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Abstract

Cancellationis a process by which an interfering source (“jammer”) is removed
from a mixture of sounds on the basis of its structure. This ispart of the task of
“scene analysis” that confronts natural organisms and artificial devices. Jammer can-
cellation is distinct from, and complementary to, target enhancement. Time-domain
cancellation filters are distinct from, and complementary to, time-frequency analysis.
The cancellation principle is probably used by the auditorysystem to analyze acoustic
scenes on the basis of the spatial or harmonic structure of interfering sources. It is
related to modern techniques such as ICA (Independent Components Analysis).

I. Introduction

The acoustic environment is often cluttered. The ears of an organism samplemixturesof
acoustical waveforms coming from multiple sources. Makingsense of the environment on
this basis is a process known as Auditory Scene Analysis, or ASA (Bregman 1990). If
the organism is interested in a particular source (“target”), the others (“jammers”) interfere
with target perception. Perceptual models are generally designed to handle asingleisolated
source, and extending them to work within a complex environment is a challenge. The same
problems arise when designing an artificial device (such as aspeech recognizer) to work in
an acoustically cluttered environment.

Cues used by humans have been reviewed by Bregman (1990). Generally speaking, they
consist inregularitiesof either the target or the jammer. These include spatial location (cor-
relation between ears or sensors), periodicity (correlation across time), onset (correlation
across frequency channels), etc. Artificial systems have been built that use similar regulari-
ties (Cooke and Ellis 2001). Traditionally, models and systems have tended to concentrate
on regularities of thetarget. This paper describes an approach that concentrates instead on
regularities ofjammersto suppress them.

Compared to target enhancement, jammer cancellation has two advantages. First, in
ideal situations, cancellation providesinfinite jammer rejection, and thus an infinite SNR
improvement. In contrast, target enhancement usually offers limited gain (for example 6
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dB for a two-microphone delay-and-add beamformer). Second, jammer cancellation works
well in situations where SNR is unfavorable (for which segregation is most needed). In that
case estimating jammer structure is easy, whereas estimating target structure is hard.

Cancellation has two weaknesses. The first is that the jammermay be imperfectly
structured or predictable, and thus incompletely suppressed. This results in “crosstalk”.
If crosstalk is severe the target may not be observable within certain temporal intervals,
and/or spectral bands. The second weakness is that cancellation may “damage” the tar-
get. Cancellation requires techniques to deal with incomplete target observations, and to
compensate the deleterious effects of target distortion. These two weaknesses are distinct.

Jammer “structure” takes many forms. One or several jammersmay be predictable,
or periodic, or there may be multiple sensors. These basic structures may be extended
to include amplitude variation, frequency modulation, moving sources, etc. Every bit of
exploitable jammer structure opens a window through which the target can be “glimpsed”.

The focus here is mainly on artificial systems (typically automatic speech recognition,
ASR), but understanding how the auditory system handles thetask is also a goal, in itself
and as a source of ideas for better algorithms. Conversely, algorithms serve as models to
guide our investigation of natural processes.

1 Task and context

The task is to recognize or recover a target source within a noisy environment. For simplicity
and specifity, suppose two sources

�
(the “target”) and� (the “jammer”) that are observed

indirectly from signals� and� provided by one or two microphones. This structure can be
generalized as needed to more sources and/or sensors. Sources and observations are related
via a convolutivemixing matrix. Each matrix element is a transfer function (or impulse
response) that represent the effects of propagation delay and dispersion from a source to a
transducer (Fig. 1).

T

J

X

y
mix

Fig. 1 Observed signals� (and possibly� ) are related to target
�

and jammer� via a
mixing matrix. The goal is to derive information about the target

�
.

Two subtasks are of interest. The first is to derive useful information about thestructure
of the scene and/or the sources: intersensor correlation, source periodicity (F � s), etc. The
second is to recover a “clean” version of the target. Structure estimation is usually a prereq-
uisite of target recovery. It is usually possible to derive from � or (� ,� ) an approximation� �

of the target, that depends on both target and jammer:
� � � � � � 	 
 � � � 	

(1)
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Ideally we’d like
� � 	

to be identity (no distortion) and
� � 	

to be zero (no crosstalk). Of the
two ideals, the latter is more useful. Target distortion is typically predictable and can be
compensated, whereas crosstalk is usually unpredictable and cannot.

