.

10. 11 Other modeling approaches

The ideas outlined in this subsection were chosen for their rather unusual
view of neural processing of auditory patterns, and thus pitch.

Many theories invoke a spatial internal representation, for example
tonotopic or periodotopic. A spatial map of pitch fits the high vs. low spatial
metaphor that we use for pitch, and thus gives us the feeling of "explaining"
pitch. However that metaphor may be recent (Duchez 1989): the Greeks
instead used words that fit their experience with stringed instruments, such
as “tense” or “lax”. A different argument is that distinct pitches must map to
(spatially) distinct motor neurons to allow distinct behavioral responses
(Whitfield 1970). Licklider (1959) accepted the idea of a map, but
questioned the need for it to be spatially ordered. The need for the map
itself may also be questioned. Cariani (2001) reviews a number of alternate
processing and representation schemes based on time.

Maps are usually understood as rate vs. place representations, but time
(of neural discharge relative to an appropriate reference) has been proposed
as an alternative to rate (Thorpe et al. 1996). Maass (1998) gave formal
proofs that so-called “spiking neural networks” are as powerful, and in some
cases more powerful (in terms of network size for a given function), than
networks based on rate. Time is a natural dimension of acoustic patterns,
and its use within the auditory system makes sense. Within the auditory
cortex, transient responses have been found with latencies reproducible to
within a millisecond (Elhilali et al. 2004), consistent with a code in terms of
spike time relative to a reference spike, itself triggered by a stimulus feature.
Maass also pointed out that spiking networks allow arbitrary impulse
responses to be synthesized by combining appropriately delayed excitatory
and inhibitory post-synaptic potentials (EPSPs and IPSPs). Time-domain
filters can thus be implemented within dendritic trees.

Barlow (1961) argued that a likely role of sensory relays is to recode
incoming patterns so as to minimize the average number of spikes needed to
represent them. For example, supposing the relay has M outputs, the most
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common input pattern would map to no spike, the M next-most common
patterns to one spike on one output neuron, etc. Rare patterns would map to
patterns with more spikes. The advantages are at least threefold. First,
neural activity (and metabolic cost) is minimized, all the more so as M is
large. Second, the relay extracts regularities in incoming patterns, and thus
serves to characterize them. Third, reduced response to common patterns
may increase sensitivity to less common events. Early relays would handle
simple stimulus-related structure, and the later ones more abstract
regularities. Periodicity is a candidate for early recoding, and the
cancellation model (Section 9.5) actually implements it in some sense.

If Barlow's principle is valid, stimulus-related structure should give way
to neural patterns that are sparse, as common patterns are coded by few
spikes, and labile, as the system adjusts to the changing statistics of
incoming patterns (Nelken et al. 2004). If so, stable maps of stimulus
structure (tonotopy, etc.) at levels beyond brainstem and midbrain might
reflect mainly irrelevant leftover structure. Barlow's principle fits well with
Bayesian models of information processing (Barlow 2001).

Maass (2003) recently proposed a model of neural processing in two
stages. The first performs a large number of non-linear transformations on
incoming patterns (he calls it a "liquid state machine"). The only
requirement on transforms is that they be sufficiently diverse. The second
stage learns linear combinations of these transforms. Theoretical analysis
and simulations show that this model can efficiently learn arbitrary patterns.
Transforms are, as it were, selected according to their usefulness. Networks
such as Shamma and Klein's harmonic template, Licklider's autocorrelation,
or cancellation, if they occurred, would be likely candidates for selection.
This is an alternative form of the "learning hypothesis" (Section 5.3).

Licklider's (1951) pitch model is closely related to Jeffress's (1948)
binaural model, and success of the latter (Joris et al 1998) has bolstered the
former. Recently the Jeffress model has been questioned (Mc Alpine et al.
2001). It assumes an array of spatially-tuned channels within each cochlear
frequency band, the channel with maximal activation indicating azimuth.
McAlpine and colleagues instead found evidence in the guinea pig for a
mechanism analogous to that which encodes color within the visual system.
Azimuth affects the balance of activation of two channels within each
frequency band, one encoding "leftness" and the other "rightness". In other
words, within each cochlear frequency band, delay can be assimilated to
phase and synthesized as the weighted sum of two quadrature signals. It is
logical to ask if a similar mechanism could work for pitch, for example to
synthesize delays required by the AC model.

