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Abstract

In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be excited by a flat ampli-
tude spectrum. In this article, we present a method using a mixed source model defined as a mixture of the Liljencrants–Fant (LF) model
and Gaussian noise. Using the LF model, the base approach used in this presented work is therefore close to a vocoder using exogenous
input like ARX-based methods or the Glottal Spectral Separation (GSS) method. Such approaches are therefore dedicated to voice pro-
cessing promising an improved naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral
division like in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX approach
where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the amplitude spectra of both
deterministic and random components of the glottal source. The proposed mixed source model is controlled by a small set of intuitive
and independent parameters. The relevance of this voice production model is evaluated, through listening tests, in the context of resyn-
thesis, HMM-based speech synthesis, breathiness modification and pitch transposition.
! 2012 Elsevier B.V. All rights reserved.
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1. Introduction

For voice transformation as well as for speech synthesis,
it is preferable to manipulate the perceived elements of the
voice rather than to model all of the details of its produc-
tion. For this purpose, the source-filter model offers an
interesting decomposition scheme (Miller, 1959). Basically,
this model represents the acoustic source coming from the
glottis by a signal which is then filtered by the resonances
and anti-resonances of the vocal tract structures, namely
the Vocal Tract Filter (VTF) (see Fig. 2). In order to
manipulate the elements of this model, their separation

from an observed acoustic signal (i.e. the inversion of the
model) is a necessary preliminary step. Using spectral
division, the simplicity of the inversion of the source-filter
model is also attractive. Indeed, to recover the source or
the filter, the speech spectrum can be divided in the fre-
quency domain by estimates of the VTF or the source spec-
trum respectively instead of using deconvolution of time
series. Using this model, there are currently mainly two dif-
ferent approaches to transform a voice recording: On the
one hand, a part of the original signal can be reused in
the transformed signal. For example, combined with a
smooth envelope estimate (e.g. Linear Prediction (Markel
and Gray, 1976), “True-Envelope” (Roebel et al., 2007;
Imai and Abe, 1979)), the phase vocoder preserves a part
of the original phase spectrum in the transformed wave-
form (Flanagan and Golden, 1966). Additionally, the
methods based on Pitch-Synchronous-OverLap-Add (PSO-
LA) assume that the signal inside a single window can be
used without being modeled (Valbret et al., 1992; Hamon
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et al., 1989). In the following, these methods will be termed
modification methods. On the other hand, in encoding/
decoding methods, the speech waveform is fully encoded
into a small set of parameters. The model is built so as this
set is optimal in terms of information compression, optimal
in terms of reconstruction of the perceived elements or
meaningful in the control of its elements. For example, a
speech segment can be parametrized using a set of sinu-
soids (McAulay and Quatieri, 1986) which can also be har-
monics or quasi-harmonics in the case of monophonic
signals (Pantazis et al., 2010; Stylianou, 1996). This seg-
ment can be also represented using a wideband spectrum
where smooth envelopes of the amplitude and phase spec-
tra have to be estimated (e.g. WBVPM (Bonada, 2008),
STRAIGHT (Banno et al., 1998; Kawahara et al., 1999))
or modeled using a formant representation (Rodet et al.,
1984). Finally, many encoding/decoding methods using a
glottal model, an analytical formulation of the glottal pulse
(see Fig. 1), have been proposed to represent the determin-
istic component of the glottal source (e.g. AutoRegressive
eXogenous input (ARX) methods) (Agiomyrgiannakis
and Rosec, 2008; Vincent et al., 2007; Hedelin, 1984); Glot-
tal Spectral Separation (GSS) (Cabral et al., 2008, 2011,
2010). In addition to the deterministic component, the
vocal tract is also excited by aspiration noise which appears
mainly in high frequencies. In both sinusoidal methods and
methods based on glottal model, the noise component can
be modeled using an amplitude modulated Gaussian noise
convolved by an AR envelope (Agiomyrgiannakis and
Rosec, 2008; Laroche et al., 1993). For wideband spectrum
models, the noise can be also segmented in multiple fre-
quency bands using a measure of aperiodicity (Kawahara
et al., 2001; Banno et al., 1998; Griffin and Lim, 1988).
To circumvent the lack of precision of glottal models and
also to model the noise at the same time, hybrid models

using for example ARX and harmonic models have been
proposed (Agiomyrgiannakis and Rosec, 2009; Vincent
et al., 2007).

Current modification methods achieve excellent results
in voice transformation, especially for time stretching.
However, in the case of important transformation (e.g.
one octave pitch transposition), artifacts often appear
showing underlying limitations of the models. Indeed,
one can expect that modification methods are less sensitive
to modeling errors by keeping part of the original signal
unchanged. This unmodelled part limits however the flexi-
bility of the modification methods. For example, using
PSOLA the VTF is not explicitly modeled, since the
impulse response of the VTF is forced to decay by the win-
dows which are especially short (2 periods length). The
drawback of this method is therefore the lack of resonances
in downward pitch transpositions. Conversely, although
encoding/decoding methods can be more sensitive to esti-
mation error of their parameters, they should be more flex-
ible. Indeed, only a full modeling of the speech signal can
allow a full control of its perceived elements. Although
the modification and encoding/decoding methods cited
above are applied to voice processing, most of these meth-
ods could be applied to any pseudo-periodic signal. One
can therefore expect that a model which is more dedicated
to voice production better respects some physiological or
acoustic constraints. For example, it is interesting to take
into account the amplitude spectrum of the glottal source
for the estimation of the VTF contrary to most of the cur-
rent methods which assume that the voice source is made of
a flat amplitude spectrum. Accordingly, the methods using
glottal models have been proposed (e.g. ARX and GSS
methods). However, ARX methods are far from straight-
forward to implement and depend on a reliable estimation
of the glottal model parameters which are high-level

Fig. 1. Examples of the time-derivative of the glottal pulse represented by the transformed Liljencrants–Fant glottal model. Top plots show the temporal
shapes and bottom plots show the corresponding amplitudes spectra with three Rd parameters corresponding to tense (Rd = 0.3), normal (Rd = 1) and lax
sources (Rd = 2.5). The glottal closure instant is shown by te, the opening instant by ts and the frequency of the glottal formant by F g.
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descriptors of the voice source and thus sensitive to inver-
sion errors (Cabral et al., 2011; Degottex, 2010; Agiomyrgi-
annakis and Rosec, 2008). Therefore, the transformation
and synthesis of the voiced signal using a glottal model is
still a challenging question.

