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Abstract

Cancellationis a process by which an interfering source (“jammer”) is oeet
from a mixture of sounds on the basis of its structure. Thipag of the task of
“scene analysis” that confronts natural organisms anfiGalidevices. Jammer can-
cellation is distinct from, and complementary to, targdtarmcement. Time-domain
cancellation filters are distinct from, and complementantime-frequency analysis.
The cancellation principle is probably used by the audisystem to analyze acoustic
scenes on the basis of the spatial or harmonic structuretefféning sources. It is
related to modern techniques such as ICA (Independent Coemp® Analysis).

|. Introduction

The acoustic environment is often cluttered. The ears ofrgarosm samplenixturesof
acoustical waveforms coming from multiple sources. Malgegse of the environment on
this basis is a process known as Auditory Scene Analysis, & fBregman 1990). If
the organism is interested in a particular source (“tajgéte others (“jammers”) interfere
with target perception. Perceptual models are generaligded to handle singleisolated
source, and extending them to work within a complex envirenits a challenge. The same
problems arise when designing an artificial device (suchsggeach recognizer) to work in
an acoustically cluttered environment.

Cues used by humans have been reviewed by Bregman (199@raBgspeaking, they
consist inregularitiesof either the target or the jammer. These include spatialtion (cor-
relation between ears or sensors), periodicity (cori@baticross time), onset (correlation
across frequency channels), etc. Artificial systems hage bailt that use similar regulari-
ties (Cooke and Ellis 2001). Traditionally, models and syst have tended to concentrate
on regularities of thearget This paper describes an approach that concentratesdrmtea
regularities ofammergo suppress them.

Compared to target enhancement, jammer cancellation lmadwantages. First, in
ideal situations, cancellation providieginite jammer rejection, and thus an infinite SNR
improvement. In contrast, target enhancement usuallyoffmited gain (for example 6
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dB for a two-microphone delay-and-add beamformer). Segangmer cancellation works
well in situations where SNR is unfavorable (for which segitéon is most needed). In that
case estimating jammer structure is easy, whereas estitatiget structure is hard.

Cancellation has two weaknesses. The first is that the janmmagr be imperfectly
structured or predictable, and thus incompletely suppesd his results in “crosstalk”.
If crosstalk is severe the target may not be observable nithitain temporal intervals,
and/or spectral bands. The second weakness is that cditceli@ay “damage” the tar-
get. Cancellation requires techniques to deal with inceteplarget observations, and to
compensate the deleterious effects of target distortibes& two weaknesses are distinct.

Jammer “structure” takes many forms. One or several jammmag be predictable,
or periodic, or there may be multiple sensors. These basictates may be extended
to include amplitude variation, frequency modulation, imgvsources, etc. Every bit of
exploitable jammer structure opens a window through whiehtarget can be “glimpsed”.

The focus here is mainly on artificial systems (typicallyaamatic speech recognition,
ASR), but understanding how the auditory system handletasieis also a goal, in itself
and as a source of ideas for better algorithms. Converdglgrithms serve as models to
guide our investigation of natural processes.

1 Task and context

The task is to recognize or recover atarget source withinsymmvironment. For simplicity
and specifity, suppose two sourcegthe “target”) andJ (the “jammer”) that are observed
indirectly from signalsX andY provided by one or two microphones. This structure can be
generalized as needed to more sources and/or sensorseSauattobservations are related
via a convolutivemixing matrix. Each matrix element is a transfer function ifopulse
response) that represent the effects of propagation dathgiapersion from a source to a
transducer (Fig. 1).

T

mix

Fig. 1 Observed signalX (and possiblyy’) are related to targef” and jammer/ via a
mixing matrix. The goal is to derive information about thegeet 7"

Two subtasks are of interest. The first is to derive usefarmftion about thetructure
of the scene and/or the sources: intersensor correlatbamces periodicity Fqs), etc. The
second is to recover a “clean” version of the target. Stmeotstimation is usually a prereg-
uisite of target recovery. It is usually possible to derirai X or (X,Y) an approximation
T’ of the target, that depends on both target and jammer:

T' = f(T) + ¢(J) 1)
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Ideally we’d like () to be identity (no distortion) anel) to be zero (no crosstalk). Of the
two ideals, the latter is more useful. Target distortionyjgically predictable and can be
compensated, whereas crosstalk is usually unpredictatleannot.

