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Abstract

This paper reviews evidence for central processing of temporal patterns, describes a number of models
that perform useful functions on the basis of temporal processing, and aims to offer insight into
mechanisms and constraints, in particular with respect to temporal resolution. The focus is on the region of
short duration where temporal descriptions overlap with spectral descriptions. Time-domain cues are used
by the listener to parse the auditory scene and assign the relevant fragments to one speaker among several.
The cues include interaural delays (that vary according to source position), periodicity (of voiced speech)
and envelope modulations such as onsets. Temporal cues may also determine attributes such as pitch
(intonation) and timbre (of vowels or consonants), that are often described in terms of spectral cues.
Spectrum and time are closely linked. With a frequency-selective cochlea, the ear is equipped to analyze
spectra, but from physiology we know that the temporal counterpart of spectral patterns is also present in
the auditory nerve. Temporal accuracy decreases as patterns proceed towards the cortex, but precise
patterns have been measured at several levels, and there is abundant evidence for neural ‘‘circuitry’’
specialized for time analysis. Several models implement useful functions on the basis of temporal
processing. Pitch may be explained on the basis of interval statistics between nerve firings (although
consensus on this explanation is not complete), and similar models exist for vowel timbre identification.
Segregation of competing voices may be explained by models that use time to either label frequency
channels (created in the cochlea) as belonging to one voice or another, or to tease apart information within
each channel. An important aspect of these models is that they defer to the central nervous system
operations that are often thought to occur at the periphery. If this account is correct, frequency and
temporal resolution are not entirely determined by properties of the cochlea.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Time is essential to speech. It makes sense to sample a visual scene at a certain instant, but not a
sound scene: time must flow for sound to exist. Patterns relevant to speech extend over a very wide
range of time scales. Interaural time differences of about 10 ms–1ms are used to spatially organize
the sound scene and attend to a speaker. Periodicities in the 400ms–5ms range are cues to vowel
identity (Peterson & Barney, 1952), a range that overlaps with the 250ms–30ms range of musical
pitch that serves also for intonation (Semal & Demany, 1990; Pressnitzer, Patterson, &
Krumbholz, 2001). Further along this scale we might find cues to segmental identity and prosodic
structure (Rosen, 1992), and yet further are memory and context effects, development and
learning, the evolution of the language, and the evolution of the species. Each of these phenomena
involves an accumulation (or integration) of events or patterns over time. Units of integration are
large at one end of the scale (lifetime of a species, language, or individual), and small at the other
(duration of a phrase, segment or glottal cycle). The time scale that characterizes a pattern (for
example the period of a periodic sound), and the time scale over which information about that
pattern is accumulated, need not be equal. They are, however, likely to be commensurate.
Features in the timbre or pitch range are often described in terms of spectrum. There are three

basic reasons for that, two good and one bad. The first (good) reason is that the cochlea
approximates a Fourier transform, different regions of the cochlea being responsive to different
spectral regions within a sound. The second (good) reason is that the Fourier transform
decomposes signals into sinusoidal waves, which have a special status with respect to systems that
are linear and time-invariant: a sinusoidal wave at the input produces a sinusoidal wave at the
output. Its amplitude and phase are changed, but the frequency stays the same, and the shape is
still sinusoidal. Thus, decomposing a sound into its various frequency components, feeding each
through the linear system, and adding up the outputs, is a convenient way of predicting how any
sound is affected when it goes through the system. Many systems that produce, transmit or
process sound are linear and time-invariant.
The third (bad) reason stems from a misinterpretation of the well-known theorem that says that

a periodic signal of period T0 can be decomposed into a sum of components with frequencies at
integer multiples of a common ‘‘fundamental’’ frequency F0 ¼ 1=T0: The theorem does not say
that a sinusoidal component of frequency F0 should be expected. The assumption that pitch is
determined by this fundamental component has led to much effort being invested in the ‘‘missing
fundamental’’ problem, which in my view is fundamentally a missing problem. The property
relevant for pitch is periodicity, which is easy to characterize if the theorem is not used. There is
nothing in Fourier’s theorem to imply that periodicity is best characterized by the shape of the
spectrum. It can be done (Fourier transform of a long enough chunk of waveform, followed by
matching of the spectrum to some model of a harmonic spectrum), but it is not the easiest way of
doing things.
Setting aside this third reason, the first two fully justify the use of frequency descriptions for