Mach (1884, Boring 1942) actually proposed a two-channel "color
scheme" to code pitch height as a combination of "brightness" and
"dullness", while a third channel coded "richness of timbre". Kohler (1913,
Boring 1942) used a similar idea to represent "vocality" (a quality
assimilated to chroma), and Schouten (1940c) mentioned a "color" scheme
to represent periodicity at each point of the basilar membrane. Helmholtz
(1877) had suggested combining adjacent sensory cells to represent
intermediate values of pitch, in an effort to preempt the objection that their
numbers were too few to code the finer grades of pitch.

Applying a scheme analogous to McAlpine's to pitch involves
difficulties of two kinds. First, except in the case of pure tones close in
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frequency (Dai et al. 1996), adding sounds of different pitch does not
produce a sound of intermediate pitch, as when colors are mixed. Second,
the requirements of pitch are harder to satisfy than localization. For a
narrow band signal (such as in a cochlear channel), delay can be assimilated
to phase and synthesized as the weighted sum of two signals in quadrature
phase (+ 90°). Up to 1.7 kHz (most of the range of frequencies studied by
McAlpine et al. 2001), delays of up to £150 us (largest guinea pig ITD) can
be synthesized in this way, and if negative weights are allowed, the range
can be doubled. Beyond that, the phase-delay mapping is ambiguous. The
entire existence region of pitch (Fig. 5) involves delays longer than the
period of any partial.

True, for a sufficiently narrow band signal, a large delay can be equated
to phase and implemented as a delay shorter than the period (or as the
weighted sum of quadrature signals). However this mapping is ambiguous
and is hard to see how a pitch model can be built in this way. Nevertheless
there may be some way to formulate a model along these lines that works.
Certainly the need for a high-resolution array of pitch-sensitive channels
might be alleviated, as originally suggested by Helmholtz.

Du Verney (1638) proposed that the eardrum is actively tuned by
muscles of the middle ear to match the pitch of incoming tones (he did not
say how the tunable eardrum and fixed cochlear resonators might share
roles). Most pitch models are of the “fixed” sort, but tuning is possibly an
option. Perception often involves some form of action, for example moving
one’s head to resolve localization ambiguity. Efferent pathways are as
ubiquitous within the auditory system as their role is little known (Sahey et
al. 1997), and it is conceivable that pitch is extracted according to a tunable
version of, say, the AC model. It might be cheaper, in terms of neural
circuitry, to have one or more tunable delay/coincidence elements rather
than the full array posited by the standard AC model. Tuning might explain
the common lack of absolute pitch (absolute pitch would then be explained
by the uncommon presence of fixed tuned elements).

To summarize Section 10, specialized issues give insight as to which
model of pitch is correct, as simpler phenomena are explained equally well
by most models. Special phenomena may sometimes require specialized
models, but it should be understood that they all address facets of the same
object, the auditory system. Hopefully some day they will merge into a
unitary model worthy of Helmholtz.

11 Of Models and Men

This book is about pitch, but the hero of the chapter is the model. Model-
making itself is a metaphor of perception. Like the shadows on the back of
Plato’s cave, models reflect the world outside (or in our case: inside the ear)
in the same way as the pattern of activity on the retina reflects the structure
of a scene. Perception guides action, and effective action leads to survival of
the organism. Reversing the metaphor, a criterion for judging our models is
what we do with them. For society, the bottom line is to adequately address
technical, economical, medical, etc. issues. For the researcher it is to



43

“publish or perish”. Ultimately, here is the meaning of the word “useful” in
our definition.

Over the past, pitch theory has progressed unevenly. Various factors
appear to have hastened or slowed the pace. Models are made by people,
who are driven by whims and animosities and the need to “survive”
scientifically. Ego-involvement (to use Licklider’s words) drives the model-
maker to move forward, and also to thwart competition. At times, progress
is fueled by the intellectual power of one person, such as Helmholtz. At
others, it seems hampered by the authority of that same power. Controversy
is stimulating, but it tends to lock opponents into sterile positions that slow
their progress (Boring 1929, 1940).