Typical application contexts are ASR, conference systheaing aids, musical appli-
cations (recording, score following), multimedia indexjetc.

2 Assumptionson source and scene structure

Cancellation works in the time domain. At each instarein estimate of the jammer wave-
form is subtractedfrom the compound waveform. Three cases are of interestiffat
according to whether the jammer estimate comes from (1) plegemwaveform, (2) previ-
ous values of the waveform itself, or (3) another sensor.

The first case (waveform template) is ideal but rare. Examplight be a stationary
jammer or the stereotyped waveform of an instrument notbeeknown beforehand or
estimated from the context. It is ideal because subtrate@mres the target undistorted.

The second case is that gbariodiciammer.J; = J;_p, whereP is the period. Suppose
we observeX; = T; + J; (simple mixture). By subtracting’;_ p, the contribution of/ is
suppressed:

Ttl = X — X¢—p. 2)

Theresultly =T, — T,_p is a spectrally distorted version @f but importantly it does not
depend o/ (jammer rejection is infinite).

The third case is that of multiple sensors in an anechoiaenkient. Things are a bit
simpler if X andY are rescaled in time and amplitude so that the contributiohto each
is the same. This contribution is then suppressed by forming

Tl = X; - Y, 3)

Supposing that, after rescaliny, anda are the excess delay and attenuatioff’ofithin
sensor signal” with respect taX, the resultly = T, — o'l p is a distorted version of'.
It does not depend o (jammer rejection is infinite).

These basic cases can be extended. For examagable amplitudgeriodic jammer
(/; = aJ;_p) can be handled by using the formtla= X; —aX;_p. A variable frequency
jammer can be handled by time warping (the target estimateistime warped), a moving
source with a combination of time warping and gain adjustinetec. Operations may be
performed on bands of a filterbank.

The basic cases can also be combined (e.g. multiple persadirces picked up by
multiple sensors, etc.). The important feature is that j@mrejection ignfinite each time
the jammer fits the structure model. In practice this is {ikiel not always be the case.
Cancellation fails in two cases: (a) the jammer does not fitsaructure model, and (b) it
does, but the target fits the same model. The rest of this pligmrsses how to handle those
cases. Before that we discuesstimatiorof the source and scene structure.



A. de Cheveigné, "Cancellation principle", last revisedeic 2003 4

3 Estimating source and scene structure

Jammer template. A simple example is a deterministic stationary jammer suchuam
(power frequency harmonics picked up by low-level audicwits). Granted the mild as-
sumption that the target has intervals of low amplitude,jimemer template can be ob-
tained from a fit to the waveform in those intervals. Granteal further assumption that
the jammer is indeed stationary, the template is interpdland subtracted from the entire
waveform (for hum this gives excellent results). More compxamples are possible but
not discussed here.

Periodicity. Cancellation itself allows estimation. The idea is to desigcancellation
filter and search its parameter space foriasimum residual outpufor example, to estimate
the period of an isolated source the filter defined by Eq. 2jidieghand its parametdP is
varied until a minimum is found. This principle is appliedtivsuccess in the YIN method
of Fy estimation (de Cheveigné and Kawahara 2002). The samédgléman be extended
to multiple sources (de Cheveigné and Kawahara 1999; dee@tireévand Baskind 2003).

Intersensor delay/attenuation. Again, cancellation allows estimation. The idea is to de-
sign a spatial cancellation filter (null beamformer) andce#ts parameter space for a min-
imum residual. For example to estimate delay and attenuafia single source, supposing
nondispersive propagation, the filter definedy— aY;_ is applied to sensor signals and
its parameters andr varied until a minimum is found.