According to the above arguments, we developed and
present in this article an encoding/decoding method using
a glottal model. The Transformed Liljencrants–Fant glot-
tal has been used to represent the deterministic component
of the source whose shape is parametrized by a single shape
parameter Rd conversely to the original version which uses
3 shape parameters (Fant, 1995), see Fig. 1. Our work was
focused on using a glottal model and not on glottal models
themselves. We therefore chose the widest used and studied
glottal model, the Liljencrants–Fant (LF) model (Fant
et al., 1985). Additionally, according to the difficulties
encountered in parameters estimation of glottal models,
we also decided to work with a meaningful reduced shape
space using the Rd parametrization which is, according to
Fant (1995), the most effective parameter to describe voice
qualities into a single value. Testing various models and
parameter configurations should be investigated in a dedi-
cated study. To represent the random component of the
source, zero-mean Gaussian noise is used. During synthe-
sis, this noise is also amplitude modulated to improve its
naturalness. Since deterministic and random components
have different spectral properties, we also adapted the esti-
mation of the VTF by taking into account this mixed
source model. The whole procedure is called Separation
of the Vocal tract with the Liljencrants–fant model plus
Noise (SVLN).

Compared to the state of the art, the following points
can be noticed. ARX methods jointly estimate the glottal
parameters together with the VTF model parameters
(e.g. an all-pole model). Conversely, in the proposed
SVLN method, the glottal model parameters are first esti-
mated in order to obtain an estimate of the glottal source
spectrum, then the VTF is estimated by means of spectral
division. Basically, the chosen approach is therefore very
similar to the GSS method, where the spectral envelope
of the signal is first obtained using STRAIGHT and the
VTF estimate is then retrieved by means of spectral divi-
sion using a glottal model. Compared to the ARX
approach, spectral division is particularly promising since
it allows to use any spectral envelope method indepen-
dently of the method to estimate the parameters of the
glottal model, and thus better separates the problems
related to the estimation of the source and that of the
VTF. Two main differences also exist between GSS and
SVLN. Concerning the deterministic component, even
though the LF glottal model is used in both methods,
GSS uses the full parameter set (open-quotient, asymmetry
and return phase) whereas SVLN uses the reduced version
parametrized by Rd. The noise component in voiced seg-
ments is also modeled differently. In GSS, the aperiodicity
measurement provided by STRAIGHT (Kawahara et al.,
2001) is first used to generate a weighting function across

frequency which then balances the deterministic and ran-
dom components. Conversely, SVLN splits the spectrum
in only two frequency bands using a Voiced/Unvoiced Fre-
quency (VUF) (Drugman et al., 2009b). The lower band
contains mainly the LF model and the upper band con-
tains mainly Gaussian noise. Compared to GSS, SVLN
simplifies therefore both representations of the determinis-
tic and random components. In this article, we will inves-
tigate if this reduction plays an important role in the
quality provided by these methods. Additionally, using
SVLN, we will show results regarding the possibility to
modify the breathiness of a voice as well as to transpose
the pitch of an utterance.

Some parts of this work have been already presented to
conferences and also in the first author’s Ph.D thesis
(Degottex et al., 2011b; Degottex, 2010; Lanchantin
et al., 2010). In this article, we encapsulate the innovative
technical content of these works, we show results of listen-
ing test carried out especially for this article to evaluate the
proposed method and we finally share our conclusions
about voice processing using a glottal model. The next sec-
tion presents the voice production model used in SVLN
and its separation process, the estimation of its parameters.
Follows the description of the overlap-add technique for
the synthesis step. Finally, the SVLN method is evaluated
by means of listening test with comparison to state of the
art methods. Four different evaluation contexts are pre-
sented: resynthesis (a simple encoding/decoding proce-
dure), HMM-based synthesis, breathiness transformation
and pitch transposition.

2. The voice production model

The segments of the speech signal are assumed to be sta-
tionary in a short analysis window wa½t" (of 3:5 periods in
voiced parts with a minimum of 10 ms and a fixed length
of 15 ms in unvoiced segments (fricatives, plosives, silence,
etc.)). A Blackman window will be used during the analysis
step. Moreover, the signal is assumed to be periodic in
voiced segments, where the vocal-folds vibrate. Using the
source-filter model in the frequency domain, we therefore
model an observed speech spectrum SðxÞ computed by
the Fourier transform of the windowed signal as follows
(see also Fig. 2):

SðxÞ ¼ Hf0ðxÞ & GRdðxÞ þ NrgðxÞ
! "

& C!cðxÞ & LðxÞ ð1Þ

where:

Hf0ðxÞ is the harmonic structure modeling a periodic
impulse train of fundamental frequency
f0 : Hf0ðxÞ ¼

P
k2Ze

jxk=f0 .

GRdðxÞ represents the shape of the deterministic compo-
nent of the glottal source in a single period, the Trans-
formed Liljencrants–Fant glottal model. This shape is
parametrized by Rd (Fant, 1995) and its amplitude is
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parametrized by Ee at the instant te (see Fig. 1). Note
that the original definition of this model includes a
time-derivative representing the lips radiation. In the
following, glottal model or LF model stands therefore
for the integral of the LF formulas.
NrgðxÞ is the random component of the glottal source
generated by aspiration noise at the glottis level. This
noise is assumed to obey a Gaussian distribution of
standard-deviation rg in the time domain. jGRdðxÞj
decreasing monotonically and the noise level being
assumed to be constant, jGRdðxÞj and rg cross at a point
called Voiced/Unvoiced Frequency (VUF) in the follow-
ing. Even though this frequency limit appears at the
source level (Fig. 2 top), the VUF appears at the same
frequency at the speech signal level (Fig. 2 bottom) since
the VTF and the radiation effects are linear filters. The
glottal noise has been shown to be amplitude modulated
(Mehta and Quatieri, 2005; Hermes, 1991). However, we
will see that this modulation does not play an important
role in the estimation of the SVLN parameters (and thus
not shown in Fig. 2). Nevertheless, during the synthesis
step, this noise will also be modulated and colored in
order to improve its naturalness.
C!cðxÞ is the Vocal Tract Filter (VTF) representing the
resonances and anti-resonances of the vocal tract. This
filter is assumed to be minimum-phase and parametrized
by a vector of cepstral coefficients !c.
LðxÞ is the filter corresponding to the radiation at the
lips and nostrils level. We assume that this radiation
can be modeled using a simple time derivative and there-
fore LðxÞ ¼ jx (Markel and Gray, 1976).

Consequently, the speech signal is parametrized by
ff0;Rd;Ee; rg;!cg and can be fully encoded using this
parameter set.

3. The analysis step: speech signal encoding

For a given speech utterance, the parameters of the
voice production model are estimated at regular intervals
of 2.5 ms. First, we assume that the spectrum of the glottal
source can be split into a deterministic frequency band and
a random frequency band using a Voiced/Unvoiced Fre-
quency (VUF) (see Fig. 2) (also known as maximum voiced
frequency). This VUF is also assumed to be known a priori
thanks to existing methods (Kim and Hahn, 2007; Stylia-
nou, 2001). In the presented study, this value is estimated
by determination of Voiced/Unvoiced Frequency bands
(Stylianou, 2001 [p. 3]) by means of peak classification of
the speech spectrum (Zivanovic et al., 2008). Compared
to a multi-band source model (Griffin and Lim, 1988) or
a Harmonic+Noise Model (HNM) (Stylianou, 1996), this
decomposition in only two separated frequency bands is
obviously an important simplification of the voice source.
Keeping in mind this reduction, we will see that such a sim-
plification leads to a convenient estimation of the noise
level of the glottal source in the next sections.