Certain desirable features make a model fragile. A model that is specific
about its implementation is more likely to be proven false than one that is
vague. A model that is unitary or simple is more likely to fail than one that
is narrow in scope or rich in parameters. These forces should be
compensated, and at times it may be necessary to protect a model from
criticism. It is my speculation that Helmholtz knew the weakness of his
theory in respect to the missing fundamental, but felt it necessary to resist
criticism that might have led to its demise. The value and beauty of his
monumental bridge across mathematics, physiology and music were such
that its flaws were better ignored. To that one must agree. Yet Helmholtz’s
theory has cast a long shadow across time, still felt today and not entirely
beneficial.

This chapter was built on the assumption that a healthy menagerie of
models is desirable. Otherwise, writing sympathetically about them would
have been much harder. There are those who believe that theories are not
entirely a good thing. Von Békésy and Rosenblith (1948) expressed scorn
for them, and stressed instead anatomical investigation (and technical
progress in instrumentation for that purpose) as a motor of progress. Wever
(1949), translator of the model-maker von Békésy, distrusted material and
mathematical models. Boring (1926) called out for “fewer theories and more
theorizing”. Good theories are falsifiable, and some put their best efforts
into falsifying them. If, as Hebb (1959) suggests, every theory is already
false by essence, such efforts are guaranteed to succeed. The falsifiability
criterion is perhaps less useful than it seems.

On the other hand, progress in science has been largely a process of
weeding out theories. The appropriate attitude may be a question of balance,
or of a judicious alternation between the two attitudes, as in de Boer’s
metaphor of the pendulum. This chapter swings in a model-sympathetic
direction, future chapters may more usefully swing the other way.

Inadequate ferminology is an obstacle to progress. The lack of a word, or
worse, the sharing of a word between concepts that should be distinct is a
source of fruitless argument. Mersenne was hindered by the need to apply
the same word (“fast”) to both vibration rate and propagation speed. Today,
“frequency” is associated with spectrum (and thus place theory) in some
contexts, and rate (and thus temporal theory) in others. “Spectral pitch” and
“residue” are used differently by different authors. We must recognize these
obstacles.

Metaphors are useful. Our experience of resonating objects (Du
Verney’s steel spring, or Le Cat’s harpsichord) makes the idea of resonance
within the ear easy to grasp and convey to others. In this review the
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metaphor of the string has served to bridge time (from Pythagoras to
Helmbholtz to today) and theory (from place to autocorrelation). Helmholtz
used the telegraph to convince himself of the adequacy of his version of
Miiller’s principle, but, had it been invented earlier, the telephone might
have convinced him otherwise.

A final point has to do with the collective dimension of theory making.
Mersenne was known to be impatient with his opponents. In 1634, Nicolas-
Claude Fabri de Pieresc warned him: “... you must refrain from putting
criticism on others... without urgent necessity, to induce no one to try to bite
you in revenge.” Mersenne changed radically, became affable and
developed an intense correspondence with the best minds of the time. In an
age without scientific journals, that did possibly more for the advancement
of knowledge than his own discoveries and inventions (Tannery and de
Waard 1970).

12 Summary

Historically, theories of pitch were often theories of hearing. It is good to
keep in mind this wider scope. Pitch determines the survival of a
professional musician today, but the ears of our ancestors were shaped for a
wider range of tasks. It is conceivable that pitch grew out of a mechanism
that evolved for other purposes, for example to segregate sources, or to
factor redundancy within an acoustic scene (Hartmann 1996). The
“wetware” used for pitch certainly serves other functions, and thus advances
in understanding pitch benefit our knowledge of hearing in general.

Ideally, understanding pitch should involve choosing, from a number of
plausible mechanisms, the one used by the auditory system, on the basis of
available anatomical, physiological or behavioral data. Actually, many
schemes reviewed in Sections 2.1 and 2.2 were functionally weak.
Understanding pitch also involves weeding out those schemes that “do not
work”, which is all the more difficult as they may seem to work perfectly
for certain classes of stimuli. Two schemes (or families of schemes) are
functionally adequate: pattern matching and autocorrelation. They are
closely related, which is hardly surprising as they both perform the same
function: period estimation. For that reason it is hard to choose between
them.

