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Phase Minimization for Glottal Model Estimation
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Abstract—In glottal source analysis, the phase minimization
criterion has already been proposed to detect excitation instants.
As shown in this paper, this criterion can also be used to estimate
the shape parameter of a glottal model (ex. Liljencrants–Fant
model) and not only its time position. Additionally, we show
that the shape parameter can be estimated independently of the
glottal model position. The reliability of the proposed methods
is evaluated with synthetic signals and compared to that of the
IAIF and minimum/maximum-phase decomposition methods. The
results of the methods are evaluated according to the influence of
the fundamental frequency and noise. The estimation of a glottal
model is useful for the separation of the glottal source and the
vocal-tract filter and therefore can be applied in voice transforma-
tion, synthesis, and also in clinical context or for the study of the
voice production.

Index Terms—Glottal model, glottal shape, glottal closure in-
stants (GCIs), joint estimation, phase minimization, voice analysis.

I. INTRODUCTION

I N VOICE analysis, using the source–filter model of the
voice production, the filter is often assumed to be excited

by a flat amplitude spectrum. However, many models of glottal
excitation have been proposed [1]–[3]. Obviously, these models
have particular shapes in time and frequency domains. Among
their spectral characteristics, the glottal formant and the spectral
tilt are often cited [1], [2], [4]. Therefore, it is interesting to esti-
mate the glottal model parameters and thus the spectral charac-
teristics of the source. For example, such estimates enable sepa-
rating the glottal source from vocal-tract influences [5], [6]. This
separation is very attractive in voice transformation since it al-
lows a means to manipulate independently the source excitation
and the resonating properties of the vocal-tract. In this paper,
we use the source–filter model which is made of three prin-
cipal elements: the glottal source, the vocal-tract filter (VTF)
and the radiation. The glottal source is assumed to be produced
by the air flow modulated by the periodic opening and closing
of the glottis. This source has a shape in time and spectral do-
mains and this shape has a time position in a given period of
voiced signal. Then, the vocal-tract filter transforms this source
by means of resonances and anti-resonances. Finally, this trans-
formed source is radiated into the environment through the lips
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and the nostrils adding one more filter effect. In this presenta-
tion, analyzing a window of voiced signal, we want to estimate
the shape parameter of a glottal model (a shape model of one
period of the glottal source) and its time position in the analysis
window.

Our approach is, in the following, we focus on the phase prop-
erties of the source and the VTF. Indeed, the glottal source is
a mixed-phase signal [7], [1]. Zeros exist outside of the unit
circle in the glottal source z-transform. Since the voice produc-
tion model is made of time convolutions, these zeros remain in
the final voiced signal. On the other hand, the poles of the VTF
are inside the unit circle because it is a stable filter [8]. Con-
cerning the zeros created by the coupling of the nasal cavity with
the oral cavity, they lie on the unit circle when the vocal-tract
is assumed to be lossless [9]. In our investigation, we postu-
late that the losses move these zeros inside the unit circle be-
cause the poles obey this behavior between the lossless and the
lossy cases. Consequently, we can assume that the VTF impulse
response is a minimum-phase signal. The minimum-phase as-
sumption is more general than the usual all-pole hypothesis [8]
(often modeled by linear prediction (LP) [8] or discrete all-pole
(DAP) [10]). The minimum-phase assumption does not exclude
zeros which can occur in nasalized sounds but implies they are
strictly inside the unit circle. In terms of source-filter separation,
these phase properties have been already used in minimum/max-
imum-phase decomposition methods, i.e., Complex Cepstrum
(CC) [11] and Zeros of the Z-Transform (ZZT) [12]. With this
approach, the well-known closed-phase hypothesis is not neces-
sary [13] and it is thus possible to broaden the diversity of voices
to analyze. In this paper, we assume that the mixed-phase and
minimum-phase properties enable us to estimate the parame-
ters of a glottal model. To focus on these phase properties, the
phase minimization criterion is used. This criterion is the fol-
lowing: the phase spectrum of a model is fitted to the phase
spectrum of an observed signal. The error of fitting is computed
through the convolutive residual (the deconvolution of the ob-
served signal by the model). Therefore, the better the estimate of
the model, the closer the convolutive residual is to a Dirac delta
function. In terms of phase, the better the estimate of the model,
the smaller the phase spectrum of the convolutive residual. This
criterion has already been proposed to estimate glottal closure
instants (GCIs) resulting in robust estimators [14], [15]. In these
methods, assuming the source is a Dirac delta and the VTF is
an all-pole filter, the phase spectrum of an LP residual is min-
imized. In our study, we propose to use the phase minimiza-
tion criterion to estimate, not only the position of the excitation
model, but also the shape parameter of a glottal model. We al-
ready proposed a first method [16] which jointly estimate the
shape and the position. First, this paper refines and improves
the argumentation of that previous publication. Additionally,
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similarly to the GCI detection method using the group-delay
[15], we propose two other methods which take advantage of
the difference operator with respect to the harmonics phase: one
method balances the influence of the shape and the position on
the error function and a last method eliminates completely the
influence of the glottal model position on the shape estimate.
Compared to current methods of source-filter decomposition,
the proposed methods try to directly estimate the glottal param-
eters of a glottal model without estimating the glottal source.
Indeed, the Iterative Adaptive Inverse Filtering method (IAIF)
[17] first estimates the VTF and a spectral envelope of the glottal
source. In the same way, minimum/maximum-phase decompo-
sition methods (CC and ZZT-based methods) first estimate the
maximum-phase contribution of the speech signal in order to re-
trieve the glottal source. In all of those approaches, the estimated
glottal source is fitted by a glottal model in a second step. In the
proposed methods, the glottal source is not explicitly computed
and the VTF is jointly estimated with the glottal model param-
eters. One can thus expect more consistency between the VTF
estimate and the glottal model estimate.

