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ABSTRACT

This mixed speech fundamental frequency (fg) estimation
algorithm is an extensionof the classical AMDF (Average
Magnitude Difference Function) algorithm for one voice. An
exhaustive searcbf the parametespaceof two cascadedime-
domaincombfilters yields an estimationof the periodsof the
componentvoices. The algorithm, which is computationally
expensivebut easily parallelizable was testedon a databaseof
continuous male and female speech. Segmentsof voiced
speech,selectedaccordingto a "good periodicity" criterion to
ensure that the reference single-voggalforithm wouldnot fail
(this criterion rejected25% of voiced speechframes), were
paired and summed to simulatexed speech.The searchrange
of the algorithm was limited to a 3 octave rangeg searchwas
performedframe-by-framewithout continuity constraints.The
resulting estimateswere comparedto those of the reference
algorithm and found to be withia % of targetvaluesfor 90 %
of all frames.

Keywords: speech,fundamentalfrequency, pitch extraction,
mixed speech separation, noise reduction, cocktail-party effect.

INTRODUCTION

Adverse conditions of noisegverberatioror interferingspeech
greatly affect the performanceof speechprocessingdevices.
Interfering speecls particularlytroublesomepecauset shares
the spectro-temporatharacteristicof the target speech,and
becausat violatesthe assumption®f estimationmethodssuch
as LPC. Human listeners, however, appear to maintain
intelligibility by usinga variety of sourcesof information, both

high-level (familiarity with the lexicon or language,
understandingf the meaning,etc.) and low-level (binaural or

fundamental frequency disparities) (Cherry 1953).



As demonstrated with steady-state synthetic vowels, a
difference betweenthe fundamentalfrequenciesof concurrent
vowels makes them easier to identify (Assmann and
Summerfield1990; Scheffers1983). In one experiment,the
recognitionrate for both vowels correctwas about 55% for
identical fundamentals,and 75% for a difference of two
semitones (Assmann and Summerfield 1990). When the
fundamentalsare the same,the stimulus soundslike a single
vowel, "colored” by the identity of a secomdwel. Whenthey
differ, the stimulus sounds like two talkers pronouncing
different vowels with different pitches.

A number of models or algorithms have been proposedto
account for, or reproduce, our ability separatespeechusinga
difference in fundamentalfrequency (Parsons1976; Frazier,
SamsampPBraidaand Oppenheinl976; Nagabuchi,Kobayashi
and Yamamoto1979; Scheffers1983; Kitamori, Haradaand
Kawaradal984; Weintraub 1985, 1986; Palmer 1988, 1990;
Stubbs and Summerfield 1988, 1990; Assmann and
Summerfield1990; Duda and Lyon 1990; Meddis and Hewitt
1990). Most of thesemodelsrequire at some point that both
fundamentalfrequenciesbe estimated.This is a difficult task.
For a mixture of stationary synthetic vowels differing in
fundamental frequency by one semitone, the algorithm of
Scheffers correctly estimated one fundamental out of two
(within 3% of the value usedfor synthesis)for 96% of all
frames,and both for 24%. For connecteddigits pronounced
concurrently by a male and a female speaker, Weintraub
reportedperiod estimateswithin 5 samples(.31 ms) of target
values for 88.8% ("dominant” voice) and 74.3% ("weaker"
voice) of the frames for whichoth channelsvere voiced. The
reliability of fg extractionis insufficient for voice separation

algorithms to be of practical use.

Most of the many algorithmsthat have beenproposedfor the

extraction of fy from a single isolated voidgless1983)rely on

regularities in the time domain (regular occurrencespfarkable
points, similarity betweenperiods, etc.) or in the frequency
domain(regularly-spacedrequencycomponentsetc.). When
the signal consistsof two simultaneousroices, the spectralor

temporal patterns overlagndthe resultingpatternis difficult to

interpret. Indeed,in severalof the methodsmentionedabove,
fundamentalfrequencyestimationis closely dependanton the

speech separation process itself.

This paperdescribesan algorithm that attemptsto estimatethe
fundamentaperiodsof mixed voiced speechby modelling the
mixed speech signal as the sum of preoiodic signals.



