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Abstract

Speech patterns develop over time.  Temporal phenomena extend from the very short to the
very long: timbre, pitch and segregation cues, segmental, prosodic and rhetoric patterns,
memory, learning, development and evolution. This paper focuses on the lower end of the
scale, where time-domain descriptions merge with spectral descriptions. Temporal cues are
used by the listener to organize the auditory scene, parse acoustic information, and assign the
relevant fragments to one speaker among several.  Cues include interaural delays (that vary
according to source position), periodicity (of voiced speech), and envelope modulations such
as onsets.  Temporal cues may determine pitch (intonation) and timbre (of vowels or
consonants), for which it is also common to find accounts based on spectral cues.  Frequency
and time are closely linked. With a frequency-selective cochlea the ear is equipped to analyze
spectral patterns, but from physiology we know that their temporal counterpart is also present
in the auditory nerve. Synchrony to the acoustic signal degrades as patterns proceed towards
the cortex, but accurate temporal information is available for processing at several levels and
there is abundant evidence for neural "circuitry" specialized for time. Models that explain
pitch on the basis of interval statistics between nerve firings are currently popular  (although
consensus is not complete), and similar models exist for vowel timbre identification.
Segregation of competing voices is explained by models that use time cues, either to label
frequency channels (created in the cochlea) as belonging to one voice or another, or to tease
apart information within each channel.  An important aspect of these models is that they
delay to within the central nervous system processing that is often thought to occur at the
periphery.  The cochlea is given the role of a bank of "prefilters" rather than that of a Fourier
transformer.  If this account is correct, frequency and temporal resolution are not entirely
determined by properties of the cochlea. The purpose of this paper is to review arguments in
favor of central processing of temporal patterns, to describe a number of models that perform
useful functions on this basis, and to give some insight into the nature of their mechanisms
and their constraints, in particular in terms of temporal resolution.

1. Introduction

Time is essential to speech.  It makes sense to sample a visual scene at a certain instant, but
not a sound scene: time must flow for sound to exist. Patterns relevant to speech extend over
a very wide range of time scales. Interaural time differences of about 10µs to 1ms are used to
spatially organize the sound scene and attend to a speaker.  Periodicities in the 400µs to 5ms
range are cues to vowel identity (Peterson and Barney, 1952), a range that overlaps with the
250µs to 30ms range of musical pitch that serves also for intonation (Pressnitzer et al., 2001).
Further along this scale we might find cues to segmental identity, prosodic structure,
rhetorical structure, memory and context effects, development and learning, diachronic
phenomena and evolution. Patterns are integrated over large units for the latter (lifetime of a
species, language or individual), and small units for the former (milliseconds to hundreds of



milliseconds). Integration times are commensurate with the duration of features, but the two
are logically distinct.

Features in the timbre or pitch range are often described in terms of frequency.  There
are three basic reasons for that, two good and one bad. The first (good) reason is that the
cochlea approximates a Fourier transform, different regions of the cochlea being responsive
to different regions of the spectrum of a sound. The second (good) reason is that the Fourier
transform decomposes signals into sums of sinusoidal waves, which have a special status
with respect to systems that are linear and time-invariant: a sinusoidal wave at the input
produces a sinusoidal wave at the output. Its amplitude and phase change, but the frequency
stays the same, and the shape is still sinusoidal. Thus, decomposing a sound into its various-
frequency components, feeding each through the linear system, and adding up the outputs, is
a convenient way of predicting how the sound is affected when it goes through the system.
Many systems that produce, transmit or process sound are linear and time-invariant.