The principle can be extended tdispersive propagatiorand more than two
sources/sensolisy splitting the signals over a filterbank and working witmarrowband
channels. More on this later. From intersensor parametegscan infer source positions
(within surfaces of confusion), but this is not of direct digecancellation unless we wish
to use spatial constraints, for example in a multimodalesyst

Joint estimation Periods, intersensor parameters, and templates can betsdjointly.

In this case, estimation of each aspect of the structureledady other aspects. For exam-
ple Fq estimation may be aided by spatial structure, and viceavelsint estimation uses
exhaustive search (with interpolation) of the joint partanepace, and thus is expensive.
Computational issues are discussed later on.

4 Recoveringthetarget

Supposing the scene fits the structure model, and paranma®isnown, a time-domain
waveform?” can be obtained according to equations analogous to EqsThj8waveform
(together with structure parameters) are then feeded tdtarpanatching or resynthesis
stage. Instead of a time-domain waveform, is also posldetive spectral representations
(see below).
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As pointed out in Sect. 2, the strength of cancellation isgmejammer rejection in
ideal conditions. Its weakness is that conditions may betlesn ideal, or ideal only within
certain time or frequency intervals.

5 Local cancellation & missing data

A likely event is that cancellation is possible for a regeictemporal interval For ex-
ample, if the jammer is voiced speech, harmonic canceflatan be applied only during
steady-state voiced segments. During those segmentsrget tmay be “glimpsed”. Can-
cellation might also be possible within a restricsggectral interval For example, unstruc-
tured noise may prevent cancellation within some bands. tailyet is “glimpsed” within
those that remain. One may likewise apply cancellationiwighrestrictedspectrotempo-
ral region. However, restrictions in frequency imply smearing in tjiraed vice-versa, and
these limitations must be taken into account (tradeoff ketwspectrotemporal resolution
and maximum allowable jammer rejection).

If cancellation is effective only locally, parts of the tatgwill be missing The parts
that remain nevertheless may be sufficient for a task sucltsrp-matching (e.g. ASR).
Missing data techniqudsave been developped to address this situation (Cooke E3@i.,
Lippmann 1997; Morris et al. 1998). Missing features arbegiignored or better (if pos-
sible) constrainedby bounds derived from the target + jammer mixture. Thedertigeies
assume a “mask” to tell them which intervals are missing.hln¢ontext of cancellation,
the mask is a by-product of the cancellation process.

A second problem is that the target “glimpses” are usualfcsplly distorted by the
cancellation filters. An option is to compensate by inverkerfing, but a more general
solution is to apply similar distortion to themplatesn the pattern-matching stage. In-
formation needed for that is available from the canceltatitage. Template adjustment is
not yet common among missing feature techniques (see dec(ginév1993b for an early
attempt).

6 Modes

Pattern-matching is a special casenaidel fitting Once a model is fitted (possibly on the
basis of incomplete data) it allovilsterpolation The models embedded in an ASR system
(states, covariance matrices, dictionaries, etc.) carsbd i this way. Other useful models
are articulatory, multimodal, linguistic, etc. Seemintylyial redundancyelations between
features can allow accurate interpolation when one feaguressing and the other not.

7 Power and variance partition

This section suggests how to obtain a reliability mask, andemThe idea is to partition the
powerwithin a mixture into parts that reflect various sources.sTgartition is also useful
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as a partition of thpower spectrunithanks to Parseval’s relation), andwafriance(sum of
squares).

As an example, consider a quasiperiodic jampheit is possible to express it as the
sum of two signalg/’ and.J"":

J = (Jy = Ji_p)/2, J! = (Ji+ Ji_p)/2 (4)

If .J is purely periodic with period®, then.J’ = 0 and.J” = .J. .J' is non-zero only ifJ is
not perfectly periodic, and in that sense we can £athe “aperiodic” part of/, and.J” the
“periodic” part.

