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Abstract

1.1 The aim

1 Harmonicity and spectral envelope

Alain de Cheveigné (CNRS/ATR-HIP)
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Periodicity and missing feature theory in audition

Sounds that are generated by exciting a resonator usually have a timbre that de-
pends on the characteristics of the resonator (transfer function). In the case of vow-
els, the resonator is the vocal tract, in the case of musical instruments it may be the
resonance tube (woodwinds, etc.) or the body of the instrument (violin, etc.). For
a constant resonator, timbre is relatively independant from source characteristics
such as fundamental frequency. However, it is not evident how resonance charac-
teristics can be extracted from the waveform. Short-term spectra are strongly af-
fected by the fundamental periodicity, and the same is true of auditory represen-
tations such as basilar-membrane excitation pattern. This talk is divided into two
parts. The first is a sort of "tutorial" on spectral estimation, the problems posed by
harmonicity, the notion of pitch-dependent smoothing and its limits, and the idea
of timbre pattern-matching using missing-feature techniques. The second part de-
scribes a vowel-perception model based on these ideas.

Take a sound produced by exciting a resonator with a periodic source. It could be for
example a vowel, produced by exciting the vocal tract by a train of glottal pulses. It is
our common experience that the timbre (for example the vowel quality) depends upon
the of the sound, defined as a function of frequency that deter-
mines the amplitude at each partial frequency. Timbre hardly depends on phase. It also
changes rather little with changes in the fundamental frequency ( ) of excitation, that
strongly affect the pitch. Conversely, timbre varies widely with changes in the spectral
envelope that hardly affect the pitch. To a first approximation, pitch and timbre are inde-
pendent percepts, function respectively of the and the magnitude spectral envelope.
The spectral envelope of the waveform is that of the source multiplied by the

of the resonator. To the extent that the spectral envelope of the source
is constant (or better still, flat) the timbre of a sound reflects the resonator that produced
it. This may give timbre its ecological value: it tells us about the nature (shape, size) of
the object that produced the sound.

Our aim is to estimate this spectral envelope from the waveform. The motivation is
two-fold. First, to obtain a procedure to "measure the timbre" of a waveform, for classi-
fication purposes or as a model of timbre perception. Second, to allow resynthesis after
manipulation of source, timbre, or duration characteristics (sound morphing).

The definition of a "spectral envelope" (a function of frequency that determines the
amplitude of each partial) is clear in the context of production. It does not follow that it
can easily be estimated from the waveform. Indeed, this talk is motivated by the various
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1.2.1 An intuitive argument

1.2.2 The sampling theorem

1.2.3 Envelope shape and impulse response
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difficulties that are involved. Given those difficulties, it may be useful to give "spec-
tral envelope" the wider definition of a function of frequency that (a) is independent of

, and (b) "reflects" the resonant characteristics in some useful fashion. Obviously,
if property (a) is not granted, the correspondence between envelope and resonator is

-dependent, and property (b) cannot be insured. Nevertheless, (a) is often further re-
laxed to mean "no visible harmonic structure", in other words simply that the spectral
envelope is "smooth". Whether this very loose definition is acceptable depends on the
application.

In this section, a number of issues involved in spectral envelope estimation are examined
one by one. To simplify the discussion, the source (periodic or otherwise) is supposed
to have a flat spectral envelope. The spectral envelope of the waveform is thus
identical to the magnitude transfer function of the resonator. The two terms are
used interchangeably.

A fixed resonator is characterized by a one-dimensional function of frequency, .
This is commensurable to the one-dimensional waveform , and one can expect some
success in estimating the former from the latter, within limits that will soon be made
clear.

Suppose instead that the resonator is time-variant. Strictly speaking, a "transfer func-
tion" is meaningful only for a linear time-invariant (LTI) system. Suppose nevertheless
that it can be extended to the time-variant case. The transfer function is now
a two-dimensional function of time and frequency. Intuitively, we can expect to have
difficulty in estimating all details of the two-dimensional function from the one-
dimensional signal .

Much use will be made of the applied to spectral envelopes. In its
standard form, the sampling theorem states that a signal sampled at intervals of

can be reconstructed perfectly from its samples if it is band-limited to less
than the Nyquist frequency, .

The same theorem can be applied to spectral envelopes, replacing time by fre-
quency , and frequency by time, or more appropriately (also known as ).
The theorem says that a spectral envelope sampled at intervals of can be re-
constructed from the samples if it is band-limited to lags shorter than the "Nyquist lag"

, that is, if the Fourier Transform of the spectral envelope is zero beyond that lag.