pitch and timbre. With respect to the first we should remember that the cochlea is not a perfect
Fourier analyzer. With respect to the second, we must remember that systems involved in speech
production and perception are not in every respect linear and time-invariant.
If the cochlea performed a perfect short-term Fourier analysis, the patterns sent to the brain

would be slowly varying spectra, and temporal patterns (on the time scale relevant for pitch or
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timbre) would stop at the cochlea. Actually the cochlea is more like a bank of filters with
unsmoothed outputs, and thus it does not prevent temporal patterns from leaking through to the
brain. The next section reviews evidence for temporal patterns within the nervous system, not only
within the auditory nerve just after the cochlea, but also at multiple relays within the brainstem,
where there is evidence for neural circuitry specialized for the transmission and processing of
temporally accurate patterns.

2. Specializations for time in the auditory system

The cochlea responds best to high frequencies at its base and low frequencies at its apex, and
this orderly distribution is projected centrally (du Verney, 1683). Tonotopic distributions of
neural activity are found at all levels from cochlea to cortex, and theories of auditory processing
are often based on such slowly varying spectral representations.
However, recordings from single fibers of the auditory nerve of animals show a clear temporal

structure in response to laboratory, environmental, or speech sounds (Kiang, 1965; Delgutte &
Kiang, 1984a, b). Responses within each fiber consist of ‘‘spikes’’ that seem to occur at random,
but with a probability that accurately follows the temporal patterns of sound as modified by
cochlear filtering and hair cell transduction. The highest frequency at which temporal structure is
measurable is about 3–5 kHz in the cat. It is lower in the guinea pig (Russel & Palmer, 1986),
higher in the Barn Owl (9 kHz, K .oppl, 1997), and unknown in humans. It has been argued that
temporal structure can remain useful at frequencies beyond the cutoff, for example up to 10 kHz
assuming data from the cat (Heinz, Colburn, & Carney, 2001).
In addition to the auditory nerve, accurate temporal responses are found at levels up to the

inferior colliculus: cochlear nucleus, olivary complex, and nuclei of the lateral lemniscus. The
upper limit of synchrony to sustained tones or amplitude modulation gets progressively lower as
one proceeds. It is typically 3 kHz in the cochlear nucleus, 1.2 kHz in the inferior colliculus and
100Hz in the cortex (Ehret & Romand, 1997). These figures do not necessarily imply an inverse
trend of temporal resolution. For example, latencies of cortical responses to irregularities in the
stimulus show a scatter as little as 1ms (Hiel & Irvine, 1997). It is likely that the drop in synchrony
is the result of a limited capacity to entrain to repetitive stimuli, rather than poor temporal
accuracy.
There is evidence for neural ‘‘hardware’’ (or ‘‘wetware’’) specialized for the transmission of

temporal patterns (Oertel, 1999). Myelinated axons conduct impulses faster, and possibly with less
jitter, than nonmyelinated axons. Axons of auditory nerve fibers, projections of relay neurones of
the cochlear nucleus (‘‘bushy’’ and ‘‘octopus’’ cells), and inhibitory projections of the medial
nucleus of the trapezoidal body (MNTB) are myelinated. Calyce-type synapses ensure
transmission of spikes from the presynaptic to the postsynaptic neurone with high reliability
and low jitter. Such synapses are found between auditory-nerve axons and bushy cells in the
cochlear nucleus, between projections of these bushy cells and MNTB neurones, and between
projections of octopus cells and neurones of the nuclei of the lateral lemniscus (Schwartz, 1992;
Joris, 1996). This last pathway seems to be particularly important in man (Adams, 1997). Finally,
there is evidence that cell membranes and neurotransmitter receptors are specialized to speed up
neural transmission, reduce jitter, and shorten recovery times (Sabatini & Regehr, 1999; Oertel,
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1999). Given their cost in terms of metabolism and evolutionary tradeoffs, these specializations
would probably not exist without a functional role useful for survival.