3.1. Deterministic source parameters: f0;Rd;Ee

Numerous methods exist to compute f0 from the speech
signal. In the presented experiments, the YIN method is
used (de Cheveigne and Kawahara, 2002).

To estimate the shape parameter Rd of the LF model,
the recently proposed method based on Minimum Squared
Phase with 2nd order Difference operator (MSPD2) is used
(Degottex et al., 2011a). Basically, this method first repre-
sents the speech signal using a harmonic model. Then, both
glottal and speech spectra are divided by their minimum-
phase version to retrieve their minimum-phase residuals.
Finally, a local search algorithm finds the best Rd value
which minimizes the difference between the minimum-
phase residuals (Degottex et al., 2011a; Degottex, 2010).
Obviously, other methods can be used to estimate Rd like
those estimating the glottal source based on maximum-
phase and minimum-phase separation (through complex
cepstrum or ZZT (Drugman et al., 2009a; Oppenheim
et al., 1968)) or using the IAIF method (Alku et al.,
1999). The estimation of glottal parameters is far from
straightforward and many questions remain about the
parameters range where they can be estimated in a reliable
way (Degottex, 2010). In SVLN, we therefore used
Rd 2 ½0:3; 2:5" according to our previous studies (Degottex
et al., 2011a; Degottex, 2010).

Concerning the amplitude of the glottal model Ee, when
the VUF estimate is smaller than the f0 estimate, Ee is set
to zero, defining therefore the voiced and unvoiced segments
of the analyzed signal. When the VUF is higher than f0, the
definition of Ee is actually not straightforward. Indeed, three
gains co-exist in the voice production model: Ee; rg and the
mean log amplitude of the VTF. These gains are completely
dependent on each other. If Ee and rg are multiplied by some
arbitrary value a, the VTF mean log amplitude may

Fig. 2. Schematic representation of the used model using synthetic
spectra: the glottal source model above and the full voice production
model below. The spectra of one period and multiple periods are shown in
black and gray lines, respectively.
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compensate a leading to the same gain of the observed spec-
trum (with (logðaÞ). Consequently, a constraint is neces-
sary. Here, the mean log amplitude of the VTF is fixed to
zero. The energy variation of the speech signal is thus only
modeled by the energy of the glottal source model (given
by rg and Ee). In SVLN, Ee is therefore defined from a con-
vention which implies the following two points. Firstly, no
method for Glottal Closure Instant (GCI) detection is nec-
essary. Conversely to the GSS method and ARX methods
where the time synchronization between the LF model
and the underlying glottal source (i.e. the GCIs) have to
be estimated, the proposed SVLN method needs only an
estimate of the shape parameterRd. (which can be estimated
without GCI detection as shown in (Degottex et al., 2011a)).
Secondly, the resulting computation of Ee cannot be
considered as an estimation of the actual amplitude of the
glottal pulse. The ratio between Ee and rg represents only
the ratio between noise and deterministic component.

3.2. Random source parameter: rg

Using the hypothesis of separability of the speech spec-
trum in two different frequency bands, the amplitude spec-
trum jGRdðxÞj crosses the expected amplitude of the noise
at the VUF (see Fig. 2). Since jGRdðxÞj is known when
the f0 and Rd estimates are known, the noise level rg can
be deduced from the VUF:

rg ¼ jGRdðVUFÞj &
ffiffiffi
2

p

ffiffiffiffiffiffiffiffi
p=2

p
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
twa½t"2

q ð2Þ

where jGRdðVUF Þj is the expected amplitude of the LF mod-
el at the VUF which has to be converted to the Gaussian
parameter rg: spectral amplitudes of Gaussian noise obey
a Rayleigh distribution. jGRdðVUF Þj is thus first converted
to the Rayleigh mode (1=

ffiffiffiffiffiffiffiffi
p=2

p
), then the standard devia-

tion of the Gaussian distribution in the time domain is re-

trieved from the Rayleigh mode (
ffiffiffi
2

p
) (Yeh, 2008).

Additionally, in the spectral domain, the noise level is pro-
portional to the energy of the analysis window wa½t" used to

compute SðxÞ. The normalization by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

twa½t"2
q

is there-

fore necessary. Fig. 3 illustrates estimates of source
parameters.

3.3. The estimation of the Vocal Tract Filter (VTF)

In SVLN, according to the difference of the underlying
source properties, the frequency bands below and above
the VUF are modeled using two different envelopes (see
Fig. 2). For the sake of simplicity, to estimate the VTF,
we therefore assume that the deterministic and random
components of Eq. (1) can be represented separately:

SðxÞ ¼
Hf0ðxÞ & GRdðxÞ & C!cðxÞ & LðxÞ for x < VUF

N rgðxÞ & C!cðxÞ & LðxÞ for x > VUF

(

ð3Þ

The envelopes estimated on each part of Eq. (3) are then
aligned to ensure a VTF estimate which is independent of
the nature of the source. The envelopes estimation and
the alignment is described here below.

In the deterministic band, where x <VUF, the contribu-
tion of the radiation LðxÞ and the deterministic source
GRdðxÞ are removed from SðxÞ by spectral division (see
Eq. (4)). An iterative cepstral envelope T ð:Þ (called true-
envelope, (Roebel et al., 2007; Imai and Abe, 1979)) is then
used to fit the top of the harmonics of the division result.
Note that this envelope corresponds to the expected ampli-
tude of the VTF frequency response since the top of a har-
monic is the expected amplitude of its corresponding
sinusoidal component.

T ðxÞ ¼ T SðxÞ
LðxÞ & GRdðxÞ

$ %
& 1
c

ð4Þ
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Fig. 3. An example of parameter trajectories of an American male
utterance: “Author of the danger”. The parameter is shown in black line
and the waveform in gray (which is scaled for the sake of clarity).
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where c ¼
P

twa½t"=ðfs=f0Þ stands for the number of periods
in the analysis window. This normalization is necessary
regarding to the synthesis step where the VTF is convolved
with each period of the source. The gain of the estimated
VTF has to be normalized according to the shape and
the duration of the analysis window.

In the random band, where x >VUF, SðxÞ is divided by
LðxÞ and by the crossing value jGRdðVUFÞj to ensure a con-
tinuity between the two frequency bands. The result of this
division is modeled by computing its real cepstrum Pð:Þ
truncated to a given order (discussed below). According
to the Rayleigh distribution of the spectral amplitudes of
this band, the mean log amplitude measured by Pð:Þ has
to be converted to the Rayleigh mode on a linear scale (fac-
tor e0:058 in Eq. (5) below) (Yeh, 2008). Then, the expected
amplitude is retrieved from the Rayleigh mean value
(

ffiffiffiffiffiffiffiffi
p=2

p
).