My preference goes to the autocorrelation family, and more precisely to
cancellation (that uses minima rather than maxima as cues to pitch, Section
9.5). This has little to do with pitch, and more with the fact that cancellation
is useful for segregation and fits the ideas on redundancy-reduction of
Barlow (1961). I am also, as Licklider put it, “ego involved”. Cancellation
could be used to measure periods of resolved partials in a pattern-matching
model, but the pattern-matching part would still need accounting for. A
period-sized delay seems an easy way to implement a harmonic template or
sieve. Although the existence of adequate delays is controversial, they are a
reasonable requirement compared to other schemes. If a better scheme were
found to enforce harmonic relations, I'd readily switch from
autocorrelation/cancellation to pattern matching. For now, I try to keep both
in my mind as recommended by Licklider.
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It is conceivable that the auditory system uses neither. A reason to
believe so is that they don’t seem to fit with every feature described by the
physiologist, the psychoacoustician or the musician. Another is that both
models were designed to be simple and easily understood. Obviously the
auditory nervous system has no such constraint, so the actual mechanism
might be far more complex than we can easily apprehend. Our current
models may still be useful as tools to understand such a complex
mechanism. Judging from yesterday’s progress, however, it is wise to
assume that yet better tools are to come.

This chapter reviewed models, present and past. Not to write a history,
nor to select the best of today’s models, but rather to help with the
development of future models. To quote Flourens (Boring, 1963): ‘Science
is not. It becomes.’

13 Sources

Delightful introductions to pitch theory (unfortunately hard to find) are
Schouten (1970) and de Boer (1976). Plomp gives historical reviews on
resolvability (Plomp 1964), beats and combination tones (Plomp 1965,
1967b), consonance (Plomp and Levelt 1965), and pitch theory (Plomp
1967a). The early history of acoustics is recounted by Hunt (1990), Lindsay
(1966) and Schubert (1978). Important early sources are reproduced in
Lindsay (1973), and Schubert (1979). The review of von Békésy and
Rosenblith (1948) is oriented towards physiology. Wever (1949) reviews
the many early theories of cochlear function, earlier reviewed by Watt
(1917), and yet earlier by Bonnier (1896-1898, 1901). Boring (1942)
provides an erudite and in-depth review of the history of ideas in hearing
and the other senses. Cohen (1984) reviews the progress in musical science
in the critical period around 1600. Turner (1977) is a source on the
Seebeck/Ohm/Helmholtz dispute. Original sources were consulted
whenever possible, otherwise the secondary source is cited. For lack of
linguistic competence, sources in German (and Latin for early sources) are
missing. This constitutes an important gap.
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Figure 1. Spectral approach. (A) to (E) are schematized spectra of pitch-evoking
stimuli; (F) is the subharmonic histogram of the spectrum in (E). Choosing the peak
in the spectrum reveals the pitch in (A) but not in (B) where there are several peaks.
Choosing the largest peak works in (B) but fails in (C). Choosing the peak with
lowest frequency works in (C) but fails in (D). Choosing the spacing between peaks
works in (D) but fails in (E). A pattern-matching scheme (F) works with all stimuli.
The cue to pitch here is the rightmost among the largest bins (bold line).

Figure 2. Temporal approach. (A) to (E) are waveform samples of pitch-evoking
stimuli. (F) is the autocorrelation function of the waveform in (E). Taking the
interval between successive peaks (arrows) works in (A) but fails in (B). The interval
between highest peaks works in (B) but fails in (C). The interval between positive-
going zero-crossings works in (C) but fails in (D) where there are several zero-
crossings per period. The envelope works in (D), but fails in (E). A scheme based on
the autocorrelation function (F) works for all stimuli. The leftmost of the (infinite)
series of main peaks (dark arrows) indicates the period. Stimuli such as (E) tend to
be ambiguous and may evoke pitches corresponding to the gray arrows instead of (or
in addition to) the pitch corresponding to the period.