What makes this partition useful is that it is also a pamitdd power. Defining power
of a signal X (measured over a window starting)ads:

t+W
X2 = (1/w) Y X7 (5)

j=t+1

it is easy to verify that:
U1l + 1 Te=p 1) /2 = 1P + 117117 (6)

The term on the left is an estimate of the power of the jammalc(tated over two win-
dows and then averaged), and the right hand terms are pofvapenodic and periodic
parts respectively. Parseval’s relation implies a sinplartition of power spectra This is
extremely useful. In the spectral domain, the power spattauweighted by two comple-
mentary functionsi — cos(27 fP)/2 and1 + cos(2x f P) /2 respectively.

J' representsrosstalk If 77 is the cancellation-filtered target, the output of the cance
lation stage i9”+.J’. The quality of the recovered target depends on the relatights of
[|T’]| and||.J’||. Obviously these cannot be observed, but there are severatiens where
they can be inferred:

(1) Jammer properties may be known well enough to put an upmend on the ratio
[[7']1/]1/]|- Using the power of the observed signgX|| as a statistically conservative
bound on ||J]|, we get an upper bound on crosstalk gowér Thanks to Parseval’s relation,
this reasoning may be applied to edaduency

(2) The target too may be periodic. A full analysis is comgtiéd and will be outlined
only briefly. CallingP and@ the periods of jammer and target, the observable sighal
can be expressed as the sum of four parts:

X! =(Xy = Xi—p — Xy—g + Xi—g-p) /4

Xf =(X¢+ Xiop— Xy—g — Xi—g-p)/4

X? = (X; = Xemp+ Xieg — Xi—q-p)/4

X} = (Xi+ Xe—p + Xe—g + Xi—g-p)/4 7
As above, this defines a partition of signal power. The firstirdity X ' is zero iff target
and jammer are perfectly periodic (quantiti&$ and X5 are zero if target or jammer are

periodic, respectively). Under certain assumptions itlsamsed to infer the power that is
“unaccounted” for, i.e. crosstalk. Again, this reasoniag be applied to each frequency.
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Power is defined here as a mean sum of squares. As such it iaabkguito mean
variance The partition can be interpreted as measuring the unogytaith which the target
is observed (in each frequency band, at each time frame)} mhy offer the opportunity
of interpreting observed data according to a statisticadeho Similar operations can be
performed in the multisensor and hybrid cases.

8 Relation with auditory models

Barlow (1961, 2001) suggested that the role of sensoryseétay recode incoming patterns
in a way that minimizes the number of neural discharges (ansl inetabolic cost) on aver-
age. Cancellation fits this description, as a “neural cdaibeh filter” minimizes its output,
and at the same time characterizes the regularity of thd attern.

Durlach’s (1963) equalization-cancellation (EC) mod@pmsed that patterns from one
ear are subtracted from those from the other (after delayparitude scaling) to suppress
correlates of a spatially localized jammer. Culling and $erfield (1995, Culling et al.
1998) proposed a “modified EC” model in which such cance@taticcurs independently
within peripheral filter bands (EC parameters differ fronrmév&o band, and are determined
from information within a band). See also Breebart et al.0@0and Akeroyd and Sum-
merfield (2000).

A monaural “harmonic cancellation” model was proposed b teveigné (1993a). It
was found to account for behavioral data on concurrent vadesitification, in particular
conditions where one vowel is much weaker than the other fuchvother explanations
fail (de Cheveigné 1997). A “cancellation model of pitchqaption” was proposed by de
Cheveigné (1998). A model that explains pitch shifts of imnianic partials (Hartmann and
Doty 1996) was proposed by de Cheveigné (1999a).

Given the functional power of cancellation (as argued is gaper) and the fact that
some of these models account for effects that no other madebats for, it is likely that
the cancellation strategy is used within the auditory syiste

Understanding auditory processes is a worthy goal of jtasl& source for insight into
effective processing techniques, and as a great oppoyfioniinteraction of mutual benefit
between scientific and technological fields. There is greatrfor more data on natural
systems via behavioral, physiological, and imaging teghes.