Even though the estimation of glottal parameters is a very ac-
tive research field [7], [6], [18], [5], [17], the lack of ground truth
makes the results of such estimators difficult to validate. A mea-
surement of the glottal flow which is usually associated with the
source of the source-filter model could be compared to glottal
model estimates. However, the acoustic coupling (between the
glottal flow and the vocal-tract) and the issues related to the mea-
surement of this flow make this comparison difficult to establish.
Nevertheless, in the context of voice transformation and syn-
thesis, only the perception of the voice has to be manipulated.
Therefore, recovering the glottal flow precisely may be not nec-
essary for these applications. In current literature, the validation
of analysis methods is usually avoided by proposing transfor-
mation and synthesis systems to support the analysis/synthesis
processes [5], [19], [20], [17], [21]. However, because such a
process using a glottal model is far from straightforward, forth-
coming publications should address this problem and thus eval-
uate the significance of glottal model estimates in real appli-
cations. In this presentation, in order to evaluate the proposed
methods compared to the state of the art of the source-filter sep-
aration methods (IAIF, CC and ZZT), we use synthetic signals
and Electro-Glotto-Graphic (EGG) signals.

The following discussion consists of three main parts. To
make the innovative theoretical ideas as clear as possible about
Mean Squared Phase (MSP) and the phase difference operator,
Part II discusses the estimation process and the mathematical
derivations without taking into account the details related to the
realization which are described in Part III. That more practical
Part III presents the algorithm using the mean squared phase
to jointly estimate the position and a shape parameter of the
Liljencrants-Fant glottal model. Then, the computation of the
phase difference is detailed. The last Part IV evaluates precision
and robustness of the proposed methods with synthetic and EGG
signals. The estimation of the glottal source by inverse filtering
is discussed and two examples of real signals conclude the eval-
uation part.

II. VOICE PRODUCTION MODEL AND PHASE MINIMIZATION

The shape and position parameters of a glottal model are es-
timated in an optimization context by means of error minimiza-
tion: given hypothetical parameters , the VTF is first com-
puted according to the voice production model. Then, to repre-
sent the differences between the observed signal and the voice
model, the convolutive residual is used. Finally, the error related
to is computed using the Mean Squared Phase (MSP)
of the convolutive residual. Below, each step of the estimation
process is described and the conditions of convergence are dis-
cussed. The presentation of the methods using the difference
operator concludes this theoretical part.

A. Voice Production Model

Within a given window, the voiced signal is assumed to be
stationary and periodic with a fundamental frequency . There-
fore, one can build a discrete spectrum where the -bins rep-
resent all the available -harmonics in this window. Using this
single period representation, we express the voice production
model as follows:

(1)

where represents the time position of the glottal shape
in the period. is a mixed-phase spectrum representing the
shape of the glottal source. In the following, will represent
a glottal model where its shape is parametrized by . is a
minimum-phase filter corresponding to the VTF (the minimum-
phase property is denoted by the negative sign). Finally, is
the filter corresponding to the lips radiation. This filter can be
modeled with a time derivative and therefore [8], [22].