P ðxÞ ¼ P SðxÞ
LðxÞ & GRdðVUFÞ

$ %
&

ffiffiffiffiffiffiffiffi
p=2

p

c & e0:058 ð5Þ

To obtain the final VTF estimate CðxÞ, the two enve-
lopes T ðxÞ and P ðxÞ have to be aligned. T ðVUFÞ and
P ðVUFÞ cannot be perfectly equal due to their different
estimation methods. Therefore, a smooth transition has
to be ensured to avoid artifacts in the synthesis. For this
reason, the envelopes are cross-faded in the frequency
domain using a weighting function:

CðxÞ ¼ T ðxÞ & ð1( W ðxÞÞ þ PðxÞ & W ðxÞ ð6Þ

where W ðxÞ is a sigmoid function whose inflection point is
centered on VUF and the slope in the transition band is of
140 dB/kHz which has been chosen empirically. Finally,
the cepstral coefficients !c of the VTF are retrieved from
the minimum-phase cepstrum of CðxÞ to represent the
VTF with a small and meaningful set of parameters.

It is worth mentioning the three following technical
details. Firstly, concerning the order of the envelopes, it
is necessary that T ð:Þ and Pð:Þ do not fit the harmonic
structure of the observed spectrum SðxÞ. For T ð:Þ, the
optimal order 0:5 & fs=f0 is used (Roebel et al., 2007). The
same order is also used for the cepstral envelope Pð:Þ.
Indeed, although no harmonic partial appears in the fre-
quency band of the random source, sinusoidal peaks with
distance of f0 (but not multiples of f0) arise in this band
because the glottal noise is amplitude modulated by the
glottal area (Mehta and Quatieri, 2005; Hermes, 1991)
(such peaks are visible in Fig. 4 around 9 kHz). Secondly,
the division by Lð0Þ ¼ 0 has to be avoided in Eqs. (4)
and (5). Lð0Þ can be either extrapolated from LðxÞ or jx
can be replaced by 1( lejx with l close to unity. In this
work Lð0Þ has been extrapolated. Finally, the amplitude
spectrum of the observed speech signal jSðxÞj is almost per-
fectly represented by the SVLN method. Indeed, the esti-
mation of the VTF always completes the source and
radiation models in order to obtain jSðxÞj. The phase spec-
trum can however be modeled only by the LF model,

Gaussian noise and the minimum-phase property of the
VTF. Therefore, in the context of a simple encoding and
decoding of the voice (without transformation), a bias of
the Rd value implies an error of resynthesis of the phase
spectrum only. In terms of stability, this robustness related
to the shape parameter is interesting regarding the risk
incurred by the estimation of high-level descriptors like Rd.

4. The synthesis step: speech signal decoding

This section describes the synthesis of a speech utterance
given a parameters set. Small segments of stationary signals
are first synthesized and these segments are then overlap-
added to construct the whole signal. Follows, the definition
of a segment, the synthesis of its content and the final
concatenation.

4.1. Segment position and duration

In voiced parts, temporal marks mk are placed at inter-
vals according to the fundamental period 1=f0 (see
Fig. 5), one mark for each segment. The maximum excita-
tion instant te (see Fig. 1) of each LF pulse is placed at mk.
Then the starting time tk of the kth-segment is defined as
the opening instant ts of the LF model and the ending time
of this segment is the starting time of the next. In unvoiced
parts, a segment has a 5 ms duration, and its mark mk is
placed in the center, as illustrated in Fig. 5.

4.2. The noise component: filtering, modulation and
windowing

For all segments, noise is generated. To improve its nat-
uralness, the following post-processing steps are used.
Firstly, the lowest frequencies of the aspiration noise are
weaker than higher frequencies (Stevens, 1971). If the noise
is white in the voiced segments, the synthesized voice
sounds hoarse because the noise randomizes the lowest
harmonics of the deterministic component. The noise is
therefore filtered with a high-pass filter F VUF

hp ðxÞ defined
by a cutoff frequency equal to the VUF and a slope of

0 2000 4000 6000 8000 10000
−80

−60

−40

−20

0

20

40

60

80

C(ω)

S(ω)

G(ω)
G(VUF)

VUF

Frequency [Hz]

Am
pl

itu
de

 [d
B]

Fig. 4. An example of VTF estimate. The glottal model and the VTF
estimate are in black lines and the speech spectrum is in gray.
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6 dB/kHz in the transition band. Since the VUF is only
used to estimate rg and is not part of the model parame-
ters, this value is retrieved from the intersection of rg and
GRdðxÞ in the synthesis step. Secondly, the time amplitude
of the aspiration noise depends on the glottal flow and the
glottal area. If the glottal noise is not amplitude modulated
synchronously with the fundamental period, a second
source is perceived separately from the deterministic source
(Agiomyrgiannakis and Rosec, 2009; Mehta and Quatieri,
2005; Hermes, 1991). Accordingly, a modulation vRd ½t" is
built from the LF pulse as proposed by del Pozo and
Young (2008):

vRd ½t" ¼ b & gRd ½t" þ ð1( bÞ ð7Þ

where gRd ½t" is the LF pulse with voicing amplitude Av ¼ 1
and b a constant balancing the quantity of modulated and
constant noise. Here, the Rd parameter is set to the same
value as the one of the deterministic source. Then, from
informal listening of 10 different voices and their corre-
sponding resynthesis, we fixed the value b ¼ 0:75 according
to the naturalness of the resynthesis. Obviously, if these
two values were properly estimated from the observed sig-
nal, the naturalness of the synthesized noise could be im-
proved (Mehta and Quatieri, 2005).

No window is necessary to cross fade the glottal pulses
since they start and end at zero amplitude. However, the
noise is generated continuously across the signal and this
noise can have different color and amplitude between seg-
ments. For each k-segment, a window wk½t" is therefore
built with a fade-in center on tk and a fade-out center on
tkþ1 (see Fig. 5). The fade-in/out function is a Hanning half
window of duration 0:25 &minðtkþ1 ( tk; tk ( tk(1Þ. Addi-
tionally, the fade-out of wk is the complementary of the
fade-in of wkþ1 and the sum of all windows is 1 at any time
of the synthesized utterance. Once the synthesized segments
of speech are overlap-added at the end of the synthesis
step, it is therefore not necessary to normalize the result
by the sum of the windows. According to the discussion
above, the noise spectrum of the kth segment in voiced seg-
ments is synthesized by:

NkðxÞ ¼ F wk½t" & vRdk ½t" & F(1 F VUFk
hp ðxÞ & N rgk ðxÞ

& '& '
ð8Þ

where Nrgk ðxÞ is the spectrum of zero-mean Gaussian ran-
dom signal nrgk ½t" and F ð:Þ is the Fourier transform. In un-
voiced segments, the noise source reduces to:

NkðxÞ ¼ F wk½t" & nrgk ½t"ð Þ ð9Þ

4.3. The glottal pulse and the filtering components

In this last step, the deterministic source GRdk ðxÞ is
added to the noise and the VTF and radiation filters are
applied to the source:

SkðxÞ ¼ e(jxmk & GRdk ðxÞ þ NkðxÞ
! "

& C!ck ðxÞ & jx ð10Þ

where e(jxmk is a delay placing the instant te of the LF pulse
at mk and C!ck ðxÞ is the minimum-phase frequency response
of the VTF corresponding to the cepstral coefficients !ck.
The entire signal is finally constructed by successively over-
lap-adding the time segments which are retrieved through
the inverse Fourier transform of SkðxÞ. Note that the
sum of the windows wk½t" being always equal to one, it is
not necessary to use any other extra windows in this over-
lap-add process.