The third (bad) reason stems from the well known theorem that says that a periodic
signal can be decomposed into a sum of components at integer multiples of a common
"fundamental" frequency. Misinterpretation has led to the concept that a sinusoidal
component at that frequency should be expected (the theorem says nothing of the sort), or
that periodicity in time is best characterized  by the shape of the spectrum (not the easiest
way of doing things). Much effort has been wasted on the "missing fundamental" problem,
fundamentally a missing problem. Setting aside this third unhappy reason, the first two fully
justify the use of frequency descriptions for pitch and timbre. With respect to the first we
should remember that cochlear analysis has limited selectivity (not the perfect Fourier
analyzer) and does not prevent temporal patterns from leaking through to the auditory
nervous system. With respect to the second, we must remember that systems involved in
speech production and perception are not in every respect linear and time-invariant.

1. Specialisations for time in the auditory system

The cochlea responds best to high frequencies at its base and low frequencies at its apex, and
this orderly distribution is projected centrally (du Vernay, 1683). It is often assumed that fast
temporal patterns of sound give way in the cochlea to slowly-varying spectral patterns that
are processed centrally, as reflected by the tonotopic distributions found at all levels from
cochlea to cortex.

However fast temporal patterns do not stop at the cochlea. Recordings from single
fibres of the auditory nerve of animals show a clear temporal structure in response to
laboratory, environmental or speech sounds (Kiang, 1960; Delgutte et al. 1984a,b).
Responses within each fibre consist of "spikes" that seem to occur at random, but with a
probability that accurately follows the temporal patterns of sound as modified by cochlear
filtering and haircell transduction. For tones this structure is measurable in the auditory nerve
up to about 5 kHz in mammals (9 kHz in the barn owl, K�ppl, 1997), which covers much of
the range important for speech features. The upper limit of synchrony to tones is
progressively lower as one proceeds within the nervous system (3 kHz in the cochlear
nucleus, 1.2 kHz in the inferior colliculus, 100 Hz in the cortex), but at all levels up to IC
(cochlear nucleus, olivary complex, nuclei of lateral lemniscus) clear temporal responses are
observed (Ehret and Romand, 1997).

There is also evidence for neural "hardware" specialized for the transmission of
temporal patterns (Oertel, 1999). Myelinated axons conduct impulses faster (and possibly
with less jitter) than non-myelinated axons. Axons of auditory nerve fibres, projections of
relay neurons of the cochlear nucleus ("bushy" and "octopus" cells), and inhibitory
projections of the medial nucleus of the trapezoidal body (MNTB) are myelinated.  Calyce-
type synapses ensure transmission of spikes from presynaptic to postsynaptic neuron with



high reliability and low jitter. Such synapses are found between auditory-nerve axons and
bushy cells in the cochlear nucleus, between projections of these bushy cells and MNTB
neurons, and between projections of octopus cells and neurons of the nuclei of the lateral
lemniscus (Joris, 1996; Schwartz, 1992), a pathway that seems to be particularly important in
man (Adams, 1997). Finally, there is evidence that characteristics of cell membranes and
neurotransmitter receptors are specialized to speed up neural transmission, reduce jitter, and
shorten recovery times (Sabatini and Regehr, 1999; Oertel, 1999). Given their cost in terms
of metabolism and evolutionary tradeoffs, such specialisations would probably not exist
without a functional role useful for survival.

2. Processing principles

We lack models to explain what is gained by this processing, and how. Many ideas have been
put forward, but before reviewing them it is worth asking what is meant by "temporal
pattern".

2.1 Temporal patterns

A tentative starting point might be to distinguish events, associated with instants, and
regularities or periodicities associated with intervals. Examples of the former are an
individual glottal pulse, the burst of a plosive, or the realization of a particular phoneme or
word. Examples of the latter are the regularities produced by voicing (fundamental
frequency), vocal-tract resonances (formants) or the interaural time delays that characterize
the spatial position of a speaker. This distinction is unfortunately not easy to maintain. The
definition of a particular event may specify regularity (for example the transition of a formant
resonance, or the onset of voicing), while the definition of a regularity may invoke events (for
example intervals between glottal pulses).