It is equivalent to know the spectral envelope itself or any invertible function (square,
log, etc.) of it. One can go from one to the other by applying the function or its inverse.
In particular, the magnitude spectral envelope is entirely specified by the

, the Fourier Transform of which is equal to the
(IRACF) of the filter. If the magnitude spectral enve-

lope is sampled at intervals of , and if the IRACF is zero beyond the Nyquist
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1.2.4 Time-invariant resonator

1.2.5 Time-variant resonator
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lag , the squared envelope (and therefore the envelope itself) can be reconstructed
from the samples.

A possible source of confusion should be pointed out. The various transforms of the
envelope (square, log, etc) have different compositions in the lag-domain. It may happen
that one is band-limited while the others are not. The sampling condition should thus be
restated: the envelope sampled at can be reconstructed

of the envelope that is band-limited. It may seem confusing that different
functions of the spectral envelope (magnitude, power, log) have different lag-domain
contents, but the same is of course true of the spectra of time-domain functions. As an
example, the third power of a sine-wave (band-limited in the frequency domain) con-
tains an infinite set of harmonics, products of non-linear distortion.

In particular, it is worth noting that some function of the spectral envelope might be
band-limited, whereas the squared magnitude envelope might not. It follows that, while
the condition that the IRACF is zero beyond is for reconstruction from
samples spaced at intervals of , it is not a condition.

Supposing that the resonator is constant, let us consider three possible excitation func-
tions: a single pulse, white noise, and a periodic pulse train.

If the resonator is excited by a single pulse at the origin of time, the waveform is
simply the impulse response . If the waveform can be observed for a duration longer
than the support of , the spectral envelope can be perfectly estimated by calculating
the Fourier Transform of the IRACF and then taking its square root.

If the resonator is excited by a pulse train of fundamental frequency , its
spectral envelope is at intervals of . From the sampling theorem we
know that it is perfectly represented by the samples if it is band-limited to lags shorter
than the Nyquist lag . A sufficient (but not necessary) condition is that its impulse
response be shorter than , so that the IRACF is zero beyond . In the general
case, however, the spectral envelope is band-limited. The spectral envelope is in-
completely represented by the samples and cannot be reconstructed perfectly. More on
this problem later on.

If the resonator is excited by white noise, the spectral envelope is the product of
the transfer function by a spectrum that is flat. The spectral envelope can be calculated
directly by taking the Fourier Transform of the waveform over infinite time. In practice
however, any estimate based on a window with finite length is noisy, with an amount of
noise that depends on the window length.

Clearly, the "best" excitation is a single pulse. Periodic and white-noise excitation
have complementary advantages and disadvantages. Periodic excitation samples the trans-
fer function at discrete points. The sampling is sparse, but each sample is accurate.
White noise on the other hand "samples every point", but with a degree of uncertainty
that depends on the temporal averageing involved in the calculation.

If the resonator varies in time (as is the case of the vocal tract in speech), the problem is
more difficult. Parameters of the resonator vary in time, and it is tempting to conclude
that its transfer function also varies in time. However, strictly speaking, the notion of
"transfer function" is only defined for linear time-invariant (LTI) systems, for which
complex exponentials are eigen-vectors. A time-varying system breaks a fundamental
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1.3.1 Harmonic excitation: two cases
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rule. There are several ways out of this predicament. (1) Assume that variations are slow
relative to the maximum duration of the impulse response, and that errors are likely to
be small. (2) Try to estimate a set of time-varying parameters of the resonator, based on
a model, rather than the transfer function. (3) Try to estimate a "time-varying spectral
envelope" such that, given a particular synthesis technique, the signal can be accurately
synthesized based on this time-varying envelope. The drawback of the latter two ap-
proaches is that they are dependent on particular production or synthesis models.

Let us suppose that we can somehow define a time-varying envelope . It can
be visualized as a surface in 3-D space, function of frequency and time. If it is based on
assumption (1), variations along the time axis must be smooth and slow. If it is based on
assumption (3), this assumption is not necessary, supposing that the synthesis technique
can handle a quickly-varying envelope.

It makes little sense to excite such a resonator with a single impulse. Even if the res-
onator varies slowly enough for the impulse response to be meaningful, it only captures
the shape at one point in time. Excitation with noise makes more sense, but the amount
of time available for averageing limits estimation accuracy.

In the case of a periodic pulse-train excitation, one can conceive of the function
as being sampled in both time and frequency. As it were, the surface in 3-D

space is sampled at discrete points regularly spaced on both axes. The limits of this
image should be pointed out immediately: perfect resolution along the frequency axis
depends on stationarity along the time axis: it can be obtained only if is constant
in time (time-invariant filter). Conversely, perfect resolution along the time axis can be
obtained only if the impulse response has zero length, that is, if is constant in
frequency (wide-band attenuator). These two conditions are mutually exclusive. In the
general case of a time-varying resonator, the 2D sampling grid is necessarily "fuzzy".

