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ABSTRACT

Listeners were presented with pairs of concurrent vowels
and requested to report one or two vowels. The AF, was
either 0 or 6%, and RM S level s before mixing were either
the same or different by 10 or 20 dB. Responses for each
vowel within a stimulus were classified according to rel-
ative level (-20, -10, 0, 10, 20 dB) and AF,(0 and 6%).
| dentification was better at AF;=6%, and this effect was
greatest when the target was weak (-20 and -10 dB). This
outcome is difficult to account for with current models,
but can be explained by invoking a within-channel neu-
ral cancellation filter. A model of concurrent vowel iden-
tification based on thisfilter is consistent with our experi-
mental data, and agrees with results that show that the au-
ditory system segregates harmonic sounds by cancelling
the harmonic background.

1 INTRODUCTION

The harmonic structure of voiced speech plays an impor-
tant role in our ability to understand speech in a speech
background. | dentification is degraded when that cue can-
not be used, for example when target and interference
voices have the same fundamental frequency (Fq) [14, 2,
25,1, 11, 19]. In this paper we present experimental and
modeling efforts that lead to somewhat counterintuitive
conclusions: a) The harmonic nature of a sound does not
protect it from interference. Instead, the harmonic nature
of the interference makes it easier to ignore. b) The se-
lectivity of the basilar membrane may play a secondary
rolein segregation of soundsbased on harmonicity: atem-
poral model of segregation based on filtering within audi-
tory channels accounts for our data better than a spectro-
temporal model that chooses among channels separated
by peripheral filtering.

Improvementsin identification when an F,, difference
(AFg) isintroduced are usually attributed to a segrega-
tion mechanism that exploits the harmonic structure of
voiced speech, and failswhen target and background have
the same F,. A question that arises is whether the har-
monic structure of the target, that of the interference, or
both, determine segregation [5]. Summerfield and Culling
[26] found that masked thresholds for vowels were lower
when the masker was harmonic rather than inharmonic,

and that target harmonicity made no significant differ-
ence. Lea[18] found better identification when the back-
ground vowel was voiced rather than whispered, but the
voicing state of the target vowel had no significant effect.
de Cheveignéet al. [7] found better identification for har-
monic than inharmonic backgrounds, but also, paradoxi-
cally, that identification was better for inharmonic rather
than for harmonic targets. A later experiment yeilded no
effect of target [9]. Overall, thereislittleevidencethat the
auditory system enhances harmonic targets, and strong
evidence that it cancels harmonic interference. Other re-
sults are congruent with these findings. Zissmann et al.
[28] presented subjects with co-channel speech in which
the masker could be attenuated when either the target
or the background was voiced. Intelligibility was bet-
ter in the latter case. Harmonic cancellation was aso
more effective to reduce co-channel speech interference
in a speech recognition system [6], possibly because nat-
ural speech isnot sufficiently stationary for harmonic en-
hancement to be effective [5].

The lack of evidence for harmonic enhancement is
disturbing, as it implies that the harmonic structure of
voiced speech does not protect it from interference. Har-
monicity of interference is useful, but this doesn’'t solve
the problem of speech in non-harmonic noise. Many mod-
els and methods exploit target harmonicity to enhance or
group target components[10, 4, 17, 15, 16], andit playsan
important role in Auditory Scene Analysis[3]. Simulus
harmonicity, rather than target harmonicity, might have
the important effect of signaling a single source. Classic
double-vowel experiments are blind to to this aspect be-
cause they force listeners to report two vowels for every
trial. We use a modified task in which a subject may re-
port one or two vowels.

FO-guided segregation has been explained by spectral
models inspired from Parsons work [24], and spectro-
temporal modelsin the vein of Weintraub’s system [27].
They differ in the degree of selectivity required of periph-
eral analysis: sufficient to resolve individual components
for the former, sufficient to isolate spectral zones reflect-
ing each vowel for the latter. Assmann and Summerfield
[1] argued that peripheral selectivity isinsufficient to sup-
port apurely spectral model. Meddis and Hewitt [22] pro-
posed asuccessful spectro-temporal model that partitions
the population of peripheral filter channels on the basis of
the periodicity of their response. Segregation occurs be-



tween but not within channels, and thus its success de-
pendson whether peripheral filtering excludes each vowel
from at least some channels, from which the other vowel
may be salvaged. In athird class, temporal models, seg-
regation occurs within channels and peripheral selectiv-
ity istherefore less critical [5]. We develop such amodel
based on a hypothetical neural cancellation filter that re-
moves certain spikes from spike trains carried by the au-
ditory nerve.