As a last technical detail, the analysis and synthesis steps
are not perfectly symmetric. Indeed, according to the esti-
mation of the VTF (Eqs. (4)–(6)), one may expect that
GRdk ðxÞ is low-pass filtered like Nrgk ðxÞ is high-pass fil-
tered. However, according to informal listening, we were
not able to notice any difference with or without low-pass
filtering of GRdk ðxÞ. For the sake of simplicity, this filtering
has been therefore discarded. A reason might be that the
bias introduced by GRdk ðxÞ is smooth across frequency
(GRdk ðxÞ decreasing monotonically) so as the frequencies
above VUF are only slightly increased.

5. Evaluation

Listening tests have been carried out to evaluate various
properties of SVLN compared to state of the art methods.
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Fig. 5. Example of two voiced segments followed by two unvoiced segments during the synthesis step: marks mk and starting times tk are shown with
vertical lines. Synthesized LF pulses are in dashed lines, and windows wk ½t" are in solid lines.
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Before discussing the results, for the sake of precision, we
first discuss the influence of the parameters set on the qual-
ity of SVLN and describe globally the used listening tests.

5.1. Used features

According to our experiments, irregularities of the Rd
estimate are observed whatever the used estimation method
(e.g. using MSPD2, ZZT or IAIF). Additionally, the stabil-
ity of the separation process of SVLN across adjacent
frames is linked to the stability of the Rd parameter. To
ensure a stable estimate of the VTF and avoid audible
artifacts, it is therefore necessary to remove possible erratic
values in the estimated Rd curve. We therefore filtered this
curve using a median filter. Then, using a Hanning window,
a zero-phase filter is used to smooth the steps made by the
median filtering. However, over-smoothed or erratic Rd
values as well as a lack of flexibility of the glottal model
to represent the actual shape of the glottal pulse have some
consequences. Indeed, in any method using a glottal model,
the used glottal model may not filter out properly the ampli-
tude spectrum of the actual glottal pulse during the estima-
tion of the VTF (Eq. (4) for SVLN). The spectral difference
between the actual pulse and its model therefore remains in
the estimated VTF. For example, a remaining glottal
formant tends to generate an additional erroneous low-fre-
quency resonance in transformed voices. It is therefore
important to avoid erratic behaviors and over-smoothing
of the Rd curve at the same time. Consequently, we used
a window length of 100 ms according to informal listening.
In doing so, we implicitly assume that the voice quality is
almost constant inside the duration of a single phoneme.

The VUF has also an impact on the synthesized voice. If
the VUF is underestimated, noise is generated at low
frequencies, and the synthesized voice sounds hoarse. Con-
versely, if the VUF is overestimated, the voice may sound
buzzy. The voicing decision in the time domain is equally
critical for a proper reconstruction of the transients. If a
plosive is classified voiced during the analysis step, the
source at low frequencies will be generated by the LF
model which will create a bubble-like artifact.

Finally, in the following tests, some methods have com-
mon features (e.g. f0 for STRAIGHT, GSS and SVLN). To
ensure that the estimation of these features do not influence
the results, the same data have been used across all meth-
ods. The octave errors of the f0 estimate were also cor-
rected manually. The VUF estimator is used initially to
determine the voicing decision in the time domain. A given
time is voiced if VUF> f0. To avoid that errors of the voic-
ing decision influence the results, the VUF values have
been manually corrected based on the inspection of the
speech waveform. The start and end of voiced segments
are set to the first and last glottal closure respectively
(voiced fricatives being considered as voiced). If a VUF
value was initially zero in a voiced segment, it has been
set to 4 & f0. According to informal tests, this default value
provides a satisfactory resynthesis quality.

5.2. Design of the listening tests

The listening tests have been conducted according to
crowd-sourcing using web pages. Basically, listeners are
invited to visit a web page where audio files have to be
evaluated following basic recommendations. For this
evaluation, we sent the tests to two mailing lists (AUDITORY@
lists.mcgill.ca and parole@ml.univ-avignon.
fr) and to a personal contact list of musicians and research-
ers also in audio or speech community. The first language of
the listeners are therefore mainly English or French. How-
ever, people of German, Greek and Spanish language have
also answered the tests. Web-based tests have advantages as
well as drawbacks. Compared to a local test carried in a
single place where the population is mainly made of native
speakers of one language, they allow to cover a wider
population of listeners. Nevertheless, the listening condition
of web-based tests can not be fully controlled. A controlled
context in an anechoic chamber would be mandatory to
carry out evaluation of human perception. However, the
presented study targets applications used in natural envi-
ronment. We therefore consider that some variability in
the listening conditions is interesting to, at least, avoid bias
due to the listening material (e.g. due to the headphones).
However, to ensure minimum conditions, it was also recom-
mended to use absolutely headphones or earphones. At the
end of the test, the listeners were asked if they used
headphones, earphones or loudspeakers and all answers
made using loudspeakers were discarded. Also, if any
technical problem arises with an audio file, the listener
had the possibility to indicate the problematic file and the
corresponding answer was discarded.

For any listening test (web-based or not), some con-
straints have to be respected. First, the focus of the listeners
degrades quickly after 15 min which limits the length of the
tests and thus the number of tested utterances. The duration
of the utterances were between 3 s and 5 s with a sampling
rate of 44.1 kHz and each utterance was produced by a dif-
ferent speaker in American English, French, Japanese and
Greek to ensure some speaker variability. In each test, there
were always the same number of female and male voices.
Note that the audio files used in these tests can be found
at gillesdegottex.eu/ExDegottexG2012svln.

5.3. Evaluation of resynthesis

This first test evaluates the quality of the resynthesis, the
reconstruction of the speech signal from the model param-
eters, without transformation or further modeling. Two
state of the art methods are included in this test: the Glottal
Spectral Separation (GSS) (Cabral et al., 2011, 2008; Cab-
ral, 2010) (provided by the author) and STRAIGHT
(Kawahara et al., 2001, 1999) (version V40pcode). Basi-
cally, STRAIGHT uses the standard source-filter model
where the filter is a minimum-phase spectral envelope
and the source is a weighted sum in the frequency domain
between a Dirac impulse and noise. GSS can be seen as an
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intermediate model between SVLN and STRAIGHT
because GSS uses the spectral envelope of STRAIGHT
and replace the source by the LF model, the phase spec-
trum being randomize by noise as in STRAIGHT. SVLN
also uses the LF model but, conversely to GSS, it adapts
the spectral envelope estimation to the underlying nature
of the two frequency bands above and below the VUF.