Suppose nevertheless that the surface can be sampled precisely, at intervals of
along the time axis, and along the frequency axis. The surface can be recon-
structed if it is bandlimited on both axes: to lags shorter than for the shape along
the frequency axis, and to frequencies smaller than along the time axis. [A more
rigorous discussion should involve a 2-D sampling theorem].

In the general case, chances are that is band-limited along either axis.
In that cas it is incompletely represented by the samples and cannot be reconstructed
perfectly. It is worth noting however that the samples themselves, although sparse, are
accurate. This is in contrast with the case of white-noise excitation, for which all data
are noisy.

The undersampling problem is most severe in situations such as speech, where the
varies over a wide range: is likely to be undersampled along the frequency

axis when is high, and along the time axis when is low.

This section reviews several approaches to the problem of envelope estimation. The
choice of approach depends on two factors: (b) whether the shape of the resonator’s
transfer function is sufficiently smooth (band-limited) to allow adequate sam-
pling, and (b) the application: morphing classification.

Suppose the resonator is excited by a periodic pulse train of fundamental frequency .
One can distinguish two cases. In the first case, the spectral envelope is bandlim-
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1.3.2 Low-pass filtering for reconstruction
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ited to less than the Nyquist lag along the frequency axis, and less than the Nyquist
frequency along the time axis. In this case, the spectral envelope can be perfectly
reconstructed,

. The smoothing task, which is not trivial, is the object of pitch-period smoothing
techniques to be described soon.

The second case is when is not band-limited along the time and/or frequency
axis. In this case it be reconstructed from the samples. Accurate estimation of
the spectral envelope cannot be performed in this case. Depending upon the application,
there are two reasonable courses that may be taken.

The first is to apply pitch-period smoothing techniques to remove out-of-band com-
ponents (that are certainly incorrect). The result nevertheless differs from the true en-
velope, because aliasing causes out-of-band components of the original envelope to be
folded back into the band, where they mix with genuine in-band components. This course
is reasonable if the application is for example morphing.

A second course may be more reasonable if the application involves pattern match-
ing (classification). Because of aliasing, smoothing the samples produces an envelope
that is complete but incorrect. On the other hand, recall that the samples themselves are
sparse but accurate. It makes sense, therefore, to avoid smoothing and perform pattern
matching directly on the samples, restricting the match to the samples themselves. This
is an example of techniques. Missing feature techniques do not prevent
the reliability of pattern matching may be affected by the sparse sampling: patterns that
differ at points other than the samples cannot be discriminated, and matching is overall
more sensitive to noise. Nevertheless, missing-feature techniques allow the systematic
errors that arise from aliasing to be avoided.

Suppose that we are in the first case: the resonator is excited by a periodic pulse train
with a fundamental frequency , and the envelope is appropriately band lim-
ited. The envelope can be reconstructed from the samples by low-pass filtering them in
both time and frequency to remove out-of-band components. For reconstruction to be
accurate the filtering must be perfect: flat transmission up to the Nyquist frequency (or
lag), infinite rejection beyond.

However, actual filtering is never perfect. Imperfect filtering may cause two prob-
lems, of unequal severity: (1) The pass-band is not flat, so the reconstructed envelope
is a low-pass filtered version of the original envelope. (2) Out-of-band components are
not perfectly attenuated.

The first problem is relatively minor. The second is more serious, mainly because
it implies that , even if the original envelope is
narrow-band. Even if the original envelope is band-limited, the reconstructed envelope
may contain out-of-band components due to imperfect low-pass filtering. This problem
is troublesome particularly if the the estimated envelope must be . There are
two typical situations where such is the case: (to a "frame-rate" along
the time axis, or to frequency bands along the frequency axis), and after ma-
nipulation of , duration or spectral envelope. Distortion caused by aliasing degrades
the quality of resynthesis.

A certain degree of low-pass filtering is inherent in the Fourier transform. Integra-
tion over a time-window implies low-pass filtering along the time axis. Conversely, the
limited spectral resolution implies a form of low-pass filtering along the frequency axis.