2 EXPERIMENT
2.1 Methods

Six japanese subjects were presented with stimuli con-
sisting of either a single vowel or the sum of two dif-
ferent vowels. For each stimulus the subjects had to an-
swer either one or two vowel names. They thus simulta-
neously judged the number of vowels present within each
stimulus, and identified them. The vowels were steady-
state synthetic tokens of five Japanese vowels (/al, /e/,
fil, lol, Iul) produced at two Fqs (125 Hz and 132.5 Hz),
with equal RMS signal level. Double vowel stimuli were
formed by scaling one of the vowel waveforms by a fac-
tor (-20, -10, 0, 10 or 20 dB), adding them, and scaling
the sumto an RMSlevel that was the samefor all stimuli.
The stimuli were presented to subjects via headphones at
a sound pressure level between 63 and 70 dBA. Stimuli
were 200 ms in duration with 20 ms raised-cosine onset
and offset ramps. The stimulus set for each session com-
prised 600 double vowelsand 240 single vowels, and each
subject performed 5 sessions.

Single vowel stimuli were scored once. The vowel
was deemed identified if its name appeared among the
vowel (s) reported. Doublevowel swere scored twice, each
vowel in turn being considered a target and the other
vowel a background (interference). Identification rates
were calculated as a function of the nature of the target,
that of the interference, and their mutual relation (AF,,
relative level). In addition, the average number of vowels
reported per stimulus was recorded for each condition.

The experiment differed from classic double vowel
experimentsin four ways: a) the stimulus set included sin-
glevowels, b) subjects were allowed to answer one or two
vowels, c) the relative level between vowelsin apair was
varied rather than fixed, d) the scoring method measured
"target-correct’ ratesinstead of ' both-correct’ rates.

2.2 Results

The number of vowels reported per stimulusis plotted in
Fig 1. At unison, subjects reported two vowel s quite often
when both constituents had the same level, no doubt be-
cause the composite spectrum did not resemblethat of any
single vowel. When either consituent was stronger, they
reported one vowel more often. Single vowels evoked
doubleresponses on about 10% of all trials(triangleto the
right), but that proportion varied widely between subjects

(2%to 27%). Thetarget-correct identification rate is plot-
ted in Fig 2. Identification was better at AF,=6% than at
unison, especially when the target was weak (-20 or -10
dB) relative to the interfering vowel. At higher levelsthe
AF, effect was small.
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Fig. 1 Number of vowelsreported per stimulusas a func-
tion of relativelevel between vowels, at unison (filled sym-
bols) and AF,= 6% (open symbols). Triangle at right is
for single vowels.
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Fig. 2 Identification rate as a function of the level of the
target relative to the interfering vowel, at unison (filled
symbols) and AF,=6% (open symbols). Triangle at right
is for single vowels. Crosses represent data obtained at
-15dB in another experiment with the same subjects.

When the target is weak, estimation of its F, should
be difficult while that of the interference should be easy.
Large AF effects for weak targets thus support the hy-
pothesis of harmonic cancellation, at the expense of that
of harmonic enhancement. The latter mechanism might
be effective when targets are strong, but any benefit it
bringsis masked by the ceiling effects. The pattern of re-
sults varied somewhat between vowel pairs. Fig 3 shows



results for one particular pair (/o/+/uf). We note that for
both vowelsthe effect of AF, isstrong whenthe vowel is
at -20 dB. This result will be used to compare our model
to that of Meddis and Hewitt [22].
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Fig. 3 Identification rate of /o/ (ascending lines) and /u/
(descending lines) within an /o/+/u/ pair, as a function of
thelevel of /o/ relativeto/u/, at unison (filled symbol s) and
AFq=6% (open symbols).

3 MODELS

3.1 Meddisand Hewitt’s model

The model of Meddis and Hewitt [22] exploits the har-
monic structure of only one vowel, the dominant one.
When the target isweak, the background is dominant, and
the model thus performs cancellation. In this respect it is
compatible with our results. Meddis and Hewitt showed
that their spectro-temporal model was superior to that of
Assmann and Summerfield [1], which in turn had been
shown to be superior to purely spectral (place) models.
Palmer [23] tested it with physiological data recorded in
the 8th nerve of the guinea pig in response to double vow-
els, and found it plausible. The model comprises a stage
of peripheral filtering, followed by hair cell transduction,
followed by the calculation of an autocorrelation func-
tion (ACF) within each channel. ACFs of all channels
are added to obtain a summary function (SACF) and the
largest peak of thisfunction is used to estimate the domi-
nant period. This part of the model is similar to the same
authors pitch perception model [21]. The periodicity of
each channel is then examined, and a partition is made
between channels that have a peak at the dominant pe-
riod and those that do not. SACFs are calculated for both
groups, and the short-lag portion (below 4.5 ms) of each
SACF is used to identify the two vowels present. At uni-
son, all channels respond with the same period and so a
partition isimpossible, which explains why identification
isless good than when thereisa AF.