Events are patterns associated with instants, but the pattern itself develops over time.
An event thus has a support, the interval over which evidence for the event may be gathered.
This raises a number of questions. What is the relation between instant and support? Is the
instant itself important, and does it need to be evaluated when an event is recognized and
arranged with other events? If not, how might the temporal pattern formed by contemporary
events be characterized?  What if the supports of different events overlap? Our purpose here
is not to give answers to these questions, but to acknowledge that processing schemes must
somehow deal with them.

Regularities are associated with intervals, and this seems to bring us back to events, as
an interval has a beginning and an end. However there are at least two interpretations of
"interval" that don’t involve events. One is the ongoing interval or "lag" of the auto- or
crosscorrelation function. A pattern is delayed by increasing amounts and compared to itself
or to another pattern.  If the pattern is regular, the match is better for a certain delay that
characterizes the regularity, leading to a peak in the function. As it were, each point of the
pattern is given the status of event, intervals between it and every other similar event are
measured, and an overall "interval" is derived by averaging or voting among these
measurements. A second interpretation of "interval" is the reciprocal of frequency in the
Fourier transform. Sines and cosines are used as "yard-sticks" and compared to the pattern by
taking a cross-product. A spectrum is simply the degree of match between pattern and
yardsticks as a function of their frequency. Defining regularity in terms of events is
sometimes convenient, but not indispensable.

Since an event has a support, an event-spotting scheme must integrate information
over a time interval. Is the interval predefined (by some segmentation process), or should the
event-spotter be seen as operating continuously over a sliding window? How large the
window, and what should be its shape?  What if supports of neighbouring events overlap?



Whatever the answers, it is important to remember that an event-spotting scheme needs to
work over a time interval, even if the event is conceptualized as instantaneous. Likewise
regularities are spread over time. What is the smallest time window needed to characterize a
regularity?  If it is defined on the basis of events, it might seem that the smallest window that
can contain two events (or even two disjoint windows, one for each event) is sufficient. Thus
the period of a periodic pattern might measured over as little as one period of time. We must
however remember that each event itself requires a support. Furthermore, determining the
characteristic interval (e.g. period) also involves ruling out other intervals, shorter and longer,
which means exploring a wider window of time. Finally, the presence of noise (external or
internal) may require further temporal integration. The point made here is that the time
required to characterize a feature is often greater than the temporal dimensions characteristic
of the feature.

2.2  Processing schemes

This section offers an overview of processing ideas for temporal patterns within the auditory
system. The next section gives functional models that use some of them.

A first idea is that each cochlear filter output is followed by a "neural" bandpass filter
of same center frequency. This corresponds to the "average localized synchrony rate" (ALSR)
or "measure" (ALSM) of Young and Sachs (1979) and Delgutte (1984), the matched filters of
Goldstein and Srulovicz (1977), or the "lateral inhibitory network" (LIN) of Shamma (1985).
The peripheral filterbank would thus be shadowed by a central filterbank to produce
tonotopic patterns sharper than those measured in the auditory nerve. Such sharpened patterns
have not yet been found in the auditory system.
 A second idea is to suppose that each channel independently undergoes a Fourier
transform, with a frequency axis that does not map to the tonotopic axis projected from the
cochlea. This corresponds to the dominant component scheme of Delgutte (1984), and to the
recently popular idea of modulation spectrum (e.g. Dau, 1997; Meyer and Berthommier,
1996). A problem with this idea is that it reproduces centrally an operation that is already
available peripherally.

A third idea is to calculate correlation functions within each channel. Jeffress (1948)
proposed interaural crosscorrelation to estimate time-of arrival differences to localize sound
sources.  Licklider (1951, 1959) likewise proposed a pitch perception model based on the
running autocorrelation function:
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where s is the signal, w is an integration window with a limited extent towards the past, and
rt(ττττ) is the autocorrelation function of lag ττττ  calculated at time t. Licklider suggested that it
could be calculated using synaptic or conduction delays (lag), coincidence-counting neurons
(multiplication) and postsynaptic temporal summation (integration).
 A fourth idea is to replace the multiplication operation of cross- or autocorrelation by
subtraction (implemented by replacing excitatory by inhibitory neural interaction). This idea
was used in the equalization-cancellation (EC) model of Durlach (1963) to explain binaural
masking release, and the harmonic cancellation model of de Cheveign� (1993) to explain
segregation on the basis of harmonic structure. Cancellation is closely related to correlation.