B. Estimation Process

First, we define as a function computing the minimum-
phase version of a given spectrum:

where is the Discrete Fourier Transform and the min-
imum-phase cepstrum is computed from the power cep-
strum corresponding to the spectrum [23]:

and

where is the inverse Discrete Fourier Transform. Note
that has no linear-phase component since is min-
imum-phase. Additionally, this function is multiplicative (i.e.,

). Then, using
and the voice production model (1), by inverse filtering

in the frequency domain, one can derive an expression of the
VTF which depends on the shape parameter of a given glottal
model:

(2)
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Note that this VTF model does not represent the real VTF be-
cause this representation is reduced to harmonic frequencies.
This VTF expression (2) can be replaced in the voice production
model (1) to derive the convolutive residual , the ratio of
the observed spectrum by the model spectrum:

(3)

In the first proposed method of this paper, the Mean Squared
Phase (MSP) of this convolutive residual is minimized to obtain
the optimal parameters which best fit the observed spectrum:

(4)

The multiplicative property of allows us to write (3)
as:

(5)

One can see that the calculation of the convolutive residual flat-
tens the amplitude spectrum of and by their respective
minimum-phase versions. is thus all-pass for any chosen
glottal model and its parameters: . Con-
sequently, an error of the parameters affects only the phase spec-
trum of . Additionally, tends to a Dirac delta when
its phase spectrum is minimized because the Dirac delta has a
flat amplitude spectrum and a zero phase spectrum. Therefore,
the smaller the phase spectrum of the convolutive residual, the
closer the model is to the observed spectrum. Using a Liljen-
crants-Fant (LF) glottal model ([5], p. 19), [24], [3] parame-
trized by the single shape parameter [2], Fig. 1(a) shows
an example of MSP computed on a synthetic speech
signal (see IV for more details on the synthesis).

C. Conditions of Convergence

In this section, we assume that the shape of the real glottal
source can be correctly represented by our chosen glottal
model with an optimal parameter . In this context, it is
important to known which properties of the glottal model are
necessary to ensure the convergence of to the optimal pa-
rameters . In the computation of the convolutive residual
(3), the observed spectrum can be replaced by the voice pro-
duction model (1) with optimal parameters:

(6)

Then, by distributing to the terms of its argument,
the VTF terms cancel from the previous equation because

. Therefore, (6) can be rewritten as

(7)

First, according to (7), note that the error function of (4) is
periodic with respect to since the position error term is peri-

Fig. 1. Examples of Mean Squared Phase (MSP) computed on a syn-
thetic signal. In the upper plots, the darker the color, the smaller the error.
(a) ������� �� ���. (b) MSPD���� �� ���. (c) MSPD ���� ���.

odic. Therefore, looking for an optimal position in the interval
is sufficient.

Second, we need to express the condition which, if satisfied,
ensures that the shape parameter influences the shape error: The
zeros inside the unit circle in and are always canceled
by their corresponding expressions. However, a zero out-
side of the unit circle in can be canceled only by . Con-
sequently: influences if influences at least one zero
outside of the unit circle in .

Finally, we need to express the condition which has to be
satisfied to ensure that the shape and the position do not offset
each other, at least theoretically: it is sufficient to ensure that
the shape error has no linear-phase component. has a
linear-phase which depends on the zero-time reference given
by the definition of the glottal model. Therefore, if influences
that linear-phase component, a residual linear-phase exists in

which biases the position error. To have no offset
effect, the condition is: does not influence the linear-phase
component of the glottal model. Note that, using the Liljen-
crants-Fant model, this condition is satisfied if the zero-time
reference is set to the instant ([5], p. 19), [24], [3].

The next two paragraphs describe the main biases which af-
fect the presented methods as well as voice analysis in general:

1) Vocal-Tract Filter Reconstruction: One of the main is-
sues is the sampling of the VTF frequency response by the har-
monic structure of the excitation source. To ensure (2) gives a
good approximation of the VTF, the cepstral coefficients of the
VTF above the quefrency have to be negligible. Therefore,
one can expect a rough approximation with high fundamental
frequency (see Section IV.A.1). Additionally, the lips radiation
creates a zero at zero-frequency in the z-transform of the voiced
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signal. In (2), the DC of the argument of is undefined.
Therefore, this DC value has to be extrapolated from the lowest
harmonics. Here, we simply used .

2) Minimum-Phase Reconstruction: In order for (2) to give a
good minimum-phase estimate, the Nyquist frequency has to be
as high as possible. Additionally, in a real signal, the noise level
exceeds the harmonic level in high frequencies. The number of
available harmonics in an observed spectrum can thus be dras-
tically reduced. In this paper, we assume that the lack of har-
monics in high frequencies, due to the Nyquist frequency or
the noise level, does not influence significantly the lowest har-
monics of the convolutive residual.

D. Difference Operator for Phase Distortion Measure

To detect Glottal Closure Instants (GCI), it has been shown
that the group-delay can be used instead of the phase [15]. In
this section, we propose to apply this idea to the estimation of
the shape parameter. Since we used only harmonics in (3), we
use the difference operator with respect to the phase of these
harmonics to approximate the frequency derivative of the phase

The corresponding objective function to minimize is the mean
squared phase difference (MSPD)

MSPD (8)

Applying the difference operator to (7) leads to

(9)

Compared to (7), one can see that the linear-phase error is no
longer weighted by the harmonic number . Moreover, this con-
ditioning is also promising for estimating the shape parameter
because it represents linearly the time shifting of a given fre-
quency. Using the LF model, Fig. 1(b) shows an example of
MSPD . Although the influence of and seems
better balanced compared to 1(a), the two parameters are highly
dependent on each other. Indeed, the position error in (9) can
fit the average value of the phase distortion of the shape error.
Without the difference operator, the harmonic number weights
the MSP error function and constrains on its ideal value. The
example of Fig. 1(a) shows that the optimal value is not af-
fected by (a straight horizontal trench is visible at ).