3. Processing principles

Given the evidence for temporal patterns in the auditory nervous system, we need detailed
models to explain how they are processed, and what is gained by such processing. Many ideas
have been put forward, but before reviewing them it is worth saying a few words about the
patterns themselves.

3.1. Temporal patterns

Temporal patterns can take various forms. The regular repetition of the same event (for
example glottal closure) constitutes a periodic pattern indicative of voicing, while a succession of
events of different nature (for example voice onset and burst of a plosive) may signal the
occurrence of a particular phoneme. In both cases, the arrangement of events in time constitutes
the pattern. We must thus assume that each event is located in time, so that one can speak of
temporal regularity or temporal order. However an event itself has a temporal extent, or support,
over which the pattern characteristic of the event develops. This can be understood as the segment
of time over which an event-recognizing mechanism would gather information to detect the event
(and distinguish it from other events). Voice onset occurs at an instant, but, to detect this instant,
one must take into account the silence that precedes it and the regular pattern of vibration that
follows it. A wider context may be relevant, for example to allow normalization by speech rate or
ambient noise, and in this sense the support of an event is potentially quite large.
The regular repetition of an event constitutes a periodic pattern. Thus, one might wish to

characterize periodicity in terms of events (such as zero-crossings, or peaks, or glottal pulses).
However, there are at least two alternatives. One is to use a measure of ‘‘self-similarity’’ such as
the autocorrelation function (ACF). The ACF works by comparing the waveform to itself for
various delays, or ‘‘lags’’. For a periodic waveform, similarity is greatest for a lag equal to the
period, and this leads to a peak in the ACF that may be used as a cue to periodicity (Section 3.2).
A second alternative is to use a set of regular patterns as ‘‘yardsticks’’. Sines and cosines can be
used for that purpose: each is compared to the waveform by taking their vector product (i.e.
multiplying term by term and adding), an operation known as the Fourier transform. Neither of
these alternatives involves events.
What is the minimum duration needed to detect that a pattern is periodic with period T?

Obviously it cannot be less than T ; but is T enough? If periodicity is defined in terms of events,
one needs at least two events, and to recognize that they are indeed repetitions of the same event,
the pattern must include their supports. If periodicity is defined using autocorrelation, then one
needs to include, in addition to a lag of at least T ; the integration time of the ACF (see Eq. (1) in
Section 3.2). If periodicity is defined in terms of the Fourier transform, one needs an interval large
enough so that the spectral resolution of the transform tells us whether the spectrum is harmonic
or not. In each case, the minimum segment is greater than T (a more precise estimate is given in
Section 4.1).
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The point made here is that the interval of time required to characterize a feature of the speech
waveform is at least as large as the temporal dimensions of the feature, and often larger. Intervals
of neighboring events may overlap. In some ways the situation is analogous to that encountered
with more abstract ‘‘events’’ such as phonemes or words, that also involve integration over wide
and overlapping segments of time (Plomp, 2002).

3.2. Processing schemes

This section offers an overview of central processing schemes. Each tries to do something useful
with the temporal patterns carried by the auditory nerve. Roughly speaking, the pattern carried
by each auditory nerve fiber reflects the temporal structure of the speech waveform as modified by
the following steps: (a) narrow-band filtering (b), half-wave rectification, (c) mild low-pass
filtering representing loss of synchrony at high frequencies, and (d) production of nerve spikes
with a probability that follows the speech waveform as modified by the previous steps. Step (b)
also includes a form of amplitude normalization (automatic gain control) that reduces the
dynamic range of internal patterns relative to that of the stimulus.
A first idea is that each cochlear filter output is followed by a ‘‘neural’’ band-pass filter of the

