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ABSTRACT

A new method is proposed to jointly estimate the shape parameter
of a glottal model and its time position in a voiced segment. We
show that, the idea of phase flatness (or phase minimization) used
in the most robust Glottal Closure Instant detection methods can be
generalized to estimate the shape of the glottal model. In this paper
we evaluate the proposed method using synthetic signals. The relia-
bility related to fundamental frequency and noise is evaluated. The
estimation of the glottal source is useful for voice analysis (ex. sep-
aration of glottal source and vocal-tract filter), voice transformation
and synthesis.

Index Terms— glottal source, joint estimate, phase flatness,
phase minimization

1. INTRODUCTION

The source-filter model (eq. 1) is used in this paper to represent
the voice production. This model is made of three main elements
which are convolved in the time domain and therefore multiplied
in the frequency domain. These elements are: the glottal source,
the vocal-tract and the lips radiation. The glottal source is assumed
to be produced by the periodic opening and closing of the glottis.
This source has therefore a specific shape in time domain. Addi-
tionally, this shape has a time-position relatively to a time reference
(ex. the center of an analysis window). Then, the Vocal-Tract Fil-
ter (VTF) transform this source. Finally, this transformed source
is radiated outside of the mouth through the lips adding one more
filtering effect. Analyzing a window of voiced signal, we estimate
the shape parameter of a glottal model (a shape model of the glot-
tal source) and we synchronize temporally this glottal model in the
analysis window.

The time synchronization can be reduced to the detection of
a maximum excitation instant. Physiologically, this instant corre-
sponds more or less to the closure of the glottis. Therefore, it is
called Glottal Closure Instant (GCI). Numerous GCI detection meth-
ods already exist [1, 2, 3]. The source model is often seen as a Dirac
and thus, one of the best approaches is to flatten the phase of an LPC
residual [1, 2] (minimize the absolute value of the phase as much
as possible). As soon as the time-synchronization is assumed to be
known, the shape parameter is then estimated [4, 5, 6]. Vincentet.
al proposed to use the error of an ARX model to estimate the time-
synchronization [3]. In his method, the glottal shape is also jointly
approximated with a dictionary of shapes. We recently proposed a
rough estimate of the shape which is time-independent [7]. We used
this estimate to develop a fast and robust method detecting GCIs
[8]. In this new paper, the proposed method is used as a refinement
method. Estimates of the methods mentioned above can be used as
starting values for the proposed method.

The glottal source is a causal/anti-causal mixed-phase signal [9].
Therefore, the Z-transform of the glottal source has roots (zeros or
poles) outside of the unit circle. Since the production model is made
of time convolutions, theses roots are kept in the final voiced signal.
The impulse response of the VTF is assumed to be minimum-phase
because it is a passive and lossy medium. Its roots are thus strictly
inside the unit circle. Therefore, since the source is a mixed-phase
signal and the VTF is a minimum-phase signal, the only property
difference between the source signal and the VTF signal is in the
phase. We propose to focus on this main difference of property: the
phase of a voice model are optimized to fit the phase of the Fourier
representation of an analysis window. The phase flatness criteria has
already been proposed to detect GCIs [1, 2] (also known as phase
minimization criteria). We propose to extend this idea to the estimate
of a shape parameter of a glottal model.

Section 2 presents the spectral relations obtained from the
source-filter model: VTF derivation, convolutive residual and phase
flatness measure. The main sources of errors disturbing these com-
putations are also discussed at the end of this section. Section 3 gives
more technical details about the joint estimation method. Finally, in
section 4, the reliability of this estimator is evaluated with synthetic
signals. A comparison with Electro-Glotto-Graphic signals and an
evaluation with real signals are planned for a future publication.

2. VOICE MODEL AND PHASE FLATNESS CRITERIA

First, this section presents the voice model and its elements. Then,
we will see that the VTF can be retrieved from a glottal model
and a function computing the minimum-phase spectrum of its ar-
gument. Our goal is to estimate the shape parameterθ and the time-
synchronizationφ of a glottal model with an observed voiced signal.
Therefore, we express the convolutive residual as the ratio between
the observed spectrum and the model spectrum. If the phase of this
residual is flat (as small as possible), this residual is a Dirac in time
domain, the model is equal to the observed spectrum and(θ, φ) are
optimal. A measure of phase flatness is therefore proposed to mea-
sure this optimality.