Figure 3. Johannes Muller built this model of the middle ear to convince himself that
sound is transmitted from the ear drum (c) via the ossicular chain (g) to the oval
window (f), rather than by air to the round window (e) as was previously thought.
The model is obviously “false” (the ossicular chain is not a piece of wire) but it
allowed an important advance in understanding hearing mechanisms (Miuller 1838;
von Békésy and Rosenblith 1948).

Figure 4. Descriptions of pitch-evoking stimuli. (A): Periodic waveform. The
parameters of the description are T and the values of the stimulus during one period:
s(t), 0<t<T. (B): Sinusoidal waveform. The parameterization (f, A and ¢) is simpler,
but the description fits a smaller class of stimuli (pure tones). (C): Amplitude
spectrum of the signal in (A). Together with phase (not shown) this provides an
alternative parameterization of the stimulus in (A). (D) Waveform of a formant-like
periodic stimulus. (E): Spectrum of the same stimulus. This stimulus may evoke a
pitch related to FO, or to f;ocys, or both.

Figure 5. Formant-like stimuli may evoke two pitches, periodicity and spectral, that
map to FO and f,,cys stimulus dimensions respectively. The parameter space
includes only the region below the diagonal, and stimuli that fall outside the closed
region do not evoke a periodicity pitch with a musical nature (Semal and Demany
1990; Pressnitzer et al. 2001). For pure tones (diagonal) periodicity and spectral
pitch co-vary. Insert: autocorrelation function of a formant-like stimulus.
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Figure 6. Monochord. A string is stretched between two fixed bridges A,B on a
sounding board. A movable bridge C is placed at an intermediate position in such a
way that the tension on both sides is equal. The pitches form a consonant interval if
the lengths of segments AC and CB are in a simple ratio. The string plays an
important role as model and metaphor in the history of pitch.

Figure 7. (A): Partials that excite a string tuned to 440 Hz. (B): Strings that respond
to a 440 Hz pure tone (the abscissa of each pulse represents the frequency of the
lowest mode of the string). (C): Strings that respond to a 440 Hz complex tone.
Pulses are scaled in proportion to the power of the response. The rightmost string
with a full response indicates the period. The string is selective to periodicity rather
than Fourier frequency.

Figure 8. Pure tone frequency discrimination by humans and models, replotted from
Heinz et al (2001). Open triangles: threshold for a 200 ms pure tone with equal
loudness as a function of frequency (Moore, 1973). Circles: predictions of place-
only models. Squares: predictions of time-only models. Open circles and squares are
for Siebert’s (1970) analytical model, closed circles and squares are for Heinz et al’s
(2001) computational model.

Figure 9. (A): Stimulus consisting of odd harmonics 3, 5, 7, and 9. (B): Difference
function d(t). (C): AC function r(t). (D): Array of ACFs as in Licklider’s model.
(E): Summary ACF as in Meddis and Hewitt’s model. Vertical dotted lines indicate
the position of the period cue. Note that the partials are resolved and form well-
separated horizontal bands in (D). Each band shows the period of a partial, yet their
sum (E) shows the fundamental period.

Figure 10. Processing involved in various pitch models. (A) Autocorrelation
involves multiplication. (B) Cancellation involves subtraction. (C) The feed-forward
comb-filter (Delgutte 1984) involves addition. (D) In the feedback comb-filter, the
delayed output is added to the input (after attenuation), rather than the delayed input.
This circuit behaves like a string. Plots on the right show, as a function of frequency,
the value measured at the output for a pure-tone input. For a frequency inverse of the
delay, and all of its harmonics, the product (A) is maximum, the difference (B) is
minimum, the sum (C) is maximum. Tuning is sharper for the feedback comb-filter
(D).
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Figure 11. SACFs in response to a 200 Hz pure tone. The abscissa is logarithmic and
covers roughly the range of periods that evoke a musical pitch (0.2 to 30 ms). The
pitch mechanism must choose the mode that indicates the period (dark arrow in A)
and reject the others (gray arrows). This may be done by setting lower and upper
limits on the period range (B), or a lower limit and a bias to favor shorter lags. (C).
The latter solution may fail if the period mode is less salient than the portion of the
zero-lag mode that falls within the search range (D).
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