Essential is the assumption that peripheral filtering
provides some channels that are not completely domi-
nated by the stronger vowel. If all channels are dominated
by the same vowel, no partition is possible, and the model
predicts no AF, effect. The situation might arise when
onevowel isstronger than the other, asin our experiment.
Meddisand Hewitt’ smodel was applied to our stimuli. At
intermediate levels (-10 to 10 dB) the partition occured as
expected, but at -20 or 20 dB some pairs showed no parti-
tion, asillustrated by Fig. 4 for the pair /o/+/u/. The pro-
portion of channels dominated by /o/ increases with rela-
tivelevel, and a 20 dB it has reached 100%. The model
therefore predicts no AF, effect for /u/ at that level. Our
experimental results show aclear AF for the same con-
dition (Fig. 3), that the model thus cannot explain. To be
fair, adifferent choice of filter shape (deeper skirts) or of
partition criterion (less stringent) might allow the model
towork over awider range. Neverthelessit isworth inves-
tigating whether segregation might be performed within
channels, in which case characteristics of periphera fil-
tering would be of less importance.
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Fig. 4 Periodicity that dominates channels as a function
of relative level in Meddis and Hewitt’smodel. To the left
of the crooked line the dominant modulation is 125 Hz
(/u). Totheright it is 132.5 Hz (/of). Arrowsindicate the
first two formants of each vowe!.

3.2 Neural har monic cancellation filter

Supposethat each channel (group of fibers of similar char-
acteristics) is processed by a neuron that isdriven viatwo
pathways, onedirect and excitatory, and the other delayed
and inhibitory (Fig. 5). Suppose further that every spike
that travels along the direct path is transmitted unless a
spike arrives, within acertain time window, along the de-
layed path. The filter will thus weed out all intervals of
duration equal to the delay from the spike train. It turns



out that thisis sufficient to suppress the correlates of one
vowel if thefilter istuned to that vowel’ s period [5].
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Fig. 5 Neural harmonic cancellation filter.

The effect of the filter may be crudely approximated
by:

o(t) = MAX(0,i(t) —i(t — T))

where i(t) and o(t) are respectively the discharge prob-
ability at the input and output of the filter and T is the
delay. The MAX operation reflects the fact that proba-
bility cannot be negative. The filter was applied to each
output channel of agammatone-filterbank/hair-cell model
[20, 13] with input consisting of the stimuli used in the ex-
periment. All filters were tuned to acommon delay equal
to the period of one vowel, and the outputs were analyzed
for evidence of the other vowel. The array of filtered dis-
charge probabilities may be interpreted and exploited in
several ways, two of which are illustrated below.
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Fig. 6 Dischargeprobabilityasa function of channel fre-
guency on an ERB scale. Thick line is before the cancel-
lation filter, thin lines are after cancellation of /o/ (dots)
or /u/ (dots & dashes).
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Fig. 7 Square root summary autocorrelation function.
Thick line is before the cancellation filter, thin lines are
after cancellation of /o/ (dots) or /u/ (dots & dashes).

3.21 Place

Fig. 6 represents discharge probability as a function of
channel frequency (on an Equivalent Rectangular Band-
width scale) in response to the double vowel /o/+/u/ at O
dB relative level and AF;=6%. The thick continous line
isthe output of the hair cell model. The thin dotted lines
represent the output of the cancellation filter when it is
is tuned to the period of either vowel. When the filter is
tuned to the period of /o/ (7.6 ms), peaks stand out at the
first two formants of /u/. When it is tuned to the period of
/ul, a’hump’ seemsto reflect the first two formants of /o/.

3.22 Time

Instead of rate vs place, the cancellation filter output may
be interpreted as a time domain pattern, for example by
calculating the summary autocorrelation function. Fig. 7
showsthe squareroot of the SACF in responseto the same
stimulus asfor Fig. 6 (the square root compensatesfor the
quadratic nature of autocorrelation and improves intelli-
gibility of the plot). When the filter is tuned to the period
of /o/ (7.6 ms), the SACF has a shape characteristic of /u/
and apeak at its period (8 ms). When the filter istuned to
cancel /u/ instead, the SACF reflects/o/.