same center frequency, on the assumption that cochlear selectivity is insufficient and that neural
sharpening would do some good. This corresponds to the ‘‘average localized synchrony rate’’
(ALSR) of Young and Sachs (1979), or ‘‘average localized synchrony measure’’ (ALSM) of
Delgutte (1984), the matched filters of Srulovicz and Goldstein (1983), or the ‘‘lateral inhibitory
network’’ (LIN) of Shamma (1985). The peripheral filterbank would thus be shadowed by a
central filterbank, to produce tonotopic patterns sharper than those measured in the auditory
nerve. Such sharpened patterns have not yet been found in the auditory system.
A second idea is that the output of each channel independently undergoes a Fourier transform,

with a frequency axis distinct from the tonotopic axis projected from the cochlea. This corresponds
to the dominant component scheme of Delgutte (1984), and to the recently popular idea of
modulation spectrum (e.g. Meyer & Berthommier, 1996; Dau, P.uschel, & Kohlrausch, 1996; Dau,
Kollmeier, & Kohlrausch, 1997). Instead of a sharpened tonotopic pattern, these schemes produce a
two-dimensional pattern defined over characteristic frequency (CF) and best modulation frequency
(BMF). One might ask what is the functional advantage of a central spectral analyzer, given that a
spectral analyzer already exists in the cochlea. Note, however, that they do not apply to the same
patterns: cochlear analysis applies to the waveform, whereas central Fourier analysis would apply to
the (roughly speaking) half-wave rectified band-pass filtered speech waveform.
A third idea is to calculate correlation functions within each channel. Licklider (1951, 1959)

proposed a pitch perception model based on the running ACF. The ACF is obtained by
multiplying together samples of the waveform that differ by a certain delay t; and summing the
products over a window:

rtðtÞ ¼
Z tþW

t

sðyÞsðy� tÞ dy; ð1Þ

where t is the instant at which the calculation is performed, s is the waveform, W is the size of the
integration window, and y is an integration variable. The purpose of the window is to limit the
amount of waveform that is processed. The result rtðtÞ is the ACF at lag t; calculated at time t: Its
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value is large if sðyÞ and sðy� tÞ are similar, which is the case for a periodic waveform if t equals
the period. Thus, a peak in rtðtÞ is a cue to the period. Licklider suggested that a similar operation
could be applied to neural patterns within the auditory system, using synaptic or conduction
delays to implement lag, coincidence-counting neurones to implement multiplication, and
postsynaptic temporal summation to implement integration. Jeffress (1948) had earlier proposed
interaural crosscorrelation to estimate time-of-arrival differences, for sound source localization.
To calculate the crosscorrelation function, one simply modifies Eq. (1) so that it multiplies
waveforms sR and sL from the two ears:

ctðtÞ ¼
Z tþW

t

sRðyÞsLðy� tÞ dy: ð2Þ

The crosscorrelation function shows a peak at an internal interaural delay t that compensates
for the external interaural delay characteristic of the azimuth of the source. This allows the
source to be localized.
A fourth idea is to replace the multiplication operation involved in autocorrelation (Eq. (1)) or

crosscorrelation (Eq. (2)), by subtraction. A physiological implementation can be obtained by
replacing excitatory by inhibitory neural interaction. This idea was used in the binaural
equalization-cancellation (EC) model of Durlach (1963) (Durlach & Colburn, 1978) to explain
binaural masking release, and in the monaural harmonic cancellation model of de Cheveign!e
(1993) to explain segregation on the basis of harmonic structure. Cancellation and autocorrelation
are closely related (de Cheveign!e, 1998).
Other ideas have been proposed, and more are no doubt lurking in ingenious minds. Patterson,