Finally, using the second-order phase difference , the po-
sition parameter can be removed from the convolutive residual

(10)

However, the first-order frequency derivative representation
which emphases the phase distortion by the shape error has to

be retrieved. The anti-difference operator is thus used
and the corresponding objective function to minimize is

MSPD (11)

where is computed using (3) ignoring the linear-phase term.
Note that, by minimization of MSPD , the shape parameter
can be optimized whatever the position of the glottal model.
Fig. 1(c) shows an example of MSPD .

III. METHODS

First, the spectrum of a voiced segment is computed with a
blackman window and the discrete Fourier transform (DFT). A
window of only one period would estimate the complex coef-
ficients directly. However, such a duration is not suitable
since the convolutive effect of the window in the spectral do-
main has to be negligible compared to the harmonic amplitudes
and phases of the underlying signal we need to represent. There-
fore, four periods are used and a harmonic model is built from
the DFT of these periods [25]. The amplitude and phase of the

th-harmonic are obtained using the amplitudes and phases of
the neighbor bins of in the DFT. A parabola is fitted to the
amplitudes of the bins to estimate the harmonic amplitude and
the harmonic phase is obtained by linear interpolation.

To synthesize , the Liljencrants–Fant (LF) glottal
model is used [5, p. 19], [24], [2], [3]. The time and amplitude
scaling parameters are the fundamental frequency and the
excitation amplitude , respectively. We assume to be
known a priori. Numerous methods can be used to compute
it from the voiced signal directly (ex. YIN [26], Swipep [27],
harmonic matching [28]). Moreover, regardless of the value,
the amplitude spectrum of the convolutive residual is always
equal to one. Therefore, the proposed methods estimate the
shape parameter independently of this value. The shape of the
LF model is controlled by three parameters . It
can be interesting to estimate these three shape parameters.
However, in terms of error minimization of an AutoRegressive
model with eXogenous input (ARX), it has already been shown
that the effect of can be partially offset by [29]. Addi-
tionally, the same has been shown from measurements of the
first two harmonics [30]. Such a relation creates ambiguities
between pairs of parameters raising serious estimation issues.
In our experiments with the phase minimization, we encounter
the same issues. Consequently, in this paper we focused on
the methods to estimate glottal parameters. Investigating the
existing glottal models and the estimation of their multiple
parameters should be the subject of a dedicated study. Ac-
cordingly, we used the relaxing shape parameter to reduce
the shape parameter space to a single meaningful curve [2],
[5]. When tends to big values, the time-derivative glottal
model approaches a period of a sinusoid. If tends to small
values, it approaches roughly a negative Dirac delta. In the
context of this presentation, it is important to note that this
drastic reduction of the LF model shape space implies that the
methods, as presented in this paper, can be applied to a reduced
number of voices.
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A. Iterative Algorithm Using MSP

To minimize , since only two variables are
estimated, only a small number of harmonics should be neces-
sary to find the global minimum of the corresponding error sur-
face. However, the glottal model definitely does not correspond
perfectly to the real glottal pulse. Therefore, an average solution
with the different contributions of all the available harmonics is
preferable. is therefore set to , where is the
Nyquist frequency or a voiced/unvoiced frequency (VUF) [31].
As one can see in Fig. 1(a), the error function corresponding to
a linear-phase deviation is a deep and narrow valley in a noisy
neighborhood. In such an error surface, the search for a global
minimum is difficult. However, the high-frequency behavior of
the error function comes from the high frequencies of the con-
volutive residual. Therefore, to smooth down the error function,

is first low-passed at the third harmonic . Then,
a preconditioned conjugate gradient (PCG) algorithm is used
to find the nearest minimum of the error function from starting
values. Then, is increased one harmonic by one harmonic up
to its maximum value while using the PCG algorithm at each
incrementation to refine obtained at the preceding step
(see Algorithm 1 and Fig. 2). In order to start this optimization
method, initial values are necessary. Therefore, the results of
this method depend on the choice of these initial values.