Other ideas have been proposed, and still more are no doubt lurking in ingenious minds.
Patterson (1987) proposed a "pulse-ribbon" or "strobed temporal integration" model that is
equivalent to extracting events (e.g. one per period) from neural patterns, and cross-
correlating the event train with the pattern (rather than autocorrelating the latter). Cariani
(2001) describes recurrent networks within which patterns circulate and are correlated (or
convolved) with incoming patterns. More generally, Maass (1998) has shown that networks



of spiking neurons are at least as powerful as (and in some ways more than) formal neural
networks of sigmoidal neurons, time-of-arrival replacing average rate. In particular they can
implement filters with arbitrary transfer functions. While this idea has mostly  been explored
in modalities other than hearing, it certainly makes sense to try it out in this very temporal
modality. The next section describes a few models that utilize some of these ideas for specific
tasks.

3. Models that use time

3.1 The autocorrelation model of pitch

The idea that pitch might depend on the spacing between pulses within the auditory nerve
dates back to the "telephone" and "volley" theories of Rutherford (1886) and Wever and Bray
(1930). Licklider (1959) gave it a more specific formulation on the basis of the interval
statistics of neural discharges, similar to autocorrelation.

The autocorrelation model accounts for a wide range of pitch phenomena (Meddis and
Hewitt, 1991; Cariani and Delgutte, 1996), and it is currently quite popular. Its major
strength, with respect to the previous generation of pitch models that derived fundamental
periodicity from frequencies (or periods) of individual partials (e.g. Goldstein and Srulovicz,
1977), is that it does not require a pattern-matching stage. Fundamental periodicity is derived
from "resolved" and "unresolved" components according to the same basic mechanism.  This
feature is also a weakness, as it leads one to expect that pitches of stimuli with resolved and
unresolved components are equally salient, which is not the case (e.g. Carlyon and
Shackleton, 1994). This is currently a major issue in hearing. From an applied point of view,
autocorrelation has proved to be an effective basis for fundamental frequency estimation of
speech and music (de Cheveign� and Kawahara, 2002).

The amount of time used to calculate the running autocorrelation function (Eq. 1) is a
sum of two terms.  The first is the range of values of ττττ that is explored, the second the size of
the integration window w. A priori, both are determined by the range of expected periods
rather than the actual period, and both should be at least as large as the largest expected
period TMAX . This corresponds to the familiar rule of thumb: period estimation requires a
chunk of signal of at least 2TMAX . Actually it is possible to reduce this to T+TMAX , where T is
the period being measured (de Cheveign� and Kawahara, 2002). It is not  possible to go below
this. A pitch model that uses a shorter-than-TMAX  integration window is not complete, in that
it doesn’t explain how its fluctuating behaviour produces a stable percept of pitch.

Meddis and Hewitt (1991) used an exponential window of time constant 2.5 ms,
adequate for fundamental frequencies beyond 400 Hz, but Meddis and Hewitt (1992) later
proposed a longer window of 10 ms. Recent efforts to determine the appropriate size
experimentally were reviewed by Wiegrebe (2001). It turns out that the integration window
size is task dependent, and in particular may vary with F0. Data are consistent with an
integration duration of twice the period with a minimum duration of 2.5ms. The only problem
with this proposition is that period-dependent integration assumes prior knowledge of the
period, a circular process.