Allerhand, and Guigu"ere (1995) proposed a ‘‘strobed temporal integration’’ model that is
equivalent to extracting events (e.g. one per period) from neural patterns, and cross-correlating
the event train with the ongoing pattern (rather than applying autocorrelation to the latter).
Cariani (2001) describes recurrent networks within which patterns circulate and are correlated (or
convolved) with incoming patterns. Interestingly, temporal codes and processing mechanisms
have been proposed for other modalities such as vision (Thorpe, Fize, & Marlot, 1996). Maass
(1998) has shown mathematically that neural networks that use time of arrival of spikes are more
powerful than those that use average spike rate, ‘‘power’’ being measured by the number of
elements required to implement a function. Among other interesting possibilities offered by
‘‘spiking neural networks’’ are filters with arbitrary transfer functions. These may be implemented
by adding up appropriately delayed excitatory and inhibitory postsynaptic potentials (EPSPs and
IPSPs). While these ideas have mostly been explored in modalities other than hearing, they
certainly make sense within this very temporal modality. The next section describes some models
that utilize these ideas for specific tasks.

4. Models that use time

4.1. The autocorrelation model of pitch

The idea that pitch might depend on the spacing between pulses within the auditory nerve dates
back to the ‘‘telephone’’ and ‘‘volley’’ theories of Rutherford (1886) and Wever and Bray (1930).
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Licklider (1959) gave it a more specific formulation on the basis of the interval statistics of neural
discharges, similar to the ACF (Section 3.2).
The autocorrelation model accounts for a wide range of pitch phenomena (Meddis & Hewitt, 1991;

Cariani & Delgutte, 1996), and it is currently quite popular. Its major strength, with respect to the
previous generation of pitch models that derived fundamental periodicity from frequencies (or
periods) of individual partials (e.g. Goldstein, 1973), is that it does not require a separate pattern-
matching stage. Fundamental periodicity is derived from ‘‘resolved’’ and ‘‘unresolved’’ components
according to the same basic mechanism. This feature is also a weakness, as it leads one to expect that
pitches of stimuli with resolved and unresolved components are equally salient, which is not the case
(e.g. Carlyon & Shackleton, 1994). This is currently a major issue in hearing (Meddis & O’Mard,
1997; Carlyon, 1998). From an applied point of view, autocorrelation has proved to be an effective
basis for fundamental frequency estimation of speech and music (de Cheveign!e & Kawahara, 2002).
It is interesting to know the shortest duration of a signal necessary to estimate its period. It is

the sum of two terms. The first is the range of values of t that is explored, the second the size of the
integration window W (Eq. (1)). A priori, both are determined by the range of expected periods
rather than the actual period, and both should be at least as large as the largest expected period,
TMAX : This corresponds to the familiar rule of thumb: period estimation requires a chunk of
signal with duration at least 2TMAX : It is possible to reduce this to T þ TMAX ; where T is the
period being measured (de Cheveign!e & Kawahara, 2002), but no shorter. Shorter than TMAX

integration implies fluctuating behavior, and a pitch model that makes that assumption cannot
guarantee a stable percept of pitch.
Actually, Licklider (1959) or Meddis and Hewitt (1991) assumed integration over a window

shaped as an exponential (decreasing towards the past), rather than as a square (as in Eq. (1)).
This difference is of minor importance: the time constant of the exponential maps roughly to the
width W of the square window. They hypothesized a time constant of 2.5ms, and Meddis and
Hewitt (1992) later proposed 10ms. The smaller value is adequate above 400Hz but no lower,
while the larger is adequate down to 100Hz. Recent efforts to determine experimentally the size
used by the auditory system were reviewed by Wiegrebe (2001). It turns out that the integration
window size may be task dependent. In particular, it may vary with the F0 of the stimuli used in a
task. Data are consistent with an integration duration of twice the period with a minimum
duration of 2.5ms. The only problem with this proposition is that period-dependent integration
assumes prior knowledge of the period, a circular process.
These estimates determine the minimum duration for which tasks involving pitch are possible.