In this test, for each recording (among a total of 8 utter-
ances made of 4 languages with female and male voices),
listeners were asked to grade the quality of resynthesis
according to the recommendation ITU-R BS (Assembly,
2003): Excellent (5), Good (4), Fair (3), Poor (2), Bad (1).
Additionally, in breathiness and pitch transposition, only
the voiced segments have to be modified. The original
recording can be therefore kept unchanged in unvoiced seg-
ments. In this resynthesis test, two resynthesized audio files
were therefore proposed for each method: one version with
only the voiced segments resynthesized and another version
with the whole utterance resynthesized. Finally, to check
the consistency of the answers, the original recordings were
also added in the audio files set.

20 listeners answered the test and Fig. 6 shows the
results for each method averaging the scores among the 8
utterances. These results suggest the following two points.
Firstly, for voiced segments only, the quality of
STRAIGHT cannot be distinguished from the two others
methods according to the confidence intervals. Since
STRAIGHT will be compared to SVLN in pitch transpo-
sition in the last test of this evaluation, it ensures that the
naturalness of the transpositions will be evaluated and
the influence of the overall quality on the comparison will
be minimized. Secondly, and most importantly, the sound
quality provided by SVLN and GSS is clearly degraded
when both voiced and unvoiced segments are resynthe-
sized. Contrarily, we can not infer the same conclusion
for STRAIGHT. When resynthesizing a full utterance,
the quality provided by STRAIGHT is therefore clearly
more stable than SVLN and GSS. Compared to
STRAIGHT, the methods using a glottal model (i.e.

ARX, GSS and SVLN) introduce indeed a new problem.
In STRAIGHT, the voice source has always a flat and
unity amplitude spectrum, in both voiced and unvoiced
segments. In transients, the STRAIGHT envelope moves
therefore between voiced and unvoiced frames without
any specific adaptation of the underlying source properties.
However, using a glottal model, the amplitude spectrum of
the glottal source can change quickly inside a single analy-
sis window since a glottal pulse has a non-flat amplitude
spectrum. Ideally, the VTF estimate should be therefore
adapted within the analysis window using a non-stationary
analysis, which is not the case in SVLN or GSS. This dif-
ference between SVLN/GSS and STRAIGHT could there-
fore explain the quality difference between the full
resynthesis and the resynthesis of the voiced segments only.

Looking at the results in more details, three additional
elements can be noticed in this test. Firstly, the variance
results across the utterances is substantial. The top plot
of Fig. 7 illustrates this variability qualitatively using
different bars for each utterance (resynthesizing the voiced
segments only). Quantitatively, the bottom left plot shows
quantitatively the estimated standard-deviation of this
variance. The voice is made of elements of different nature:
periodicity, creakiness, noise, resonances, etc. which are
not balanced the same way in each voice. Since the meth-
ods do not represent each element of the voice with the
same accuracy, the quality of resynthesis can not indeed
be the same. Consequently, it is important to remember
that no systematic improvement can be inferred from the
listening tests while no method provides the same quality
for any utterance in a resynthesis test. By showing
differences of quality or preference, we show only trends,
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an average improvement for the used recordings. Secondly,
according to the bottom right plot, the variance is smaller
with SVLN across gender compared to GSS and
STRAIGHT. Whereas the three methods provide the same
quality for female voices, SVLN better reconstructs the
male utterances than the two other methods. At last but
not least, concerning the listening conditions of the test,
in top plot of Fig. 7, some confidence intervals do not over-
lap (e.g. 4th and 5th bars). A score difference therefore
exists between utterances whereas the listening conditions
can be different. Although a local test may reduce the var-
iance for each utterance, the variance across utterances will
therefore remain.

5.4. Preference test for speech synthesis based on Hidden
Markov Models (HMM)

Even though results on voice transformation are mainly
presented in this study, a preliminary study has been also
conducted about French speech synthesis using an HMM-
based synthesis system (Zen et al., 2007) (HTS version
2.1.1). The main goal of this preliminary step is to provide
useful information about the advantages and drawbacks
of SVLN in the context of statistical modeling for any other
future applications. We present the results of a preference
test which evaluated and compared the efficiency of three
encoding/decoding methods: SVLN, STRAIGHT and a
basic method using impulses train for the source in voiced
segments, Gaussian noise in unvoiced segments and ampli-
tude spectral envelope for the VTF (Zen et al., 2007)
(termed impulse-source method in the following).

For all compared methods the STRAIGHT method was
used to estimate the f0 curves and to compute the time
domain voicing. For the baseline systems (STRAIGHT
and impulse-source), the STRAIGHT method was used to
extract the mel-cepstrum and to estimate aperiodicity. f0
and aperiodicity parameters were used to generate the
mixed-excitation and the mel-cepstral coefficients using a
Mel Log Spectrum Approximation (MLSA) filter. Both
orders of cepstral and aperiodicity coefficients were 30.
For the SVLN method, in order to reduce the number of
parameters in the learning procedure, the amplitude Ee

was merged into the first cepstral coefficient of the VTF.
To keep the relative level between the deterministic and ran-
dom sources, the gain of the random source rg was there-
fore normalized by Ee. Finally, the cepstral coefficients
were encoded using a mel scale like in the baseline methods.

The set of parameters were split into several independent
streams and different configurations were tested. f0 was
modeled by a single Gaussian distribution for voiced parts,
and the voiced/unvoiced decision was taken into account
by a specific weight applied on each space of a Multi-Space
Distribution (MSD) (Tokuda et al., 2002a). Knowing that
Rd is only defined in voice segment of speech, Rd was first
included in the same MSD stream as f0, with full covari-
ance matrix in order to also take into account the correla-
tion between both parameters. Despite the fact that this

configuration is conceptually better, using a configuration
with the Rd value in the same stream as rg and !c provides
a slightly better quality according to informal listening.
Although Rd is only meaningful in voiced segments, this
parameter can technically be calculated for both voiced
and unvoiced segments. During the analysis step of SVLN,
rg is directly expressed from Rd and VUF. Moreover, !c is
also highly dependent on Rd and rg. Taking into account
these dependencies in the statistical model can therefore
play a significant role in the robustness of the synthesis.
In the formal listening test, we therefore adopted the fol-
lowing configuration:

) One single Gaussian distribution with semi-tied covari-
ance (Gales, 1999) for fRd; rg;!cg;

) One multi-space distribution (Tokuda et al., 2002a) for
f0,

where both streams include first and second time deriva-
tives of their parameters. Note that among the different
tested configurations, we also tried to model the VUF in-
stead of the noise level. However, in both cases the same
artifacts were audible according to informal listening. To
be consistent with the model, we therefore preferred to
modeled the noise level.

In order to avoid unnatural discontinuities in the pros-
ody and obtain co-articulation in a synthesized utterance,
it is necessary to take into account the context of each pho-
neme. Therefore, contextual features are used to describe
the phonetic, lexical and syntactic context of the phonemes.
These contextual features, detailed in Table 1, have been
automatically extracted from the speech recordings and
their text transcriptions using ircamAlign (Lanchantin
et al., 2008), an HMM-based segmentation system relying
on the HTK toolkit (Young, 1994) and the French phone-
tizer Lia_phon (Bechet, 2001). For each utterance of the
training set, the text was first converted into a phonetic
graph with multiple pronunciation possibilities. Then, the
best phonetic sequence was chosen according to the corre-
sponding audio file and aligned temporally with it. The
context features were finally extracted according to the
aligned text and the extracted phonetic sequence. A 5-states
left-to-right HSMM was finally used to model each contex-
tual phoneme (Zen et al., 2004).