� �

�
�

�
� �

� �

�
�

�

running

Bartlett

F

���
�
�

���
�
� ���

���
�
�

���

�
� � �
� � �
���� �
�

 !�
�

 "�

 !�
 !� ���

��� �
 "� �

 !��
� � #�� #�� � �

� ���
 !�

�
�
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1.3.3 Pitch-period smoothing in the time domain

1.3.4 Pitch-period smoothing in the frequency domain

1.3.5 Time-frequency smoothing: STRAIGHT
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However this low-pass filtering is not really sufficient: there is typically too much res-
olution along both axes.

Let us back up a bit, and consider what happens if we apply a particular analysis at every
point in time (running analysis). Take the case of a coefficient produced by the anal-
ysis at time . The analysis could be the Fourier Transform of the previous paragraph
[ being a spectral coefficient corresponding to a given frequency], or it could be sim-
pler (energy) or more complex (cepstrum, LPC, etc.). In the real world, such analyses
are usually performed at a reduced rate (frame rate) but that is not necessary for their
principle, nor desirable for our purpose. Instead we assume analyses indexed
by time (what that means in practice is that the analysis is repeated at intervals of one
period of the waveform sampling rate).

Assume that the analysis that produces is supposed to tell us about the macro-
scopic properties of the signal. Ideally, should be constant if is stationary. In
practice that may not be the case when smoothing is insufficient, but there is one thing
we can guarantee. If the signal is periodic with period , and the analysis is de-
terministic and time-invariant, is also periodic with period (in a wide sense, in-
cluding the cases where is constant or periodic with a period that is a fraction of

).
Fortunately, there exists a filter that is useful for this situation. Its impulse response,

is shaped like a square window of duration . Its transfer
function is shaped like a sinus cardinal with zeros at all multiples of except

. Applied to a periodic signal such as , the filter removes all harmonics of the fun-
damental and leaves only the zero-hertz component, as is desired. This property extends
usefully to the convolution of this window to any other. For example a convolution of
the square window with itself produces the window, which has a similar desir-
able property.

Such filtering is referred to here as "pitch-period smoothing in the time-domain".
To apply it requires an estimate of the fundamental period.

A similar form of smoothing may be applied in the frequency domain. The spectrum is
convolved by a square window of width (or a window derived from it by convolu-
tion). This removes all lag-domain components multiple of the period . Once again,
an estimate of the fundamental period is required.

Kawahara’s STRAIGHT system implements the previous ideas with several refinements.
Smoothing is performed simultaneously in time and frequency domains. The projection
of the smoothing kernel along both axes is shaped like a Bartlett window (rather than
square). Smoothing is performed on an arbitrary invertible non-linear transform of the
magnitude spectrum (to allow simulation of smoothing of loudness, etc.). The system
includes various "tricks" to enhance processing. It also comes complete with an -
estimation module (TEMPO) and a module for the fine control of source properties for
resynthesis (SPIKES).
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1.3.6 Caveats of pitch-period smoothing

1.3.7 Practical considerations
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For a periodic excitation and resonator, pitch-period smoothing does much
better than any other form of smoothing. Out-of-band harmonic components are per-
fectly eliminated with a minimum loss of resolution in time or frequency (especially if
the shortest possible windows - square - are used). However our analysis, accurate for
the stationary case, may not extend perfectly to a resonator or fundamental
frequency. In practice, we can expect the quality of smoothing to depend on how close
we are to the stationary case.

Pitch-period smoothing reconstructs the envelope perfectly if it is appropriately ban-
dlimited. Along the frequency axis, the Nyquist lag is , for the time axis the Nyquist
frequency is . Since , these two limits are of course linked. If varies
over a wide range (as in speech), the chances are large that one or other limit is crossed
at times.

When the envelope is not appropriately bandlimited, the reconstructed envelope nec-
essarily differs from the original envelope, because of aliasing. The error is -dependent,
in magnitude and also in shape. Depending on the application, the result may never-
theless be acceptable. For the purpose of resampling, for example, the pitch-period-
smoothed envelope has the desirable feature that it is band-limited (see above). For the
purpose of pattern-matching, on the other hand, it may be better to avoid smoothing and
apply missing-feature techniques, to be discussed soon.

Typical spectral analysis is based on FFTs performed at a certain
frame rate, so that successive FFT windows overlap in time. If is the FFT window
size, and is the overlap factor (meaning that the frame period is ), then the cost
per sample is on the order of

(1)

(assuming that the cost of an -point FFT is ). The factor is usually small.
Pitch-period smoothing, to be effective, must be performed down-sampling to
the frame rate. Spectral analysis must therefore be performed at every sample, at a cost
of:

(2)

Pitch-period smoothing is thus potentially rather expensive. One way to reduce cost is
to perform a running DFT (Rabiner and Schaffer, 1978). The cost is on the order of

(3)

which is still more expensive than performing FFTs at a reduced frame rate as in classic
analysis. An advantage of the running DFT is that does not need to be a power of
2. A drawback is that the analysis window must be square (or a convolution of square
windows).

estimation is critical to pitch-period smoothing. Reliable esti-
mation is known to be difficult for speech, an important application field. However the
task may be actually easier than it seems.