2.1. Voice production model

Within a given window, the voiced acoustic waveform is assumed to
be a stationary periodic signal of fundamental frequencyf0. There-
fore, it can be fully represented by a discrete spectrumSk where the
kth-bin represents thekth-harmonic partial of the Fourier Transform
of the observed signal. From this Fourier representation, we can thus
express the voice production model as follow:

Sk = ejkφ · Gk · Ck− · Lk (1)



ejkφ define the time positionφ of the glottal shape.Gk is a mixed-
phase spectrum defining the shape of the glottal source.Ck− is the
VTF, a minimum-phase filter sampled byf0 (the minimum-phase
property is denoted by the negative sign). Finally,Lk is the filter
corresponding to the lips radiation. This filter is usually modeled by
a time derivative [10] and thereforeLk = jk.

2.2. Vocal-Tract Filter derivation

First, we defineE−(.) as a function computing the minimum-phase
spectrum of its argument through the power cepstrum [11]. From
equation (1), by division in frequency domain (deconvolution in
time), one can express the Vocal-Tract Filter estimateCθ

k− with a
given glottal modelGθ

k parametrized byθ and the lips radiation
modelLk = jk:

Cθ
k− = E−

` Sk

Gθ
k · jk

´

(2)

A more general case using a minimum-phase envelope estimate is
discussed in [7]. BecauseE−(.) is computed from the amplitudes
only, this function has the property of distributivity on multiplication
and division. Additionally, the lips radiation model can be either
removed from the numerator or multiplied by the denominator:

Cθ
k− =

E−(Sk/jk)

E−(Gθ
k)

=
E−(Sk)

E−(Gθ
k · jk)

(3)

Practically, in both cases, the value at frequency zero has to be ex-
trapolated to compute the minimum-phase spectrums withE−(.) be-
cause this value is set to zero by the lips radiation inSk. From our
experiments, the second solution is more stable and is thus used in
the following presentation.

2.3. Convolutive residual and phase flatness

SinceCθ
k− is expressed as a function ofθ, we can now derive the

computation of the convolutive residual, the ratio of the observed
spectrum by the model spectrum:

R
(θ,φ)
k =

Sk

ejkφ · Gθ
k · Cθ

k− · jk
=

Sk · E−(Gθ
k · jk)

ejkφ · Gθ
k · E−(Sk) · jk

(4)

which can be written as:

R
(θ,φ)
k = e−jkφ ·

Sk

E−(Sk)
·
E−(Gθ

k)

Gθ
k

·
E−(jk)

jk
(5)

The amplitudes ofSk, Gθ
k and jk are flatten by their respective

minimum-phase spectrums. Therefore,R
(θ,φ)
k is an all-pass filter

whatever the parameters are:|R
(θ,φ)
k | = 1 ∀k ∀θ ∀φ. As desired,

the problem is focused on the phase difference between the observed
signal and its model.

Finally, if we assume the real shape of the glottal source can
be correctly represented by our chosen glottal model and there is
only an error of parametrization(∆θ, ∆φ) = (θ∗, φ∗) − (θ, φ), the
observed spectrum can be replaced by the voice production model:

R
(θ,φ)
k = e−jkφ ·

ejkφ∗

Gθ∗

k Ck−Lk

E−(ejkφ∗Gθ∗

k Ck−Lk)
·
E−(Gθ

k)

Gθ
k

·
E−(jk)

jk
(6)

The lips radiationLk is equal tojk and can thus be eliminated.
Moreover, if the cepstral coefficients of the VTF above the quefrency
q0 (= T0) are negligible,E−(Ck−) ≈ Ck− and the VTF is also

eliminated from the equation. Additionally, defining the spectrum
errorX∆θ

k = Xθ∗

k /Xθ
k :

R
(θ,φ)
k ≈ ejk∆φ · G∆θ

k /E−(G∆θ
k ) (7)

Gθ
k is not linear-phase. Consequently, the position errorejk∆φ can

not compensate the shape error becauseG∆θ
k and its minimum-phase

spectrum are not linear-phase. Finally, if the phase ofR
(θ,φ)
k tends

to zero (R(θ,φ)
k tends to a Dirac),∆φ tends to zero and the phase

of G∆θ
k tends to zero. Consequently, it means that(θ, φ) tends to

(θ∗, φ∗).
To measure the phase flatness of the convolutive residual, we

propose to use the Mean Squared Phase (MSP):

MSP (θ, φ, N) =
1

N

N
X

k=1

`

∠R
(θ,φ)
k

´2
(8)

whereN is the maximum number of harmonics taken into account
in the measure and∠(.) is the function computing the angle of the
given complex number.MSP (θ, φ, N) can thus be minimized to
optimize the position and the shape parameter of the glottal model.