The training procedure was similar to the one described
in (Tokuda et al., 2002b): monophones models were first
trained and then converted to context-dependent models.
Moreover, decision-tree clustering was performed accord-
ing to the extracted context features in order to obtain reli-
able model parameters. During the synthesis step of each
compared method, a parameter sequence was first gener-
ated using HTS with a constrained maximum likelihood
algorithm (Tokuda et al., 1995). The same procedure was
used for STRAIGHT and the impulse-source method using
their respective parameters.

The compared synthesis systems have been trained on a
database containing 1995 sentences (approximately 1h30 of
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speech) spoken by a French non-professional male speaker
and recorded at 16 kHz in an anechoic room. 5 utterances
were finally synthesized by each system and used as test
samples. In the preference test, the listeners were asked to
give a grade between (3 and 3 for a pair of audio files
using two different systems by answering the question
“which sound do you prefer”. Comparing each method
with each other, a total of 15 comparison pairs were eval-
uated by each listener.

14 French native listeners answered the test. Left plot of
Fig. 8 shows the preference scores of each method com-
pared to each other and the right plot shows the mean pref-
erence scores which are computed by averaging all grades
among all comparisons (þN for each grade advantaging
the method, and (N for each grade penalizing the
method). Note that the differences of the parameters
between the methods resulted in different clustering of the
context features. This may generate slight prosodic differ-
ences between the methods and may alter the evaluation.
The mean preferences (right plot) show that the speech syn-
thesized by SVLN has a preference between that of
STRAIGHT and that of the impulse-source method.
Detailed preferences (left plot) show that SVLN is pre-
ferred compared to the impulse-source method. In a con-

text of simple resynthesis, without HMM modeling,
Cabral et al. (2008) have also shown that GSS is preferred
against a synthesis without using noise in voiced segments.
The detailed preferences show also that STRAIGHT is
clearly preferred compared to SVLN. As seen in the resyn-
thesis test, STRAIGHT provides similar quality scores
between voiced and unvoiced segments conversely to
SVLN and GSS (Fig. 6). Even though a resynthesis on a
frame by frame basis may not reveal an overall instability
of the separation method, a statistical modeling is sensitive
to this stability. It seems therefore consistent that the
STRAIGHT method provides indeed a better quality in
HMM-based synthesis than SVLN. Additionally, Cabral
et al. (2011) have shown that GSS is slightly preferred to
STRAIGHT when mixing the LF model with noise in the
context of HMM synthesis. Even though the resynthesis
test shows that SVLN provides a better quality than GSS
on a frame by frame basis, GSS can be more stable in sta-
tistical modeling and thus provides a better quality in
HMM-based synthesis. Finally, Raitio et al. (2011) have
shown interesting results using a glottal separation proce-
dure which does not require any glottal model. Using their
method the preference compared to STRAIGHT can be
clearly increased. Using a more flexible model of the glottal

Table 1
Context features extracted by ircamAlign for the HMM-based speech synthesis.

Phonetic features:
) Phoneme identity (SAMPA code), and the following phonological features: vowel (length, height, fronting, rounding) consonant (type, place, voic-
ing) for the central phoneme and for its neighbors (2 before and 2 after)

Lexical and syntactic features
) Phoneme and syllable structure: position of the phoneme in its syllable; number of phonemes in the current, previous and next syllable; position of
the phoneme in the word; position of the phoneme in the phrase; nucleus of the syllable

) Word related: Part Of Speech (POS) of the word and its neighbors (1 before and 1 after); number of syllables in the current, previous and next word;
number of content words from the start and from the end of the phrase, number of non-content words up to the previous and next content word

) Phrase related: number of syllables in the phrase; number of words in the phrase; position of the phrase in the utterance
) Utterance related: number of syllables, words and phrases in the utterance
) Punctuation related: punctuation of the last phrase
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Fig. 8. Preference scores and their 95% confidence interval. Detailed preference scores of each method compared to each other to the left and mean
preference scores to the right.
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source than a glottal model, the stability of the separation
method can be indeed better. Cabral et al. (2011) remarked
instability of the separation of GSS due to the estimation
of the glottal parameters. From our experiments we also
noticed the same sensitivity of SVLN as discussed in the
introduction of this evaluation section.

5.5. Evaluation of breathiness transformation

According to Fant (1995), the Rd parameter of the LF
model is linked to the breathiness and tenseness of the
voice. A test evaluating the capability of SVLN to modify
this voice quality has been therefore conducted. Even
tough the voice quality is linked to f0 (Tooher and McKen-
na, 2003), we modified only Rd in this test in order to eval-
uate its impact on the breathiness independently of f0.
Through the voice production model of SVLN, a modifica-
tion of the Rd parameter changes the perception of both
the deterministic and random components. For example,
by decreasing Rd, the VUF is expected to increase since
Rd controls also the spectral tilt of the glottal pulse. A fre-
quency band, previously excited by noise, can so be made
of harmonics (see Fig. 9).

In this test, the listeners were asked to compare trans-
formed recordings by modifying Rd to different extents.
For example, Rd was first multiplied by 2 for one transfor-
mation and divided by 2 in another one. Then, each listener
evaluated to which extent the first is breathier than the
second. Only the voiced segments were transformed in this
test and the original signal was kept unchanged in the
unvoiced segments. 4 different transformations were com-
pared The transformations were obtained by multiplying
the Rd parameter by four different powers of 2:
2(1 ¼ 0:5; 2(1=2 * 0:71; 21=2 * 1:41 and 2. The original
recordings were also present in the test set and each listener
were therefore asked to compared 10 pairs of audio files.

After listening to the two audio files of each comparison
pairs, a grade was then selected by the listener: “+3 if the
left sound is much breathier than the right one; +2 if the
left sound is breathier than the right one; +1 if the left
sound is slightly breathier than the right one; 0 if the two
sounds are about the same or if a difference exists which
is, from the point of view of the listener, not related to
breathiness; and the same on the other side of the compar-
ison grid”. The “Mean breathiness score” of each audio file
is then computed like a mean preference score. The test was
proposed on two different web pages, one English and one
French, where two voices were used on each page, one
female and one male. 4 different recordings were therefore
used for the whole test. Also before the test, the listeners
had the possibility to listen to recorded utterances of real
speakers imitating normal and breathy voices in order to
illustrate the target effect.