Algorithm 1 Iterative algorithm using

Build using a sinusoidal model

Initiate and with rough estimates

for to do
repeat

Synthesize with LF model and

Compute the VTF with (2)

Compute convolutive residual with (3)

Compute MSP with (4)

until PCG algorithm find a minimum of

end for

B. Phase Difference Computation for MSPD and MSPD

To avoid any problems with the phase wrapping in a limited
range (ex. ), the phase difference operation of (8) is com-
puted in the complex plane

From our observations with synthetic signals, the function
MSPD has always only one minimum. However,
with real signals, since the glottal model does not always
correspond to the real glottal pulse, more minima can exist.
Algorithm 1 is not necessary in order to find the global min-
imum of MSPD , since the position error is not
weighted by the harmonic number as in MSP. Instead, a regular

Fig. 2. Error surface corresponding to ������� ���� while increasing � .
Starting values of each step are indicated with a circle and preconditioned con-
jugate gradient (PCG) final step with a cross.

preconditioned conjugate gradient method can be used with
.

To minimize MSPD , the second-order phase differ-
ence centered on each th-harmonic is first computed in the
complex plane

Then, applying the anti-difference operation, the previous equa-
tion leads to

Finally, like the MSPD error function, MSPD has usu-
ally only one minimum with . A Brent’s al-
gorithm [32] is therefore used to find the global minimum of
MSPD . Note that no initial values are necessary for
this optimization method.

IV. EVALUATION

First, the influence of the fundamental frequency on the
proposed methods is evaluated using synthetic signals. Second,
glottal and environment noise are used for the estimation of
the reliability of the proposed methods. Then, the methods are
compared to EGG signals with real speech signals. The GCIs
estimated by the method using MSP are compared to reference
GCIs computed from EGG signals. Since the EGG signals
are close to a ground truth, we consider that the evaluation of
the detected GCIs with synthetic signals is not necessary. The
estimated shape parameters using MSP and MSPD are also
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compared to the open quotient computed from EGG signals
( in [3]). Finally, the estimation of the glottal
source by inverse filtering is discussed and two examples of
parameter estimates on real speech recordings are shown.

In the evaluation tests with synthetic and EGG signals, three
other methods are compared with the proposed ones.

1) The Iterative Adaptive Inverse Filtering (IAIF) [4], [17]:
This method is designed to estimate the glottal source and
not directly the parameters of a glottal model as in the pro-
posed methods (see Fig. 7). In order to obtain parameter
estimates of a glottal model, the LF model is fitted to the
estimated source with a preconditioned conjugate gradient
(PCG) algorithm by minimizing the mean squared error in
the time domain. In its original implementation available
in the Aparat toolkit [33], the three LF shape parameters
are estimated as well as the excitation amplitude . To
obtain a valuable comparison with the proposed methods,
that implementation has been replaced in order to estimate
the shape parameter (note that, has to be estimated
jointly with because the mean squared error is sensi-
tive to the glottal model amplitude). Additionally, the fit-
ting process has been corrected according to the assump-
tions made by the PCG method. First, the error function
has to be continuous. The position of the pulse is thus op-
timized using a linear-phase on the spectral representation
of the glottal model and not with an integer shift of its time
domain representation. Second, the dependency between
the optimized parameters has to be as small as possible.
Whereas the original implementation optimizes the time
domain parameters which are both dependent on
the linear-phase of the glottal model, the implementation
used in this presentation optimizes the linear-phase of the
glottal model and the parameter, which does not influ-
ence this linear-phase. Finally, in order to obtain a smooth
influence of the time position of the glottal model on the
error function, the mean squared error is weighted in time
domain by a two-period Hanning window centered on .
Taking into account these considerations, the results of the
IAIF have been significantly improved.

2) Complex Cepstrum (CC) and ZZT: The minimum/max-
imum-phase decomposition by means of the complex cep-
strum has been already proposed to retrieve the maximum-
phase component of the glottal pulse [11]. However, this
method is known to be sensitive to the unwrapping of the
phase spectrum involved in the computation of the complex
logarithm. Bozkurt et al. [12] proposed to use the Zeros of
the Z-Transform (ZZT) to obtain this decomposition but
noise seems to also decrease the efficiency of this method
[34]. Like the IAIF method, these two methods estimate
the glottal source and not directly the parameters of the
glottal model. Therefore, in this evaluation section, the LF
fitting process discussed above for the IAIF method is used
on the glottal source estimated by the CC and ZZT-based
methods. In plots at the bottom of Fig. 7, one can see
that the glottal pulse is damped to the left by the analysis
window used in the decomposition algorithm. Therefore,
during the fitting of the LF model, the same window is ap-
plied to the glottal model in order to reduce a possible bias

between the observed pulse and its model. In this paper,
the implementations of the CC and ZZT decomposition
methods are the ones used in [35].

In the following, for all of the compared methods, the ana-
lyzed signal is resampled to 16 kHz and the error measure is
limited to a voiced/unvoiced frequency fixed to 2 kHz. For syn-
thetic signals, this value is kept constant in order to have all of
the compared methods equally affected by this limit. The influ-
ence of this value on the results of the methods is discussed for
real signals in Section IV-B2.