2.4. Main sources of error

Condition on the VTF: Due to the periodicity of the glottal
source, the VTF is sampled by the harmonics. Therefore, the cep-
stral coefficients of the VTF aboveq0 (= T0) have to be negligible.
If it is not the case, the minimum phase computed byE−(Sk) in eq.
(3) does not correspond to the real ones. Lowerf0, better the VTF
representation (see sec. 4 for the consequences on the method).

Noise level: In high frequencies, the noise level exceeds the har-
monic level. Therefore, the sampling rate has to be small enough to
avoid this noise. The problem has to be constrained to the smallest
sufficient frequency band.

Minimum-phase reconstruction: To obtain minimum-phase es-
timates as close as possible to the reality, the sampling rate has to
be as high as possible. Indeed, theoretically, all frequencies up to
infinity are needed to reconstruct the perfect minimum phase of a
spectrum. This condition is opposed to the previous one. Therefore,
a balance should be struck between these two sources of bias. Since
the consequences of this problem is not yet evaluated precisely, we
kept the sampling rate at32kHz.

3. METHOD

The parameters are estimated in an optimization context: for each
parameters value(θ, φ), the convolutive residual is computed with
equation (4). Then, the corresponding error is computed with the
phase flatness measure given by equation (8).

The Discrete Fourier Transform (DFT) is used to compute the
spectrum of a voiced segment with ahanning window function. A
window with a length of only one period is not suitable since the
effect of the windowing function has to be negligible compared to
the features we want to extract from the DFT. Therefore, in this con-
text of voice analysis, 3 periods are used. From this spectrum, the
harmonicsSk have to be estimated: the amplitude and phase of the
kth-harmonic partial are obtained by estimating the amplitude and
phase of the nearest peak ofk · f0 in the DFT of the voiced segment.

In this paper, the Liljencrants-Fant (LF) glottal model [12] is
used. This model define the time-derivative of the glottal shapeGθ

k ·
jk. This model is controlled by 3 shape parameters(Oq, αm, ta),



the fundamental frequencyf0 and the excitation amplitudeEe. We
assumef0 to be knowna priori. Numerous methods can be used
to computef0 from the voiced signal (ex.YIN [13], Swipep [14] or
by harmonic matching [15]). Since the proposed method works with
the phase only, it is not necessary to estimateEe. Finally, instead
of usingθ = (Oq, αm, ta) we use the relaxing parameterθ = Rd
which is a value on a meaningful curve in the shape parameter space
[16, 5].

Theoretically, since only two variables(Rd, φ) are estimated,
only the first two harmonics are necessary to find a solution (N = 2
in eq. 8). However, the glottal model definitely does not corresponds
perfectly to the real glottal source. Therefore, a mean solution with
all available harmonics is preferable.N is thus set to⌊V UF/f0⌋,
whereV UF is a Voiced/Unvoiced Frequency [17].

3.1. Shape estimate with ana priori time-synchronization

In this section, we will show that the estimation results are not satis-
fying if the time-synchronizationφ is not jointly optimized with the
shape parameterRd. Indeed, the time-synchronization can be as-
sumed to be known thanks to numerous methods [1, 2, 8]. Using one
of these estimates, the convolutive residual is computed withR

(Rd,0)
k

and the problem is reduced to a one-dimensional constrained opti-
mization. We used a Brent’s method to find the global minimum.

TheRd estimation error related to a time-synchronization error
∆φ has been computed with synthetic signals of fundamental fre-
quency128Hz (see section 4 for more information about the syn-
thesis). Considering a time-synchronization error|∆φ| < 2.5% of
the period, the standard deviation of theRd error is≈ 0.75. With
|∆φ| < 10% of the period, the standard deviation of theRd er-
ror is ≈ 1.25. Therefore, the error of theRd estimate increases
substantially when|∆φ| increases. Such a sensibility to a time-
synchronization error is therefore unsatisfying andRd andφ have
to be be jointly estimated.

3.2. Joint estimate of shape and time-synchronization

Using equation (8), the error function corresponding to a linear-
phase deviation is a deep and narrow valley embedded in a noisy
neighborhood (fig. 1 bottom right). In such a context, the search
of the global minimum is unrealistic. However, the high frequency
behavior of the error function comes from the high frequencies of
the convolutive residual. Therefore, to smooth the error function,
R

(Rd,φ)
k is first limited to the2nd harmonic (N = 2). Then, a Se-

quential Quadratic Programming algorithm (SQP) is used to find the
minimum of the error function from a starting point [7, 8] (fig. 1
top left). Then,N is increased one harmonic by one harmonic up to
⌊V UF/f0⌋ while using the SQP algorithm at each incrementation
to refine(Rd, φ) obtained at the preceding step (fig. 1).