3.3 Concurrent vowel identification model

In this section the second scheme (time-domain) is de-
veloped into a model of concurrent vowel identifica
tion, and compared with experimental results. We fa
vor simplicity rather than realism in details of process-
ing or decision process, the aim being to demonstrate
that within-channel neural cancellation can be an effec-
tive segregation mechanism. Stimuli were processed by
a basilar-membrane/hair-cell model [13] with channels
evenly spaced along the ERB scale (4 channels per ERB).



An SACF pattern was calculated from which an estimate
of the dominant period was derived. Thiswas used to tune
an array of cancellation filters, from the output of which
a second SACF pattern was derived. The average RMS
output/input ratio (residue) of the cancellation filter was
also calculated. Based on these elements, two threshold
parameters T1 and T2, and a set of template SACFsrepre-
senting individual vowels, the model predicts the number
of vowels reported and their identity. The algorithm is as
follows:

o If theresidueislessthan T1, the model discardsthe
filtered SACF and matches the unfiltered SACF to
reference templates. Two possibilities: a) If the ra-
tio of Euclidean distances to the best and second-
best templatesis greater than T2, the model reports
two vowels; b) If theratioislessthan T2, the model
reports one vowel: the best match.

o If the residue is greater than T1, the model notes
that cancellation was not perfect and reports two
vowels. Thefirst is the best match to the unfiltered
SACF. The second is the best match to the filtered
SACEF, unless that match produces the same vowel
as the first, in which case the model chooses the
second-best match to the unfiltered SACF (thisrule
enforces the constraint that subjects must respond
different vowels).
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Fig. 8 Number of vowels reported by subjects (symbols)
and predicted by the model (lines) as a function of rela-
tive level, at unison (filled symbols, thick line) and AF,=
6% (open symbals, thin lines). Point at right isfor single
vowels.

Parameters were adjusted to obtain a good match to
the number of vowels reported at unison (T2 = 0.5) and at
AFq=6% (T1 = 0.1). Fig. 8 shows the number of vow-
els reported by subjects (symbols) and predicted by the
model (lines). Fig. 9 shows similar data for identifica-
tion rates. For identification, the match is good at uni-
son but less good at 6%: the model over-estimates per-
formance at low levels (-20 dB) and under-estimates per-
formance at intermediate levels (0, 10 dB). Nevertheless

the model correctly predicts a strong AF, effect at -20
and -10 dB as observed in our experimental data. Overall
the match is quite close. One should not make too much
of this fact, however, because the model, besides being
crude, is deterministic and was tested on only 20 differ-
ent vowel pairs. The fact that the pattern of results on this
small set matched the probabilisti c outcome of the exper-
iment is no doubt the result of luck. The important result
is that within-channel cancellation can provide effective
segregation even when the target is weak.
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Fig. 9 Identification rate for subjects (symbols) and pre-
dicted by the model (lines) as a function of relative level,
at unison (filled symbols, thick line) and AFq= 6% (open
symbols, thin lines). Point at right is for single vowels.

4 DISCUSSION

Our experiment reproduced the classic effect of AF, on
identification of mixed vowels, and showed that it persists
when the target vowel is weak. A similar conclusion was
implicit in the results of Summerfield and Culling [26]
who found that avowel’ s masking threshold (at 71% cor-
rect) fell from 1 dB to -16 dB with an F, difference of
two semitones. On the other hand McKeown [19] found
that AF effectstended to vanish at low target levels, pos-
sibly because of afloor effect. Our results supported the
hypothesis of harmonic cancellation, but offered little ev-
idence that target harmonicity was being used. Neverthe-
less they did reveal a clear effect of stimulus harmonic-
ity, in that double vowels at unison consistently evoked
fewer responses than mistuned double vowels (or thanin-
harmonic single vowels[8]).

Within-channel segregation providesan alternativeto
channel selection as used by Meddis and Hewitt's [22]
and other models [10, 4]. Culling and Summerfield s
"Modified Equalization-Cancellation’ model, that suc-
cessfully accounts for many binaural effects, also carries
out a form of within-channel cancellation [12]. Within-
channel cancellation might be exploited in a variety of



fashions, of which the concurrent vowel perception model
isan example.
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