A. Synthetic Signals

The synthetic signal (12) is controlled by the LF shape pa-
rameter , the delay between the first GCI and the start of
the signal, the known fundamental frequency , one Gaussian
noise called glottal noise of standard deviation added
to the glottal source and one Gaussian noise called en-
vironment noise added to the voiced signal. Filters are
designed to model 13 different voiced phonemes covering
the vocalic triangle. Among these phonemes, four are nasal-
ized. The transfer function of is computed using the
Maeda’s digital simulator [36]. The main advantage of such
VTF models compared to estimated frequencies and bandwidths
of autoregressive models on real speech signals is the com-
plete independence of the generated formants from the influ-
ence of the source. The following synthetic voiced signal can
thus be generated:

(12)

where is the discrete-time Fourier transform and
its inverse. The amplitude of the Gaussian noise is set so as to
control the signal-to-noise ratio (SNR) with either the glottal
source or the voiced signal.

1) Error Related to the Fundamental Frequency: In this first
test, knowing the issue raised by the sampling of the VTF fre-
quency response by the harmonic structure of the source (see
Section II-C), the influence of the fundamental frequency on the
reliability of the estimators is evaluated. For each value, the
estimation error of the compared methods is computed for the
13 VTFs and a random delay . For the methods using MSP
and MSPD, the initial shape value is given by the method using
MSPD and the initial position is given by the ideal value
delayed by a random variable in to simulate
an initial error of position. The error is computed eight times
with different initial positions in order to obtain a valuable sta-
tistical estimate of the mean and standard-deviation of the error.
Finally, to focus on the influence of , the noise signals are set
to zero. Fig. 3(a) and (b) shows the mean and the standard-de-
viation of the estimation error.

As expected, the variance of the estimators increases with
since the sampling of the VTF by does not provide enough
information to reconstruct the VTF perfectly. The MSPD is
the worst of the proposed methods because the position pa-
rameter can offset the shape error as discussed in Section II-D
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Fig. 3. (a) and (b) Mean and standard-deviation of �� error with respect to � . (c) and (d) Standard-deviation of �� error with respect to � and � . Theoretical
limits are given through the mean estimator: in plots (b), (c), and (d) The mean method return the mean value of the �� parameter range, without taking into
account the input; in plot (a), the black thin lines represent the mean absolute error of the mean estimator. (a) Fundamental frequency. (b) Fundamental frequency.
(c) Environment noise. (d) Glottal noise.

(This method is thus discarded in the evaluation using real sig-
nals). Additionally, the second-order phase difference of the
MSPD and MSPD removes the information provided by the
average phase spectrum of the glottal model. Therefore, the
method based on MSP is more precise than the two other pro-
posed ones. Moreover, in the two last ones, the phase frequency
derivative is approximated by the difference operator using dis-
crete frequencies.

2) Error Related to the Noise Levels: This second test evalu-
ates the influence of the noise levels and on the compared
methods. To obtain a valuable statistical evaluation according
to these levels, the error is computed 16 times for each value
with the 13 different VTFs and a random position . To focus
on the influence of the noises, is fixed to 128 Hz. In addition,
when one noise is tested, the other one is set to zero. The results
are shown in the right plots of Fig. 3.

One can see that, for equivalent SNRs, the efficiencies of
the estimators are less disturbed by environment noise than by
glottal noise. Moreover, the efficiencies of all of the methods
decrease rapidly when increasing the glottal noise level. This
can raise a serious issue in the presence of turbulence noise in
breathy vowels. Moreover, for low noise levels the most reliable
methods are the proposed ones. However, for important envi-
ronment noise, the IAIF method is the most robust although its
efficiency reduces significantly with glottal noise. The results of

the CC and ZZT methods are close to each other. These methods
are outperformed by the other methods in low noise conditions
whereas, in high noise conditions, their efficiencies are between
those of methods using MSP and MSPD .

B. Comparison With Electro-Glotto-Graphic Signals

The EGG is a non-invasive tool used in phoniatry to retrieve
features of the motion of the vocal-folds. Among these features,
one can obtain the instants of closure of the glottis (GCI) using
the SIGMA method [37]. Additionally, the open-quotient
can be estimated using the DECOM method [38]. Assuming
high correlation between the glottal source and the motion of
the vocal-folds, reference sets of GCIs and parameters can
be created and compared to the estimation of the parameters of
the proposed methods (in the evaluation, more than 5000 com-
parison pairs are used). In the following, the initial values used
by the Algorithm 1 using MSP are given by the MSPD and
the GCIGS [39] methods. The fundamental frequency is es-
timated using the YIN method [26]. Moreover, the evaluation
is made on voiced segments only and these segments are com-
puted from the EGG signal: a time in the EGG signal is defined
voiced if there is a reference GCI closer than half a period.