4. EVALUATION WITH SYNTHETIC SIGNALS

The results of such an estimator are difficult to validate. A measure-
ment of the glottal flow (usually associated to the acoustic source of
the vocal-tract) could be compared to the glottal model estimates, but
the measurement of such a flow is not yet possiblein vivo. Therefore,
we mainly evaluate the proposed estimator with synthetic signals.

The synthetic signal (eq. 9) is controlled by the LF shape pa-
rameterRd∗, the position of the GCIφ∗, the fundamental frequency
f0 and two zero-mean Gaussian noisesNσg andNσa of standard-
deviationσ corresponding to glottal noise and additive noise respec-
tively. The periodic behavior of the glottal source is produced by
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Fig. 1. Error surface evolution while increasing the number of har-
monicsN (darker the color, smaller the error). Starting values are
indicated with a circle and SQP final step with a cross. Optimal val-
ues are∆φ = 25 samples andRd = 1

repeatingGRd∗

(ω) every1/f0. 11 different VTFsCp
−

(ω) are used
to model vowelsp covering the vocalic triangle. Theses VTFs are
obtained from an articulatory model proposed by Maeda [18]. The
vocal-tract area function is first computed from articulatory param-
eters. Then, the transfer functionCp

−
(ω) is computed from the re-

flexion coefficients corresponding to the area function. The length
of the acoustic tube is fixed to17cm and the opening of the glottis
is set to2.5cm2 to simulate a loss in this simulated acoustic tube.

E(ω) = ejωφ∗

· GRd∗

(ω) ·
ˆ

X

k∈N

ejωk/f0
˜

+ Nσg (ω)

S(ω) = E(ω) · Cp
−

(ω) · jω + Nσa(ω) (9)

4.1. Error related to the fundamental frequencyf0

In a first test, the error of the estimation related tof0 is evaluated.
For eachf0 value, the estimation error is computed for the 11 dif-
ferent VTFsCp

−
(ω) and a random delayφ∗ in [−0.1 · T0; 0.1 · T0].

The mean and standard-deviation of theses errors are then computed
and shown in figure 2. To focus on the influence off0, glottal and
additive noises are set to zero in equation (9).

For bothRd andφ, the variance of the error increases withf0

since the sampling of the filter responseC−(ω) by f0 does not pro-
vide enough information to reconstruct the minimum phase ofS(ω)
perfectly (see sec. 2.4). Both plots show that the method is very
satisfying for a range off0 used in adult voice (≈ 100 − 250Hz).
Compared to the shape estimate with ana priori φ (sec. 3.1), a joint
method is therefore necessary.

4.2. Error related to the noise levelsσg, σa

A second test evaluates the error of the estimation related to glottal
and additive noises.σg thenσa varies between−50dB and10dB.
σg is relative to the standard-deviation of the source signal (E(ω)



without noise) whileσa is relative to the standard-deviation of the
speech signal. When one noise is tested, the other one is set to zero.
Figure 2 (right plots) shows the mean and standard-deviation of the
Rd andφ errors. For eachσ value, the error is computed 4 times
with the 11 different VTFsCp

−
(ω) and a random delayφ∗ in [−0.1 ·

T0; 0.1 · T0]. To focus on noises influence,f0 is fixed to128Hz.
For noise level under−12dB: theRd error is nearly unbiased,

its standard-deviation is smaller than0.5; the time-synchronization
is slightly biased and its standard-deviation is smaller than5% of the
period. Consequently, the reliability of the method is satisfying for
many applications. Moreover, in this experiment theV UF was fixed
to 4kHz to focus on noise influence. The error should be smaller
when using aV UF estimate [17].
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Fig. 2. Left plots: Rd andφ error related tof0. Right plots: Errors
related toNσg (in green (gray in B&W)) andNσa (in blue (black in
B&W)): The disturbing parameter on the horizontal axis, mean and
standard-deviation of the estimation error on the vertical axis.

5. CONCLUSION

We have argued that the main difference between the glottal source
and the Vocal-Tract Filter is their mixed-phase and minimum-phase
property. Accordingly, a glottal model estimation method has been
proposed. We have shown that the idea of phase flatness used in
popular GCI detection methods can be generalized to estimate the
shape of a glottal model. We have seen that theRd estimate is very
sensitive to the time-synchronization. Therefore, shape and time-
synchronization have to be jointly estimated. A quantitative evalu-
ation of the method with synthetic signals shows that the method is
reliable enough for fundamental frequencies corresponding to adult
voices and robust for glottal and additive noises.
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