Typical application contexts are ASR, conference systems,hearing aids, musical appli-
cations (recording, score following), multimedia indexing, etc.

2 Assumptions on source and scene structure

Cancellation works in the time domain. At each instant� , an estimate of the jammer wave-
form is subtractedfrom the compound waveform. Three cases are of interest thatdiffer
according to whether the jammer estimate comes from (1) a template waveform, (2) previ-
ous values of the waveform itself, or (3) another sensor.

The first case (waveform template) is ideal but rare. Examples might be a stationary
jammer or the stereotyped waveform of an instrument note, either known beforehand or
estimated from the context. It is ideal because subtractionleaves the target undistorted.

The second case is that of aperiodicjammer� �
� � � � � , where� is the period. Suppose

we observe� �
� � � 
 � � (simple mixture). By subtracting� � � � , the contribution of� is

suppressed:
� �

�
� � � � � � � � � (2)

The result
� �

�
� � � � � � � � is a spectrally distorted version of

�
, but importantly it does not

depend on� (jammer rejection is infinite).
The third case is that of multiple sensors in an anechoic environment. Things are a bit

simpler if � and� are rescaled in time and amplitude so that the contribution of � to each
is the same. This contribution is then suppressed by forming:

� �
�

� � � � � � � (3)

Supposing that, after rescaling,� and � are the excess delay and attenuation of
�

within
sensor signal� with respect to� , the result

� �
�

� � � � � � � � 	 is a distorted version of
�

.
It does not depend on� (jammer rejection is infinite).

These basic cases can be extended. For example avariable amplitudeperiodic jammer
(� �

�
� � � � � ) can be handled by using the formula

� �
�

� � � � � � � � � . A variable frequency
jammer can be handled by time warping (the target estimate isthen time warped), a moving
source with a combination of time warping and gain adjustment, etc. Operations may be
performed on bands of a filterbank.

The basic cases can also be combined (e.g. multiple periodicsources picked up by
multiple sensors, etc.). The important feature is that jammer rejection isinfiniteeach time
the jammer fits the structure model. In practice this is likely to not always be the case.
Cancellation fails in two cases: (a) the jammer does not fit any structure model, and (b) it
does, but the target fits the same model. The rest of this paperdiscusses how to handle those
cases. Before that we discussestimationof the source and scene structure.
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3 Estimating source and scene structure

Jammer template. A simple example is a deterministic stationary jammer such as hum
(power frequency harmonics picked up by low-level audio circuits). Granted the mild as-
sumption that the target has intervals of low amplitude, thejammer template can be ob-
tained from a fit to the waveform in those intervals. Granted the further assumption that
the jammer is indeed stationary, the template is interpolated and subtracted from the entire
waveform (for hum this gives excellent results). More complex examples are possible but
not discussed here.

Periodicity. Cancellation itself allows estimation. The idea is to design a cancellation
filter and search its parameter space for aminimum residual output. For example, to estimate
the period of an isolated source the filter defined by Eq. 2 is applied and its parameter� is
varied until a minimum is found. This principle is applied with success in the YIN method
of F � estimation (de Cheveigné and Kawahara 2002). The same principle can be extended
to multiple sources (de Cheveigné and Kawahara 1999; de Cheveigné and Baskind 2003).

Intersensor delay/attenuation. Again, cancellation allows estimation. The idea is to de-
sign a spatial cancellation filter (null beamformer) and search its parameter space for a min-
imum residual. For example to estimate delay and attenuation of a single source, supposing
nondispersive propagation, the filter defined by� � � � � � � � is applied to sensor signals and
its parameters� and � varied until a minimum is found.