1) Evaluation of GCI Estimates: The reference GCIs of the
EGG signal are compared to the GCIs described by the LF
model ( instant in [5, , p. 19], [24], and [3]). Additionally, due
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Fig. 4. Evaluation of GCI estimation methods with Arctic Databases. STD is
the standard-deviation computed through the interquartile range of the duration
between the reference and the detected GCIs, given in milliseconds [ms] and in
percent of the period �%� �. The gross error rate (GER) is the percent of that
same durations���� � � .

to the propagation time between the EGG and the waveform, the
reference GCIs and the detected GCIs are synchronized for each
utterance by maximizing their correlation. Four methods are
compared: the proposed method using MSP, the previously pro-
posed method using a glottal shape estimate (GCIGS) [39], the
DYPSA method [14] and another method based on group-delay
(GD) [15], [18]. Fig. 4 shows the evaluation results on three
CMU Arctic databases [40]. Note that each database is made
of only one voice.

In conclusion, as expected, the method based on MSP slightly
improves the precision of the GCIGS method. Indeed, by joint
minimization of the shape and the position, the phase spectrum
of the convolutive residual is closer to linear than without joint
estimate. However, the GCIGS method assumes that a promi-
nent peak exists in a period of the time derivative of the glottal
source [39] whereas the method based on MSP assumes that
the whole phase spectrum of the glottal source corresponds to
the one of the LF model. The hypothesis of the GCIGS method
is thus weaker than the hypothesis of the MSP-based method.
With real signals, it can explain why the GCIGS method is more
robust than the MSP-based method (less gross error). Finally,
compared to the state of the art, the joint estimation of the shape
and the position seems not to improve the results much more
than the GCIGS method does. Removing the source amplitude
when computing the VTF has much more impact on the results
(has been done in both GCIGS and MSP) than using the phase
spectrum of the LF model (has been done with MSP only).

2) Evaluation of the Shape Parameter Estimate: The open
quotient measured on EGG signals can be compared to the
one predicted from the estimated parameter (using the pre-
diction formula in [2]). Note that the weighting of the error func-
tions varies among the compared methods. The methods based
on glottal source estimation (i.e. IAIF, CC, and ZZT) weight
the mean squared error of the LF fitting in the spectral domain
according to the estimated glottal source. The glottal formant

Fig. 5. Mean over the three databases of the median and standard-deviation of
the � estimation error related to the number of harmonics taken into account
in the error measure.

around the first three harmonics is thus reinforced compared to
the spectral tilt in high frequencies. Conversely, in the proposed
methods, the weighting of the mean squared phase is uniform.
In order to evaluate the influence of the weighting on the effi-
ciencies of the estimators, Fig. 5 shows the estimation error
related to the number of harmonics taken into account in the
error measure.

According to this figure, although it can be interesting to esti-
mate the high-frequency properties of a glottal model (ex. spec-
tral tilt), increasing the frequency band in the error measure
seems to substantially decrease the efficiency of the MSP-based
method. More generally, all of the methods have the same be-
havior except IAIF. Additionally, the method using MSPD out-
performs all of the compared methods. Note that, conversely to
the evaluation with synthetic signals, the MSPD outperforms
the MSP-based method in this comparison with real signals. Al-
though the optimization algorithm 1 might not find the optimum,
a grid search algorithm has shown the same results for the MSP.
Therefore, we assume that the following can explain this differ-
ence of results: The difference between the glottal model and
the real glottal pulse introduces a distortion in the phase spec-
trum of the convolutive residual. With the method using MSP,

and can offset each other in order to minimize the error
function. Conversely, the MSPD can be systematically biased
by this distortion but it has a smaller variance. In Fig. 5, the
significant difference between MSP and MSPD median values
support this explanation.

According to Fig. 5, one can select the number of harmonics
implying the smallest variance for each method: 5 for MSP, CC
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Fig. 6. Standard-deviation of the � estimation error (computed through the
interquartile range).

and ZZT; 6 for MSPD ; and 7 for IAIF. Fig. 6 shows the cor-
responding standard-deviations of the methods for each data-
base separately. In conclusion, whereas the results of the MSP-
based method vary significantly among the evaluated voices, the
method using MSPD clearly outperform all of the compared
methods.