However, performance benefits from longer intervals of signal, if available (Moore, 1973). During
a stimulus, the summation process can be ‘‘reset’’ by transient events (Plack & White, 2000a), as has
also been observed in the binaural system (Hafter & Buell, 1990). It is as if the auditory system can,
within limits, tailor available evidence by applying the window that offers best performance (Dau
et al., 1996; Moore, 2003). This idea is closely related to a technique recently proposed in automatic
speech recognition, called ‘‘missing feature theory’’, in which different parts of spectro-temporal
patterns are weighted differently according to their reliability (Cooke, Morris, & Green, 1997).
Integrating over longer windows can reduce noise, leading to better resolution. As another way

to improve resolution, it has been proposed that higher-order peaks of the ACF (at 2T, 3T, etc.)
are used in addition to the peak at the period (Yost, 1999; Plack & White, 2000b; de Cheveign!e,
2000). A given duration can thus be used to maximize either lag range or integration, so the two
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factors are confounded in experiments that attempt to probe them. The maximum duration of
integration used by the auditory system has been estimated at about 210ms (Grose, Hall, & Buss,
2002). If frequency is changing (as for example in an intonation pattern), shorter windows may be
needed to resolve the temporal pattern of pitch, and to limit the degree of nonstationarity within
each integration window.
To summarize, the autocorrelation model accounts well for a wide range of pitch phenomena.

Its major weakness is that it does not predict the differences in performance observed for stimuli
with resolved vs. unresolved components. Processing requires a minimum duration that depends
upon the stimulus period but, according to the task, information may be gathered over a longer
duration. Functionally, longer windows favor accuracy of the period estimation while shorter
windows allow fast modulations to be followed (or at least to be recognized as pitch-like).

4.2. The autocorrelation model applied to timbre

The ACF has also been used to account for the perception of timbre. The ACF is equal to the
Fourier transform of the power spectrum, so it is equivalent in terms of information to a spectrum
(without phase). Meddis and Hewitt (1992) used template matching of the short-lag portion of the
ACF (below 2.5–4ms) in a model of vowel identification. This is an alternative to the usual
assumption that vowel spectra are represented as tonotopic patterns of activity. The motivation
for a time-domain model is weaker than in the case of pitch, as peripheral selectivity is sufficiently
fine to resolve formant patterns.
A possible functional advantage of an autocorrelation-based mechanism is that different

features of the power spectrum are represented (via the Fourier transform) by different parts of
the ACF. The short-lag part represents large-scale features (spectral envelope), while the long-lag
portion reflects also the fine harmonic structure. Truncation of the ACF at a lag equal to one-half
the period is equivalent to sampling the spectrum precisely at harmonics of F0 (Kawahara,
Masuda-Katsuse, & de Cheveign!e, 1999; de Cheveign!e & Kawahara, 1999). This reduces, to some
degree, the interactions between F0 and spectral shape. If the auditory system were capable of
performing an operation of this sort, it would go some way to solving the old problem of F0-
dependency of estimates of spectral shape (Klatt, 1982).
The ACF being equivalent to a power spectrum, high-amplitude spectral features such as the

first formant are over-represented with respect to lower-amplitude features. This is one reason
why the cepstrum (Fourier transform of the log spectrum) is preferred for speech processing.
However, recall that the transduction step within the cochlea has amplitude normalization
properties (Section 3.2). As a result of normalization, the overall pattern of ACFs should reflect
spectral features of the stimulus in a relatively balanced fashion.
To summarize, the ACF model can explain how spectral shape (up to at most 5 kHz) might be

extracted on the basis of within-channel temporal patterns instead of (or in addition to) across-
channel spectral patterns.

4.3. Segregation based on harmonicity

Speech is often heard against a background of other speakers or noise. Among the cues and
mechanisms responsible for speech segregation (Darwin & Carlyon, 1995), harmonic structure is
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useful when competing voices have different fundamental frequencies (Brokx & Nooteboom,
1982). Among the many models proposed to account for this, those based on a spectral
representation do not work well, unless they are given a much better resolution than that of the
cochlea (Parsons, 1976; Assmann & Summerfield, 1990; de Cheveign!e, 1993). This is a task for
which temporal processing seems necessary.
Time-domain models work according to either of two principles. With channel selection models,