The principle can be extended todispersive propagationand more than two
sources/sensorsby splitting the signals over a filterbank and working withinnarrowband
channels. More on this later. From intersensor parameters one can infer source positions
(within surfaces of confusion), but this is not of direct usefor cancellation unless we wish
to use spatial constraints, for example in a multimodal system.

Joint estimation Periods, intersensor parameters, and templates can be estimatedjointly.
In this case, estimation of each aspect of the structure is aided by other aspects. For exam-
ple F � estimation may be aided by spatial structure, and vice-versa. Joint estimation uses
exhaustive search (with interpolation) of the joint parameter space, and thus is expensive.
Computational issues are discussed later on.

4 Recovering the target

Supposing the scene fits the structure model, and parametersare known, a time-domain
waveform

� �
can be obtained according to equations analogous to Eqs. 2, 3. This waveform

(together with structure parameters) are then feeded to a pattern-matching or resynthesis
stage. Instead of a time-domain waveform, is also possible to derive spectral representations
(see below).



A. de Cheveigné, "Cancellation principle", last revised: 1Dec 2003 5

As pointed out in Sect. 2, the strength of cancellation is perfect jammer rejection in
ideal conditions. Its weakness is that conditions may be less than ideal, or ideal only within
certain time or frequency intervals.

5 Local cancellation & missing data

A likely event is that cancellation is possible for a restricted temporal interval. For ex-
ample, if the jammer is voiced speech, harmonic cancellation can be applied only during
steady-state voiced segments. During those segments, the target may be “glimpsed”. Can-
cellation might also be possible within a restrictedspectral interval. For example, unstruc-
tured noise may prevent cancellation within some bands. Thetarget is “glimpsed” within
those that remain. One may likewise apply cancellation within a restrictedspectrotempo-
ral region. However, restrictions in frequency imply smearing in time, and vice-versa, and
these limitations must be taken into account (tradeoff between spectrotemporal resolution
and maximum allowable jammer rejection).

If cancellation is effective only locally, parts of the target will be missing. The parts
that remain nevertheless may be sufficient for a task such as pattern-matching (e.g. ASR).
Missing data techniqueshave been developped to address this situation (Cooke et al.1997;
Lippmann 1997; Morris et al. 1998). Missing features are either ignored, or better (if pos-
sible)constrainedby bounds derived from the target + jammer mixture. These techniques
assume a “mask” to tell them which intervals are missing. In the context of cancellation,
the mask is a by-product of the cancellation process.

A second problem is that the target “glimpses” are usually spectrally distorted by the
cancellation filters. An option is to compensate by inverse filtering, but a more general
solution is to apply similar distortion to thetemplatesin the pattern-matching stage. In-
formation needed for that is available from the cancellation stage. Template adjustment is
not yet common among missing feature techniques (see de Cheveigné 1993b for an early
attempt).

6 Models

Pattern-matching is a special case ofmodel fitting. Once a model is fitted (possibly on the
basis of incomplete data) it allowsinterpolation. The models embedded in an ASR system
(states, covariance matrices, dictionaries, etc.) can be used in this way. Other useful models
are articulatory, multimodal, linguistic, etc. Seeminglytrivial redundancyrelations between
features can allow accurate interpolation when one featureis missing and the other not.

7 Power and variance partition

This section suggests how to obtain a reliability mask, and more. The idea is to partition the
powerwithin a mixture into parts that reflect various sources. This partition is also useful
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as a partition of thepower spectrum(thanks to Parseval’s relation), and ofvariance(sum of
squares).

As an example, consider a quasiperiodic jammer� . It is possible to express it as the
sum of two signals� �

and� � �
:

� �
�

� � � � � � � � �
	 � � � � � �

�
� � � �


 � � � �
	 � �

(4)

If � is purely periodic with period� , then� � � �
and � � � � � . � �

is non-zero only if� is
not perfectly periodic, and in that sense we can call� �

the “aperiodic” part of� , and� � �
the

“periodic” part.
What makes this partition useful is that it is also a partition of power. Defining power

of a signal X (measured over a window starting at� ) as:

� �� �
� � � � � � � � 	 � � 	


� � � �  � �� �
(5)

it is easy to verify that:
� � � � �

� � � 
 � � � � � �
� � � 	 � � � � � � �

�
� � � 
 � � � � �

�
� � �

(6)

The term on the left is an estimate of the power of the jammer (calculated over two win-
dows and then averaged), and the right hand terms are powers of aperiodic and periodic
parts respectively. Parseval’s relation implies a similarpartition ofpower spectra. This is
extremely useful. In the spectral domain, the power spectrum is weighted by two comple-
mentary functions:

�
� � � � � � � �

� 	 � �
and

� 
 � � � � � � �
� 	 � �

respectively.
� �

representscrosstalk. If
� �

is the cancellation-filtered target, the output of the cancel-
lation stage is

� � 
 � �
. The quality of the recovered target depends on the relativeweights of� � � � � �

and
� � � � � �

. Obviously these cannot be observed, but there are several situations where
they can be inferred:

(1) Jammer properties may be known well enough to put an upperbound on the ratio� � � � � � � � � � � �
. Using the power of the observed signal

� �� � �
as a statistically conservative

bound on ||J||, we get an upper bound on crosstalk power
� � � � � �

. Thanks to Parseval’s relation,
this reasoning may be applied to eachfrequency.

(2) The target too may be periodic. A full analysis is complicated and will be outlined
only briefly. Calling� and � the periods of jammer and target, the observable signal�
can be expressed as the sum of four parts:

� � � � � � � � � � � � � � � � 
 � � � � � � 	 � �
� �

�
� � � � 
 � � � � � � � � � � � � � � � � 	 � �

� �� � � � � � � � � � 
 � � � � � � � � � � � 	 � �
� �� � � � � 
 � � � � 
 � � � � 
 � � � � � � 	 � �

(7)

As above, this defines a partition of signal power. The first quantity �  is zero iff target
and jammer are perfectly periodic (quantities� �

and� � are zero if target or jammer are
periodic, respectively). Under certain assumptions it canbe used to infer the power that is
“unaccounted” for, i.e. crosstalk. Again, this reasoning can be applied to each frequency.
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Power is defined here as a mean sum of squares. As such it is equivalent to mean
variance. The partition can be interpreted as measuring the uncertainty with which the target
is observed (in each frequency band, at each time frame). This may offer the opportunity
of interpreting observed data according to a statistical model. Similar operations can be
performed in the multisensor and hybrid cases.

8 Relation with auditory models

Barlow (1961, 2001) suggested that the role of sensory relays is to recode incoming patterns
in a way that minimizes the number of neural discharges (and thus metabolic cost) on aver-
age. Cancellation fits this description, as a “neural cancellation filter” minimizes its output,
and at the same time characterizes the regularity of the input pattern.

Durlach’s (1963) equalization-cancellation (EC) model proposed that patterns from one
ear are subtracted from those from the other (after delay andamplitude scaling) to suppress
correlates of a spatially localized jammer. Culling and Summerfield (1995, Culling et al.
1998) proposed a “modified EC” model in which such cancellation occurs independently
within peripheral filter bands (EC parameters differ from band to band, and are determined
from information within a band). See also Breebart et al. (2001) and Akeroyd and Sum-
merfield (2000).

A monaural “harmonic cancellation” model was proposed by deCheveigné (1993a). It
was found to account for behavioral data on concurrent vowelidentification, in particular
conditions where one vowel is much weaker than the other for which other explanations
fail (de Cheveigné 1997). A “cancellation model of pitch perception” was proposed by de
Cheveigné (1998). A model that explains pitch shifts of inharmonic partials (Hartmann and
Doty 1996) was proposed by de Cheveigné (1999a).

Given the functional power of cancellation (as argued in this paper) and the fact that
some of these models account for effects that no other model accounts for, it is likely that
the cancellation strategy is used within the auditory system.

Understanding auditory processes is a worthy goal of itself, as a source for insight into
effective processing techniques, and as a great opportunity for interaction of mutual benefit
between scientific and technological fields. There is great need for more data on natural
systems via behavioral, physiological, and imaging techniques.