9 Relation with other techniques

A Decomposition within the Time-Frequency plane

A common approach is to assurdecompositiorf each sensor signal over a filterbank,
groupingtogether of filter bands that that belong to the target, ard Hegregatiorfrom
channels that belong to other sources. Channels are adsigoerding to a time-frequency
“map” that looks like a checkerboard.

This approach is common in Computational Auditory Scenelygiga(CASA) systems.
The idea comes from the ASA rules reviewed by Bregman (19®@mselves based on
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the principle of peripheral frequency analysis that orgéd with Helmholz (1877). Strict
Helmholtzian doctrine would have had it that the patterrossichannels formsspectrum
of slowly-varying values (excitation pattern). Recenhiting, both in auditory models and
in CASA systems, allows for each channel to cartgmporalstructure, that may be used
to decide how the channel is assigned. Early examples ate/thiehannel system of Lyon
(1983), that drew on Jeffress’s localization model to sgaie channels according to source
bearing. Another is the single-channel system of Weint(a985) that drew on Licklider’s
pitch model to segregate channels according to sourcedieitip More recent examples
are the CASA systems of Cooke (1991), Brown (1992) or EIIBO@). Decomposition
into time-frequency “pixels” is also used in missing-feattechniques (Cooke et al. 1997,
Lippmann and Carlson 1997; Palomaki et al. 2001), stasistieethods for time-frequency
pixel assignment (Roweis 2000, 2003), or multiplgestimation (Wu et al. 2003).

There is considerable variety between systems based offriéangency analysis. Fre-
guency analysis may be performed by a bank of “auditoryrBltey a standard short-term
Fourier transform, or by a more exotic time-frequency tfarm. The output is a slowly-
varying spectrum, or a set of rapidly-varying temporal Wawes filtered from the input
waveform. At each instant a channel is assigned entirelygowsce (“black and white”
map) or only partially (“gray-scale” map). Common to all it channels are “atomic” in
the sense that they are not analyzed further.

The effectiveness of the time-frequency approach is lidnibg the Gabor relation:
AfAt < constant. As an example, the response of a 1 ERB wide gammatone filter
centered at 1 kHz is still only 20 dB down (1 % power) at 200 Hapfvom the peak. The
impulse response is 20 dB down at 6 ms from the time of pealorssp Spectral resolution
can be improved only at the expense of temporal resolutiwhyice-versa, and so jammer
rejection cannot be perfect.

Cancellation is complementary with time-frequency anialyln ideal conditions if of-
fers perfect jammer rejection , but these ideal conditioag prevail only within a limited
time-frequency region (or parameters might vary from regmregion). Cancellation can-
not be subsumed by time-frequency analysis.

B Enhancement

Rather than jammer structure, it us commonly proposed téargetstructure (periodicity,
spatial position) to enhance a target relative to an untstred background. The SNR im-
provement is generally limited. For delay and add beamfiognitiis 6 dB for two sensors,
and greater improvement requires more sensors. For hacranhancement it is 6 dB for a
simple comb-filter, and greater improvement requires §ilteith longer impulse responses
(de Cheveigné 1993a, Appendix A). Cancellation is distframn (and complementary to)
enhancement.

C ICA

Independent component analysis and cancellation areedeldthe objective of ICA is to
produce outputs that are statistically independent. Tars ltappen only if each output
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depends on one source only. That goal is attained only ifritaritons of all other sources
are suppressed. Thus, the result is the same as that aimgdadellation, but the means
are different. The links between ICA and cancellation stid¢ examined more deeply.
It may eventually turn out that ICA can subsume cancellafien find any solution that
cancellation can find).

It is interesting to note the similarity between Culling é&wammerfield’'s mEC model,
and recent frequency-domain ICA techniques (e.g. Anereu2001). Both are congruent
with the notion of “local” cancellation described in thisgma.

10 Computational considerations

Estimation of structure parameters using cancellatiorpgersive, because (except in spe-
cial cases) the parameter space must be searched exhigushbiet estimatiorof several
parameters is particularly expensive. Techniques to edie cost are described in de
Cheveigné (2001).