Integration can cover longer windows (Moore, 1973), and it can be "reset" by
transient events (Plack and White, 2000a), as has also been observed in the binaural system
(Hafter and Buel, 1990). It is as if the auditory system can, within limits, tailor available
evidence by applying the window that offers best performance (Dau et al., 1996; Moore, this
workshop). This idea is closely related to that of missing features in automatic speech
recognition (Cooke et al., 1997). As another way to improve resolution, it has been proposed
that higher-order peaks of the autocorrelation function (at 2T, 3T, etc.) might be used in
addition to the peak at T (Yost, 1999; Plack and White, 2000b; de Cheveign�, 2000a). This



also requires time. For a given stimulus duration there are various possible tradeoffs between
lag range and integration duration, so the two factors are confounded in experiments that
attempt to probe them.

To summarize, the autocorrelation model accounts well for a wide range of pitch
phenomena. Its major weakness is that it does not predict the differences observed for stimuli
with resolved v.s. unresolved components. The minimum integration time depends upon the
period, but integration windows may be longer depending on the task. Functionally, longer
windows favour accuracy while shorter windows allow fast modulations to be followed (or at
least recognized as pitch-like).

1.2 Timbre

The autocorrelation function has also been used to account for the perception of timbre.
Meddis and Hewitt (1992) used template matching of the low-lag portion of the
autocorrelation (below 2.5-4ms) in a model of vowel identification. The motivation for a
time-domain model is weaker than in the case of pitch, as peripheral selectivity is sufficiently
fine (if not too fine) to resolve formant patterns.

A possible functional advantage of an autocorrelation-based mechanism is that it
allows F0-adaptive truncation, equivalent to sampling the spectrum precisely at harmonics of
F0 (or calculating the Fourier transform over exactly one period) (Kawahara et al., 1999; de
Cheveign� and Kawahara, 1999). This goes some way to solving the old problem of F0-
dependency of estimates of spectral shape (Klatt, 1982). The autocorrelation function
(equivalent to the power spectrum) is over-sensitive to high-amplitude spectral features, one
reason why the cepstrum (Fourier transform of the log spectrum) is preferred for speech
processing. However calculating ACFs within independent channels after amplitude
normalization has the similar effect of producing a well-balanced representation.

To summarize, a model exists to explain how spectral shape (up to at most 5 kHz)
might be extracted on the basis of within-channel temporal patterns instead of (or in addition
to) across-channel spectral patterns.

1.3 Segregation based on harmonicity

Speech is often heard against a background of other speakers or noise. Among the cues and
mechanisms responsible for speech segregation (Darwin and Carlyon, 1995) harmonic
structure is useful when competing voices have different fundamental frequencies (Brokx
and Nooteboom, 1982). Among the many models proposed, those based on a spectral
representation don’t work well if given a resolution consistent with that of the cochlea
(Parsons, 1976; Assmann and Summerfield, 1990; de Cheveign�, 1993). This is a task for
which temporal processing seems necessary.
 Time-domain models work according to either of two principles. With channel
selection, the temporal pattern within each channel is used to assign it to one source or
another (Meddis and Hewitt, 1992). With channel splitting, channels are shared between
sources (de Cheveign�, 1993, 1997). Channel selection relies on peripheral filtering for an
initial analysis, channel splitting does not (although the initial filtering may make things
easier by improving signal-to-noise ratio). Channel selection fails if all channels are
dominated by interference, but experiments show that segregation still occurs in that
situation, so channel selection cannot provide a complete account. A likely proposition is that
both principles are at work. Temporal patterns were autocorrelated in Meddis and Hewitt’s
model, transformed to a modulation spectrum in that of Meyer and Berthommier (1996), or
filtered by a "neural cancellation" filter (followed by autocorrelation) in the model of de
Cheveign� (1993, 1997), and yet other schemes have been proposed (Assmann and
Summerfield, 1990; Brown et al. 1996; Cooke and Ellis, 2001).