9 Relation with other techniques

A Decomposition within the Time-Frequency plane

A common approach is to assumedecompositionof each sensor signal over a filterbank,
groupingtogether of filter bands that that belong to the target, and their segregationfrom
channels that belong to other sources. Channels are assigned according to a time-frequency
“map” that looks like a checkerboard.

This approach is common in Computational Auditory Scene Analysis (CASA) systems.
The idea comes from the ASA rules reviewed by Bregman (1990),themselves based on
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the principle of peripheral frequency analysis that originated with Helmholz (1877). Strict
Helmholtzian doctrine would have had it that the pattern across channels forms aspectrum
of slowly-varying values (excitation pattern). Recent thinking, both in auditory models and
in CASA systems, allows for each channel to carry atemporalstructure, that may be used
to decide how the channel is assigned. Early examples are thetwo-channel system of Lyon
(1983), that drew on Jeffress’s localization model to segregate channels according to source
bearing. Another is the single-channel system of Weintraub(1985) that drew on Licklider’s
pitch model to segregate channels according to source periodicity. More recent examples
are the CASA systems of Cooke (1991), Brown (1992) or Ellis (1996). Decomposition
into time-frequency “pixels” is also used in missing-feature techniques (Cooke et al. 1997;
Lippmann and Carlson 1997; Palomaki et al. 2001), statistical methods for time-frequency
pixel assignment (Roweis 2000, 2003), or multipleF � estimation (Wu et al. 2003).

There is considerable variety between systems based on time-frequency analysis. Fre-
quency analysis may be performed by a bank of “auditory” filters, by a standard short-term
Fourier transform, or by a more exotic time-frequency transform. The output is a slowly-
varying spectrum, or a set of rapidly-varying temporal wavefoms filtered from the input
waveform. At each instant a channel is assigned entirely to asource (“black and white”
map) or only partially (“gray-scale” map). Common to all is that channels are “atomic” in
the sense that they are not analyzed further.

The effectiveness of the time-frequency approach is limited by the Gábor relation:� � �
� � � � � � � � � � . As an example, the response of a 1 ERB wide gammatone filter

centered at 1 kHz is still only 20 dB down (1 % power) at 200 Hz away from the peak. The
impulse response is 20 dB down at 6 ms from the time of peak response. Spectral resolution
can be improved only at the expense of temporal resolution, and vice-versa, and so jammer
rejection cannot be perfect.

Cancellation is complementary with time-frequency analysis. In ideal conditions if of-
fers perfect jammer rejection , but these ideal conditions may prevail only within a limited
time-frequency region (or parameters might vary from region to region). Cancellation can-
not be subsumed by time-frequency analysis.

B Enhancement

Rather than jammer structure, it us commonly proposed to usetargetstructure (periodicity,
spatial position) to enhance a target relative to an unstructured background. The SNR im-
provement is generally limited. For delay and add beamforming it is 6 dB for two sensors,
and greater improvement requires more sensors. For harmonic enhancement it is 6 dB for a
simple comb-filter, and greater improvement requires filters with longer impulse responses
(de Cheveigné 1993a, Appendix A). Cancellation is distinctfrom (and complementary to)
enhancement.

C ICA

Independent component analysis and cancellation are related. The objective of ICA is to
produce outputs that are statistically independent. This can happen only if each output



A. de Cheveigné, "Cancellation principle", last revised: 1Dec 2003 9

depends on one source only. That goal is attained only if contributions of all other sources
are suppressed. Thus, the result is the same as that aimed at by cancellation, but the means
are different. The links between ICA and cancellation should be examined more deeply.
It may eventually turn out that ICA can subsume cancellation(i.e. find any solution that
cancellation can find).

It is interesting to note the similarity between Culling andSummerfield’s mEC model,
and recent frequency-domain ICA techniques (e.g. Anemueller 2001). Both are congruent
with the notion of “local” cancellation described in this paper.

10 Computational considerations

Estimation of structure parameters using cancellation is expensive, because (except in spe-
cial cases) the parameter space must be searched exhaustively. Joint estimationof several
parameters is particularly expensive. Techniques to reduce the cost are described in de
Cheveigné (2001).