C. Glottal Source Estimation

The estimation of the glottal source is a straightforward ap-
plication of the estimation of a glottal model. In this section, we
will focus on the radiated glottal source, the time derivative of
the glottal source. Conversely to IAIF, CC, and ZZT methods,
the proposed methods do not estimate the glottal source explic-
itly before estimating the glottal model parameters. However,
using the estimated parameters, the radiated glottal source
can be retrieved through the VTF expression (2):

Examples of are shown in the top of Fig. 7. Note that the
function changes only the phase spectrum of its argu-
ment. The amplitude spectrum is kept. Therefore, in terms of
amplitudes, one can write the previous equation as

Consequently, the amplitude spectrum of the estimated radi-
ated glottal source is the one of the radiated glottal model. Only
the phase spectrum can reveal behaviors of the underlying real
glottal pulse. Additionally, compared to the other methods, the
proposed methods use a harmonic model for both the observed
signal and the VTF estimate. Therefore, only a single period
of the glottal source can be represented. Conversely, the IAIF
method estimates an autoregressive filter (using the discrete all-
pole method (DAP) [10]) in order to obtain a representation of
the VTF which covers all the frequencies. The speech signal
can thus be inverse filtered to retrieve multiple periods of the
glottal source (four periods in Fig. 7). The glottal source esti-
mated by CC or ZZT is made of two periods because the de-
composition algorithm has to avoid zeros made by the period-
icity of the speech signal [35]. Its anti-causal part contains the
estimated maximum-phase component and the causal part re-
mains to zero. One can see that the ripples in the estimated

Fig. 7. Estimation of the glottal source in thin solid black line using MSP, IAIF,
and ZZT. The synthetic glottal pulse is shown in dashed lines and the estimated
LF pulse in thick gray line.

glottal source are more significant with the IAIF method be-
cause of the lack of precision of the DAP method. Conversely,
the MSP-based method shows nearly no ripples because the
VTF expression is based on the amplitudes of the harmonic
model which can be estimated almost perfectly. Ripples made
by the CC or ZZT methods are difficult to evaluate because the
anti-causal part is damped by the analysis window and the causal
part is set to zero by the decomposition algorithm.

D. Examples on Recordings

Fig. 8 shows estimated values of real recordings using
MSP and MSPD . A sustained open /e/ from breathy to tense
phonation is shown in the upper plot. As expected from the
physiological behavior of the vocal folds, the estimated
value moves from a relaxed shape to a more tense shape. The
bottom plot shows the start of the first utterance of the Arctic bdl
database: “Author of the danger ”. In the speech utterance,
one can see that significant changes of the parameter exist
in short time intervals. We can see two different explanations.
First, the harmonic model can be erroneous in transients (see
time 0.35). Second, if the GCI is misestimated, the estimate
is also misestimated by the MSP-based method (time 0.74).
However, one can see that the voice quality can vary inside a
single phoneme (see interval [0.9; 1.1]).
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Fig. 8. Examples of �� estimates on real recordings: The upper plot shows
a sustained open /e/ from breathy to tense phonation. The bottom plot shows
the analysis of the utterance “Author of the danger �� � ��”. The estimate using
MSP in plain line and the estimate using MSPD in dashed line. The � value
computed from the EGG is shown in thin line.

V. CONCLUSION

We argued that the main difference between the glottal
source and the vocal-tract filter is their mixed-phase and
minimum-phase property. Accordingly, we showed that this
difference can be used in the estimation of the shape parameter
of a glottal model. First, a method minimizing the mean squared
phase (MSP) of the convolutive residual of a voice model has
been proposed to jointly estimate the shape parameter and
the time position of a glottal model. In order to estimate the
parameters of a given glottal model with the proposed methods,
we discussed the conditions which have to be satisfied by the
glottal model and its parametrization. Second, to estimate the
shape parameter only, we saw that the glottal model position
can be ignored using the second-order phase difference with
respect to the harmonics (leading to the method using MSPD ).

Using synthetic and EGG signals the efficiencies of the
proposed methods were evaluated. In terms of GCI detection,
the method using MSP outperformed the compared methods
and slightly improved the efficiencies of a previously proposed
method. However, its robustness can be lower than the other
methods because it is possible that the phase of the LF model
does not correspond to the phase of the real source. To evaluate
the shape parameter estimates, the proposed methods have been
compared to the IAIF, Complex Cepstrum, and ZZT methods.
The last methods estimate the glottal parameters after a separa-
tion of the Vocal-Tract Filter and the glottal source whereas the
proposed methods jointly estimate the shape parameters of the
glottal model and a representation of the VTF. Additionally,
we saw that the weighting of the error functions involved in the
different methods influences the efficiencies of all the methods.

In order to obtain the best efficiencies for each of the compared
methods, the number of harmonics taken into account in the
error functions must not exceed 6. In conclusion to the evalua-
tions, whereas the method based on MSP seemed to imply more
precise estimates using synthetic signals, evaluation with EGG
signals showed that the method using MSPD outperformed
all the compared methods. Moreover, in addition to being
independent of the glottal model position, another advantage
of the MSPD is that it does not need initial values. Finally,
the estimated glottal source using the proposed method showed
less ripples compared to the IAIF method and two examples on
real recordings showed that the estimated values are highly
correlated to the breathy/tense voice quality.
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