Assmann and Summerfield (1994) found that pairs of concurrent vowels with
different F0s were harder to segregate if shortened from 200 to 50 ms. McKeown and
Patterson (1995) found that one vowel in each pair was usually dominant, and could be
identified from as little as one cycle (at a 100 or 200 Hz fundamental), while identification of
the second improved gradually with duration up to 8 cycles. This suggests a certain
"sluggishness" of the segregation mechanism. On the other hand,  Culling et al. (1994) found
little difference according to whether F0s were static or modulated at a rate of 5 Hz, implying
relatively fast tracking of harmonic structure.  The models of Meddis and Hewitt (1992) and
de Cheveign� (1993; 1997) both use the F0 of the dominant vowel to retrieve the weaker
vowel. Longer stimuli may help to estimate this F0 in the presence of the other vowel.

To summarize, harmonicity-based segregation appears to be based on temporal
processing. Segregation probably involves estimating the fundamental frequency of an
interfering voice to retrieve the target voice, a process that takes time.

1.4 Segregation based on binaural cues

As for harmonicity, binaural segregation models exist that use both principles of channel
selection and channel splitting. As an example of the first, Lyon (1983) calculated cross-
correlation functions individually within each channel, and grouped those that had a peak at
the internal delay that matched the external interaural delay of a source. An example of the
second is the equalization-cancellation (EC) model of Durlach (1963), that has recently been
revisited by Culling and Summerfield (1995) and Breebart et al. (2001). The EC model
adjusts (internally) the relative amplitude and delay of signals from both ears to make them as
similar as possible. The equalized signals are then subtracted, and the remainder is used as a
cue to the target.

The EC model accounts well for the two-ear advantage in detection experiments, for
which masking level differences (MLDs) can be as high as 15 dB. Unfortunately, situations
that produce high MLDs do not always produce high intelligibility level differences (ILDs)
for speech.  The benefit of spatial cues is not simply the result of instantaneous unmasking,
but appears also to involve organization of speech parts across time (Darwin and Hukin,
1999). This process is not yet well understood.

Binaural processes such as described by the EC model tend to be "sluggish" in
comparison to monaural processes (Kollmeier and Gilkey, 1990).  However the time
constants vary considerably between tasks, and also between individuals (Akeroyd and
Bernstein, 2001).

2. Discussion and Conclusion

A first purpose of this paper was to remind us that the spectral analysis of speech sounds,
often assumed to be complete at the cochlea, may continue within the nervous system on the
basis of temporal patterns carried by the auditory nerve. Spectrotemporal resolution is not
necessarily determined by that of the cochlea. Does this mean that spectrotemporal excitation
patterns (Moore, this workshop) are wrong and should be replaced? The answer is no for
several reasons. One is that those patterns have good predictive power for a wide range of
phenomena. It may be that temporal processing has properties that map well to a description
in terms of cochlear excitation patterns. Another is that time-domain models are less well
developed, less authoritative, and less convenient as descriptive tools. Synchrony-based
"auditory images" (e.g. Patterson et al. 1995) are rich representations, but partly for that
reason they are not as convenient as spectrotemporal patterns. A wise course may be to stick
with the latter as a descriptive tool, while remaining alert for phenomena that escape them.

A second purpose was to review a number of temporal models for pitch, timbre or
segregation. Some are in competition with models based on cochlear spectrum analysis,



others appear to provide the only explanation of the phenomena they address. The aim was to
give insight into the sort of functions that can be purveyed, and the palette of mechanisms
that might purvey them. A more authoritative account is way into the future.

A third purpose was to give some indication of time constants, on the basis of
functional and/or behavioural considerations. Time is required to measure the scale a pattern,
differentiate it from other (possibly longer) patterns, stabilize the estimates over time, and
counter the effects of internal or external noise. These requirements are hard to tease apart
experimentally. Functional constraints set lower limits, but the system appears to take
advantage of longer durations when available, and to adaptively tailor information to
maximize performance.

Time is an essential dimension of each speech pattern, but it is "overloaded" with
other important roles.  Time separates one pattern from the next. Time is irreversible, so a
pattern cannot be revisited without some form of memory. Time separates perception from
reaction, and causality constrains their order. All these aspects must be taken into account in
the design of models to process time.
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