the temporal pattern within each channel is used to assign it to one source or another (Meddis &
Hewitt, 1992). With channel splitting models, each channel is shared between sources
(de Cheveign!e, 1993, 1997). Channel selection obviously requires peripheral filtering to obtain
the channels among which to select. Channel splitting is less dependent on peripheral filtering
(although that filtering may make things easier by improving signal-to-noise ratio within
individual channels). Channel selection fails if all channels are dominated by the same interfering
source, yet experiments show that F0-guided segregation still occurs in that situation
(de Cheveign!e, Kawahara, Tsuzaki, & Aikawa, 1997; de Cheveign!e, 1999), so channel selection
cannot provide a complete account. A likely proposition is that both principles are at work.
Temporal processing is based on the ACF in Meddis and Hewitt’s model, on the modulation

spectrum in that of Meyer and Berthommier (1996), or on a ‘‘neural cancellation’’ filter (followed
by autocorrelation) in the model of de Cheveign!e (1993, 1997). Yet other temporal processing
schemes have been proposed (Assmann & Summerfield, 1990; Brown, Cooke, & Mousset, 1996;
Cooke & Ellis, 2001).
A segregation mechanism requires time. Assmann and Summerfield (1994) found that pairs of

concurrent vowels with different F0’s were harder to segregate if shortened from 200 to 50ms.
With very short stimuli, McKeown and Patterson (1996) found that one vowel of most pairs was
identified from as little as one cycle (at a 100 or 200Hz fundamental). Identification of the second
vowel improved gradually with duration, up to 8 cycles, suggesting that it required the help of a
segregation mechanism with a certain degree of ‘‘sluggishness’’. However, Culling, Summerfield
and Marshall (1994) found similar segregation with F0’s that were static or modulated at a rate of
5Hz, implying relatively fast tracking of harmonic structure.
The models of Meddis and Hewitt (1992) and de Cheveign!e (1993, 1997) both use the F0 of the

dominant vowel to retrieve the weaker vowel. Longer stimuli may help to estimate this F0; thus
explaining McKeown and Patterson’s results. As for the asymmetry of intelligibility of vowels
within a pair, it can be understood from the pattern of mutual masking of their spectral cues,
mainly formants one and two (de Cheveign!e, 1999).
To summarize, harmonicity-based segregation appears to involve temporal processing.

Identification of a weaker voice probably requires estimating the fundamental frequency of the
stronger voice, a process that takes time.

4.4. Segregation based on binaural cues

Binaural segregation models also use the principles of channel selection and channel splitting. As
an example of the first, Lyon (1983) calculated cross-correlation functions of signals from both
ears, within each cochlear frequency channel. Supposing that different sources have different
spectral envelopes, some channels must respond preferentially to one source. Cross-correlation
functions in those channels show a peak at the internal delay that matches the difference in time of
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arrival from that source to the ears. Channels may thus be grouped as belonging to one source or
the other. Patterson, Anderson, and Francis (1996) proposed a similar idea. An example of the
second principle is the EC (Equalization–Cancellation) model of Durlach (1963) (Durlach &
Colburn, 1978). The EC model adjusts (internally) the relative amplitude and delay of signals
from the two ears to make them as similar as possible. The equalized signals are then subtracted,
and the remainder is used as a cue to the target.
The EC model has recently been revisited by Culling and Summerfield (1995) and Breebaart,

van de Par, and Kohlrausch (2001). In Culling and Summerfield’s ‘‘modified EC’’ model,
equalization and cancellation are performed independently for each frequency channel. The delay
and amplitude parameters that determine cancellation are thus allowed to differ from channel to
channel. This allows the model to account for a puzzling phenomenon found by Culling and
Summerfield (1995): listeners presented with synthetic four-formant stimuli were unable to group
together those formants that came from the same direction. According to the original EC model
this task should have been easy.
Binaural processes such as described by the EC model tend to be ‘‘sluggish’’ in comparison to

monaural processes (Grantham & Wightman, 1979; Kollmeier & Gilkey, 1990; Culling &
Summerfield, 1998) However, the time constants vary considerably between tasks, and also
between individuals (Akeroyd & Bernstein, 2001).
The EC model accounts well for the two-ear advantage in detection experiments, for which