Estimation errors can be divided into three types. (1) Random errors, that occur
when periodicity is poor. (2) Subharmonic errors that often occur despite very clean
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periodicity, as the result of small sampling errors or localized noise. (3) Harmonic er-
rors, due to the dominance of a single strong harmonic.

Errors of type (1) are not serious, in the sense that little is to be gained by pitch-
period smoothing when the signal is not periodic. The main problem is that random
switching from one estimate to another introduces "noise" in the estimation process. A
solution might be to set the estimate to a fixed "default" value when a periodicity mea-
sure falls below a certain threshold. Remain the problems of choosing the best default,
and handling the transition to and from this value each time the threshold is crossed.

Errors of type (2) are serious for smoothing along the frequency axis, as they pro-
duce a window that is too small. They are of little consequence for smoothing along
the time axis, as a window that is two or three times the period is effective (the only
penalty is oversmoothing). Errors of type (2) can be virtually eliminated by "biasing"
the -estimation algorithm towards short estimates.

Likewise, errors of type (3) are serious for smoothing along the time axis, but not the
frequency axis. They can be eliminated by biasing the -estimation algorithm towards
long estimates.

The key to reliable smoothing is thus to use two estimates, each with a different
bias, for temporal and spectral smoothing respectively.

Consider now the case where the envelope is adequately bandlimited. What-
ever the smoothing, the estimated envelope is distorted due to aliasing, as out-of-band
components are folded and summed together with genuine in-band components. De-
pending on the application, two approaches may be of use. is ap-
propriate for classification, whereas may provide a solution when a smooth
envelope is required for resynthesis.

Suppose that the task is to classify spectral envelopes by pattern-
matching with pre-determined templates. The available samples may be matched di-
rectly to the templates, using a non-uniform weighting function that restricts the cal-
culation of the distance function to the samples, with zero weight applied to all other
points. As long as smoothing or interpolation are performed, this method avoids
distortion due to aliasing. Assuming that the samples themselves are accurate, a perfect
match can be made with the corresponding points of the appropriate template. One can
argue that this is the best approach to classification, and that smoothing, interpolation or
model-fitting can provide no improvement. Available information is entirely contained
in the samples: interpolation can create no new information. Interpolation can be con-
strued as an of what missing data points should look like. If that guess
is wrong, the answer may be incorrect.

The "Nyquist barrier" can be broken if an underlying model of the enve-
lope is available (as long as the sample points are sufficiently numerous and accurate to
constrain the model). An example might be an articulatory model of the vocal tract that
constrains the envelope to one that can be produced physiologically. The constraints
might apply to the spectral shape, based on the range of possible vocal tract shapes, and
also to its variation in time based on constraints on how the articulators can move.

Following the philosophy of missing feature theory, model fitting should be restricted
to available sample points. However these do not necessarily have to be equally spaced.
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The hypothesis of harmonic excitation, while it gives us a convenient way to determine
the position of sample points, is not necessary.

The drawback of missing feature and model approaches is that they require under-
lying models or templates. They are of no help to produce a universal tool for envelope
estimation.

The missing feature model of vowel perception builds on the previous analysis. The
model is described in detail in a draft that can be downloaded from the following ad-
dress:

Vowel identity correlates well with the shape of the transfer function of the
vocal tract, in particular the position of the first two or three formant peaks. However
in voiced speech the transfer function is at multiples of the fundamental fre-
quency ( ), and the short-term spectrum contains peaks at those frequencies, rather
than at formants. It is not clear how the auditory system estimates the original spectral
envelope from the vowel waveform. Cochlear excitation patterns, for example, resolve
harmonics in the low frequency region and their shape varies strongly with . The
problem cannot be cured by smoothing: lag-domain components of the spectral enve-
lope are aliased and cause -dependent distortion. The problem is severe at high s
where the spectral envelope is severely undersampled. This paper treats vowel identi-
fication as a process of pattern recognition with . Matching is restricted
to available data, and missing data are ignored using an -dependent weighting func-
tion that emphasizes regions near harmonics. The model is presented in two versions:
a frequency-domain version based on short-term spectra, or tonotopic excitation pat-
terns, and a time-domain version based on autocorrelation functions. It accounts for the
relative -independency observed in vowel identification.
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