THE ALGORITHM

By definition, a signal S is periodic of period T, if for all t:

S (t)=S (t+T)
If we feed this signalto a comb-filter defined by its impulse
responsed(t) - d(t+1), the outputis identically zero if the lag

T is equal to the period, or its multiple. This is the basisof a
classicalfg estimationalgorithm known as AMDF (Average
Magnitude Difference Function) (Ross, Shaffer, Cohen,
Freudbergand Manley 1974). The lag parameterspaceof a
comb-filter is searched for a minimum of the AMDF function:

AMDF(1) = | ;/VDS(t) - S(t+ 1)0dt

The lag at which the minimum occurs indicates the period.

Likewise, if we feeda signal S thatis the sum of two periodic
signalsof periodsTa and Tg to two cascadedcomb filters of

impulseresponsed(t) - 8(t+1a) andd(t) - d(t+1g), the output

is identically O if to = Ta andtg = Tg. Thisis the basisof
the mixed speechestimationalgorithm describedin this paper.
The two dimensional lag parameter spacemaf cascadeadtomb
filters is searchedfor a global minimum of the Double
Difference Function (DDF):

DDF(t,, Tp) = J OS(t) - S(t+1 ) - S(t+1p) + S(t+1 4 +T5) Lt
w

Otherminima canoccur, correspondingdo lagsequalto period
multiples: the algorithm avoids them by choosingthe smallest
lags, or by restricting the search range.

In principle the algorithnis guaranteedo find the two periods,
unlessoneis a multiple of the other. In practice,real speech
might not be sufficiently periodic for the algorithm to succeed.

EVALUATION

The principle of evaluationis to comparethe results of the
mixed voice algorithm to those obtained separatelyon the
isolated speechby a referencesingle voice fg estimation
algorithm.



» reference algorithm

This algorithmis a variant of the AMDF method(Hess 1983;
Ross,al. 1974). Speechsampledat 20 kHz, is smoothedby
convolutionwith a 1ms rectangularwindow. The AMDF is
calculated usingverlapping20 ms rectangulawvindows at 1.5
ms intervals, over a range of lags corresponding'scf 60to
300 Hz for a male speakerand 100 to 600 Hz for a female
speaker. The value for eachlag is divided by the mean of
valuesfor shorterlags (to eliminate the zero at zero lag and
attenuatespuriousdips at shortlags), and the minimum of this
function is taken as the period. This algorithm can
inappropriately lock orio a period multiple (subharmonic).To
avoid this, a periodninimum s further requiredto be lessthan
0.9 times the value at 1/2 or 1if8 lag. No othersmoothingor
error correction is used. Period values are transformetdase
2 logarithmic frequency scakxpressingctavesrelativeto 110
Hz.

The algorithm producesas a by-product a value that can be
interpreted as measure of periodicityThis is defined as:

PM = Iogz( mean(AMDFg)

AMDF(period

This measureis large (2 to 6) during steady state voiced
portions and small (close to 0) at transitions and during
unvoiced portions. It gives an indicatioh the reliability of the
fo estimate produced by the algorithm.

« database

Test data, derived from the ATR database (Kuwabara,
Sagisaka,Takedaand Abe 1989), consistedof 3 Japanese
sentencespronouncedaccordingto five different intonation
patterns byone male (known asMYI), andonefemalespeaker
(known as FST), #otal of 30 sentences.Speechwas sampled
at 20 kHz, 12 bits resolution,and processedy the reference
AMDF algorithm. The periodicity measurewas then scanned
for runswith a value greaterthanan arbitrary threshold(PM >
1.4) for a duration greaterthan 225ms. The corresponding
portionsof speechwere excised. Nine such225 ms segments
of speechsignal were selectedfor eachspeaker. They were
paired and summedto obtain "mixed speech"(producing 32
male-male tokens, 32 female-female tokens,&hthale-female
tokens).

The motivation for selectingportionswith a good periodicity
was to ensurethat the referencefg tracksusedfor evaluation
were reliable. In the raw data, about 75% of all vojgedions
(defined conservatively amny portion with PM > 0.5 for more
than 30 ms) had a periodicity measure above this threshold.