11 Putting it all together

Here are a three example scenarii, some simpler than otifdrey cancellation might fit
together with other techniques to solve a problem.

ASR system with single channel input. Cancellation is used for several purposes: (1)
for an isolated voice, to provide,, Fo-smoothed spectra, and a time-frequency “harmonic-
ity map” as features for ASR, (2) for two concurrent voicesptovide “glimpses” of both
voices, together with time-frequency reliability maps famth. These are used by the ASR
stages to constrain models of one or more speakers. Spaisti@ttion caused by cancella-
tion is compensated in the ASR stage by adjusting spectrdéiao

Active multimodal recording system. A room (conference room or concert hall) is
equipped with a distributed network of switchable micropé® (or robot controlled mi-
crophones) and video cameras. Cancellation is used to zn#hg acoustic structure of
signals provided by the microphones. The harmonic streadfiisources (voices, instru-
ments) is used to facilitate the acoustic analysis. Itsltéseds a spatial model that is also
informed by video (and any other relevant information). Epatial model is used to switch
or move microphones, to optimize pickup and segregatioracii source of interest, or to
produce a visual display of use to the sound engineer. Catioal analysis reveals that
scene structure information is incomplete (for examplersgnsor correlation may be good
only at note onsets, for which the anechoic propagationegdmation is good). Incomplete
information is interpolated usimpissing data techniqués constrairmodels For example,

a simple model of a source might say that it does not move. laday also be used in the
next stage ténterpolateacross missing parts, in the event that the system was ibkaph
recovering them. Models at all stages, including ASR, cambeged and fit jointly (e.g.
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Nakamura and Herakleous 2002). On the basis of models, ibmapssible toesynthesize
high quality speech or music sounds (e.g. Kawahara, thikstap).

Multimedia indexing and search. A major problem in dealing with massive volumes
and fluxes of multimedia data, as they occur today, is indgaimd search. The concept of
metadatahas been invented for that purpose. Arguably the most ukefdlof metadata
are content-basedthey are cheap, reliable and ubiquitous (as compared tatek other
manually created metadata), and solve problems such asimgagt redundancies (e.g.
copies of same data) that are essential for efficient search.

Formixturesof audio sources, it would be desirable that the metadattefie sources
enough to support searching fimdividual sourcesvithin the metadata that label timeix-
ture. It is not possible to split data into streams and label eaglas. However it is possi-
ble to design content descriptors so as to maximize infdonatbout component sources.
Cancellation allows precisely such labeling. As an examplsingle channel containing
several periodic sources can be processed so as to obtastifaptes of the periods, (b) a
periodicity-based decomposition of power and power spedtris not necessary that seg-
regation be perfect: enough to allow pruning of the sear@tejis a sufficiently useful
goal.

The power spectrum decomposition is also a decompositigaridince and thus it fits
well with statistical models that support hierarchicalrsbade Cheveigné 2002). It also
fits well with the scalable metadata concept that has beegrated into the audio part of
the MPEG-7 standard (de Cheveigné 1999b; ISO/IEC_JTC_128@2001). The additive
nature of variance implies that “decomposed” and “stariddedcriptions are compatible.
Together with the scalability of metadata structures (Bssed on variance), this ensures
both interoperability, and the potential to reduce stoxamst of descriptions as needed.

12 Conclusion

Cancellation is an essential “ingredient” to solve the peobof speech separation. Other
essential ingredients are time-frequency analysis, nspdel missing-data techniques. The
strength of cancellation is that it can provide, in idealditions, infinite jammer rejection.
Its weakness is that ideal conditions may occur only lo¢adlfme and/or frequency. Hence
the need for models and missing-data techniques. This appshould benefit greatly from
signal processing techniques such as beamforming and I@Ralso from being cast into
a systematic probabilistic framework. There are argumingsly that neural processing in
natural organisms is in part based cancellation. More kadgé is needed about the nature
of these mechanisms, their anatomy and physiology, andetheior that they allow.
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