masking level differences (MLDs) can be as high as 15 dB. Unfortunately, situations that give a
large binaural benefit for detection of simple stimuli do not always give a similar binaural benefit
for intelligibility of speech. The benefit of spatial cues is not simply the result of instantaneous
unmasking, but appears also to involve the cognitive organization of speech parts belonging to
competing voices across time (Darwin & Hukin, 1999). This process is not yet well understood.
To summarize, binaural cues include interaural differences in time, level and spectrum. These

may contribute to speech intelligibility in two ways: by improving signal to noise ratio either
externally (head shadow and pinna directivity) or internally (interaural interaction), and by
providing cues of a more cognitive nature that indicate to the listener the structure of the spatial
scene. Such effects are an active field of study.

5. Concluding remarks

A first purpose of this paper was to remind us that the spectral analysis of speech sounds, often
assumed to be complete at the cochlea, may continue within the nervous system on the basis of
temporal patterns carried by the auditory nerve. The spectral and temporal resolution of this
analysis is not entirely determined by that of the cochlea. This conclusion seems to suggest that
spectro-temporal excitation patterns (Moore, 2003) are not a complete description of the
information available to the auditory system. Nevertheless, those patterns have been shown to
have good predictive power. It may be that temporal processing has properties that map well to a
spectral description in terms of cochlear excitation patterns. Time-domain models are less well
developed, less authoritative, and less convenient as descriptive tools. Synchrony-based ‘‘auditory
images’’ (e.g. Patterson et al., 1995, 1996) are rich representations, but partly for that reason they
are not as convenient as spectro-temporal patterns. A wise course may be to stick with the
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spectro-temporal patterns as a descriptive tool, while remaining alert for phenomena that escape
them, and that may have their basis in more central processing of temporal patterns.
A second purpose was to review a number of temporal models for pitch, timbre or segregation.

Some are in competition with models based on cochlear spectrum analysis, others appear to
provide the only explanation of the phenomena they address. The review is not exhaustive: many
more models exist. The aim was to give insight into the sort of functions that can be supplied, and
the palette of mechanisms that might supply them.
A more authoritative account of what actually goes on in the auditory system is way into the

future. We know that temporal processing occurs, but it is hard to make sense of the detailed
patterns measured by the physiologists, to assign them a functional role, or to relate them
precisely to the patterns postulated by the models. This is true for simple phenomena such as pitch
or timbre, and all the more so for speech. Progress may come from (a) investigation techniques
such as brain imaging or multielectrode recording, (b) progress in behavioral techniques, (c)
computer and theoretical models to make sense of the data and guide future investigation, and (d)
feedback from engineering applications such as automatic speech recognition. Theories are known
to sometimes have a blinding effect, and such may be the case for the theory of an exclusively
spectral processing in the cochlea. If so, exploring the alternative hypothesis of temporal
processing may benefit our understanding.
A third purpose was to give some indication of time constants, on the basis of functional and/or

behavioral considerations. Time is required to measure the scale of a pattern, differentiate it from
other (possibly longer) patterns, stabilize the estimates over time, and counter the effects of
internal or external noise. These requirements are hard to tease apart experimentally. Functional
constraints set lower limits, but the system appears to take advantage of a longer duration when
available, and to adaptively tailor information to maximize performance.
Temporal patterns relevant for speech occur over a wide range of scales. This review

concentrated on the small-scale end of this range, where temporal descriptions compete with
spectral descriptions. The review of Moore (2003) covers auditory phenomena relevant for speech
perception over a wider range of scales, including forward and backward masking, temporal
order, etc. Time is an essential dimension of each speech pattern, but it is ‘‘overloaded’’ with other
important roles. Time separates one pattern from the next. Time is irreversible, so a pattern
cannot be revisited without some form of memory. Time separates perception from reaction, and
causality determines their order. All these aspects must be taken into account in the design of
models to process time.
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