* mixed voice algorithm

The mixed voiced estimation algorithm waisnplementedusing

exactly the samewindow size and analysisincrementas the

reference AMDF algorithm.Searchfor eachlag parametewas
limited to a 3 octave range, adjusted (on the basis of the

referenced tracks) to exclude lagengerby 10% or morethan

the longestperiod of the targetcomponent(the searchranges
werethus not necessarilythe samefor both parameters). This

searchrange constrainteliminated subharmonicerrors, which

the algorithm cannotavoid. As in the caseof the reference
algorithm, period values were transformedto a base 2

logarithmic frequency scale.

e results

Figuresl, 2 and 3 showtypical results. The valuesproduced
by the mixed voice fg algorithm follow very closely the
referenceg values. Figures2 and3 show how the algorithm
breaks down when the fg's are practically equal. It fails
becausewhen the periods are equal, a single comb filter is
sufficient to cancel both voices: the other lag parameteris
unconstrained. Similar effects occur when one fg is at the
octave of the other.
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Fig. 1 Fo estimatedor both voicesas a function of time.
Continuouslines: fg valuesproducedby the mixed speech
algorithm. Dottedlines (offset by -0.2 octavesfor clarity):
referencefp values obtained from speechbefore mixing.
Male speaker, tokens a0 and al.
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Fig. 2 Fp estimatesas a function of time, showing the
breakdownof the algorithm when the fg tracks cross.
Female speaker, tokens b3 and b7.
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Fig. 3 Fo estimatesas a function of time, illustrating the
behavior of the algorithm whenfg tracks are close. Male
speaker, tokens a0 (as in fig. 1) and a3.

Figure 4 shows a histogram of the differences between
estimatesandtheir closesttargetvalues,pooledover the whole
dataset. Notethelog scale:on alinear scalethe histogramis
too sharpfor interpretation. 90% of the estimatesmadeby the
algorithmare within 3% of a targetvalue,and 65% are within
1%.
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Fig. 4 Histogramof the deviationin octavesof fg estimates
madeby the mixedspeechalgorithm from the closesttarget
value. Note the log scale.
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The following table shows anothermeasureof reliablity, the
mean error magnitude(in % octave), for the different data
subsets at two sampling rates: tregginal 20 kHz rateanda 40
kHz rate obtained by linear interpolation:

data set: | mean error (20 kHz ) mean error (40 kHz)
male/male 6.3 6.1
female/female | 7.0 6.3
male/female 8.2 7.3

The mearerror for female/femaleat 40 kHz is the sameas that
for male/maleat 20 kHz. This suggeststhat the slight
disadvantage of female/female over male/male casbebedto
the greatereffect at higher frequenciesof the limited sampling
resolution. The slight disadvantage of the male/feroatelition
relative to the othersmay be due to the fact that thereis less
overlapin the searchrangesfor both voices, and thereforea
wider overall searchrange. Apart from these,there are no
major differencesbetweenthe conditions. In particular, the
algorithm does not require the fg tracks to be in different
registers, contrary to other algorithms (see for example
Weintraub 1985).



CONCLUSION

In summary, themixed voice fundamentafrequencyestimation
algorithm appearsto be quite successful in finding the
fundamental frequencies of both voices. The restrictive
conditions of the evaluation must be stressed:only "clean"
voiced speech wassed(accordingto a criterion that eliminates
25% of voiced speech), and the seawmtigewas restrictedto 3
octaves. On the other hand, the algorithm performs theotaak
frame-by-framebasis,usingonly local information: continuity,
or voice register constraints could further enhance reliability.

In practical applications such @sice separationa mixed voice
fo estimation algorithnmustrecognizeand copewith situations
where onlyone speecthtrackis presentor voiced. It mustalso
be able to follow fg tracks when they cross (the present
algorithm makes no such attempt). These are sulfactsture
research.

The algorithm is time consuming, but easily parallelizable.
Searchtechniquessmarterthan exhaustivesearchcan also be
used.
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