11 Putting it all together

Here are a three example scenarii, some simpler than others,of how cancellation might fit
together with other techniques to solve a problem.

ASR system with single channel input. Cancellation is used for several purposes: (1)
for an isolated voice, to provideF � , F � -smoothed spectra, and a time-frequency “harmonic-
ity map” as features for ASR, (2) for two concurrent voices, to provide “glimpses” of both
voices, together with time-frequency reliability maps forboth. These are used by the ASR
stages to constrain models of one or more speakers. Spectraldistortion caused by cancella-
tion is compensated in the ASR stage by adjusting spectral models.

Active multimodal recording system. A room (conference room or concert hall) is
equipped with a distributed network of switchable microphones (or robot controlled mi-
crophones) and video cameras. Cancellation is used to analyze the acoustic structure of
signals provided by the microphones. The harmonic structure of sources (voices, instru-
ments) is used to facilitate the acoustic analysis. Its result feeds a spatial model that is also
informed by video (and any other relevant information). Thespatial model is used to switch
or move microphones, to optimize pickup and segregation of each source of interest, or to
produce a visual display of use to the sound engineer. Cancellation analysis reveals that
scene structure information is incomplete (for example intersensor correlation may be good
only at note onsets, for which the anechoic propagation approximation is good). Incomplete
information is interpolated usingmissing data techniquesto constrainmodels. For example,
a simple model of a source might say that it does not move. Models may also be used in the
next stage tointerpolateacross missing parts, in the event that the system was incapable of
recovering them. Models at all stages, including ASR, can bemerged and fit jointly (e.g.
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Nakamura and Herakleous 2002). On the basis of models, it maybe possible toresynthesize
high quality speech or music sounds (e.g. Kawahara, this workshop).

Multimedia indexing and search. A major problem in dealing with massive volumes
and fluxes of multimedia data, as they occur today, is indexing and search. The concept of
metadatahas been invented for that purpose. Arguably the most usefulkind of metadata
arecontent-based: they are cheap, reliable and ubiquitous (as compared to text and other
manually created metadata), and solve problems such as mapping out redundancies (e.g.
copies of same data) that are essential for efficient search.

Formixturesof audio sources, it would be desirable that the metadata reflect the sources
enough to support searching forindividual sourceswithin the metadata that label themix-
ture. It is not possible to split data into streams and label each stream. However it is possi-
ble to design content descriptors so as to maximize information about component sources.
Cancellation allows precisely such labeling. As an example, a single channel containing
several periodic sources can be processed so as to obtain (a)estimates of the periods, (b) a
periodicity-based decomposition of power and power spectra. It is not necessary that seg-
regation be perfect: enough to allow pruning of the search space is a sufficiently useful
goal.

The power spectrum decomposition is also a decomposition ofvariance, and thus it fits
well with statistical models that support hierarchical search (de Cheveigné 2002). It also
fits well with the scalable metadata concept that has been integrated into the audio part of
the MPEG-7 standard (de Cheveigné 1999b; ISO/IEC_JTC_1/SC_29 2001). The additive
nature of variance implies that “decomposed” and “standard” descriptions are compatible.
Together with the scalability of metadata structures (alsobased on variance), this ensures
both interoperability, and the potential to reduce storagecost of descriptions as needed.

12 Conclusion

Cancellation is an essential “ingredient” to solve the problem of speech separation. Other
essential ingredients are time-frequency analysis, models, and missing-data techniques. The
strength of cancellation is that it can provide, in ideal conditions, infinite jammer rejection.
Its weakness is that ideal conditions may occur only locally, in time and/or frequency. Hence
the need for models and missing-data techniques. This approach should benefit greatly from
signal processing techniques such as beamforming and ICA, and also from being cast into
a systematic probabilistic framework. There are argumentsto say that neural processing in
natural organisms is in part based cancellation. More knowledge is needed about the nature
of these mechanisms, their anatomy and physiology, and the behavior that they allow.
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