To avoid one language having more weight than the
other one, we kept the results of the first 10 participants
who conducted the test for each English and French pages.
Left plot of Fig. 10 shows the mean breathiness scores
averaging the 4 voices. Globally, the breathiness of the
used voices can be clearly modified by the SVLN method.
However, it is interesting to see that the score of the origi-
nal recording is not aligned with the other scores. It is by
far evaluated as being less breathy than expected since
the original recording should have a score around 0. In a
previous publication (Degottex et al., 2011b), we have
shown that the resynthesis is fairly well aligned with the
transformed sounds on this breathiness axis. Therefore, it
seems that the SVLN method adds breathiness in the resyn-
thesis. According to Fig. 11, one can see that this effect is
mainly present in the male voices. One can note also that
the score corresponding to the factor 2 is almost 50% more
important than the score corresponding to 0.5. A simple
linear coefficient on Rd does not imply therefore a linear

Fig. 9. Example of modification of Rd using synthetic spectra. When Rd is
explicitly reduced, the VUF is implicitly raised.
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Fig. 10. Evaluation of breathiness according to a listening test. To the left,
mean breathiness scores. To the right, mean breathiness scores while
keeping a constant rg or a constant VUF.
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modification of the breathiness. Cabral et al., 2008 have
also shown that the breathiness of an utterance can be
modified using GSS. Additionally, they also found that,
by transforming a model voice, GSS increases more easily
the breathiness than tenseness.

In this test, as illustrated by Fig. 9 the VUF is modified
implicitly by the modification of Rd through the spectral
tilt. It is therefore interesting to evaluate the impact of this
implicit modification on the breathiness perception. There-
fore, within the same tests (i.e. with the same listeners), it
was asked to compare complementary pairs of transforma-
tions where the noise level rg was kept constant when mod-
ifying Rd (as assumed by the voice production model) with
transformations where the VUF was kept constant. Right
plot of Fig. 10 shows the resulting scores for the same 4
utterances. With a factor 2, which increases the breathiness,
the noise entering the low frequencies by keeping rg con-
stant plays an important role in the perceived breathiness
conversely to the case where the VUF is kept constant.
The presence of noise in low frequencies is therefore very
important in this voice quality. However, the same effect
does not appear towards tenseness. Compared to breathi-
ness, the perception of tenseness can be more related to
the glottal pulse shape. Therefore, keeping the VUF or rg

constant may not have a significant impact for transforma-
tions towards tenseness since the glottal pulse is always
modified the same way in this comparison (i.e.
Rd 0 ¼ 0:5 & Rd). Finally, Fig. 11 shows that the scores
depend clearly on the transformed voices (e.g. see the scores
corresponding to the female voices and Rd factor 2).
Indeed, each voice having different extent of breathiness,
it might be more difficult to add breathiness in a voice which
already breathy compared to another less breathy voice.

5.6. Evaluation of pitch transposition

Using a glottal model, we assumed that the voice quality
can be better preserved in voice transformation. A last test
is therefore presented in order to evaluate the quality pro-
vided by SVLN in pitch transposition. Also, since the
breathiness can be modified using SVLN, the influence of
the modification of Rd in pitch transposition is first evalu-
ated in a preliminary test.

5.6.1. Preference of breathiness in pitch transposition
In the time domain, the glottal pulse shape is always

stretched by the fundamental period. Consequently, in
the frequency domain the glottal spectrum always follows
the variation of f0. For example, if f0 is increased by 100
cents, the glottal formant is equally increased. Taking into
account the spectral shape of the glottal source in the esti-
mation of the VTF, this property will be respected using
the proposed separation procedure of SVLN. Additionally,
the voice quality is known to be correlated to f0 (Tooher
and McKenna, 2003; Henrich, 2001). The higher the pitch,
the more lax the source and thus the bigger the Rd value.
More specifically in the context of pitch transposition, a
relation between the transposition factor and Rd exists.
Accordingly, we propose to modify Rd following this sim-
ple formula:

Rd 0 ¼ 2a&T=1200 & Rd ð11Þ

where T is the transposition factor given in cents and a is a
constant which controls the modification of Rd according
to the transposition factor.

The choice of a is obviously not straightforward. To
avoid a choice based only on informal listening, the follow-
ing preliminary test has been carried out. A preference test
was used to compare pairs of transformed utterances
between a values f0; 0:5; 1; 1:5g using transpositions of
+900 cents. According to informal listening, differences
with a higher resolution than the proposed values are
hardly noticeable (e.g. between 0.25 and 0.5). Also, for
a P 1:5, the synthesized voice sounds either over-stressed
or over-lax. The test was proposed on two different web
pages for only two languages, one English and one French,
where two voices were used on each page, one female and
one male. 4 different recordings were therefore used for the
whole test. The listeners had to give their preferences about
“the naturalness of the first sound compared to the sec-
ond”, using a grade between (3 and 3. Again, only voiced
segments were transformed. For each page the results of
the first 16 listeners who conducted the test were kept
and the mean preference scores are shown in Fig. 12 for
each voice (averaging both preferences for downward and
upward transpositions). Globally, as expected from the
results of the resynthesis test, the results of this test also
vary with respect to the utterance. This simple test does
not allow obviously to conclude that transforming the Rd
parameter leads to better transpositions. The expression
(11) is too simplistic and could be the subject of a dedicated
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Fig. 11. Details of the breathiness evaluation for each voice.
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study. As a preliminary test for pitch transposition, it sup-
ports our informal listening showing that an a value
between 0 and 1.5 should be convenient. More specifically,
we used the following expression to obtain an optimal a
value from the listening test:

aH ¼
X

i

piP
jpj

& ai ð12Þ

where pi is the preference related to the factor
ai ¼ f0; 0:5; 1; 1:5g. To ensure an improvement, only ai val-
ues providing an improvement are considered in (12) (i.e.
we consider only the indices i such as pi > 0). Finally,
according to the data of the listening test and expression
(12), aH ¼ 0:4

5.6.2. Preference in pitch transposition
In this last listening test, we compared different transpo-

sition methods using a preference test. Three methods are
compared: PSOLA (Hamon et al., 1989) (implementation
from Peeters (2001) using randomization of the frequency
band above the VUF), STRAIGHT (Kawahara et al.,
1999) (version V40pcode) and the proposed SVLN
method. PSOLA is not an encoding/decoding method like
STRAIGHT and SVLN. It modifies the original signal
assuming that windows of two periods length placed on
local maxima of energy can be kept unchanged. According
to the transposition factor, the windows are then dupli-
cated (upward transposition) or decimated (downward
transposition) and placed at new time positions. In the case
of an upward transposition, the phase spectrum is random-
ized above the VUF such as the duplication of the original

periods does not create an artificial correlation and a buzi-
ness effect.

Four different transposition factors were evaluated,
+600 cents (half an octave) and +1200 cents (one octave).
In order to keep a moderate number of pairs to evaluate by
the listeners, the test was split into two web pages, one for
the downward transpositions and one for the upward
transpositions and we kept only the answers of listeners
who answered both pages. In each page, pairs of transpo-
sitions made by two different methods were proposed to
the listeners who were asked to give a grade between (3
and +3, according to the first audio file compared to the
second, based on “their preference about the naturalness
of the sounds”. 8 utterances were used (both female and
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Fig. 12. Mean preference scores across breathiness modification in pitch
transposition of +900 cents with the 95% confidence intervals.

Fig. 13. Preference scores for pitch transposition with the 95% confidence
intervals. Left plots shows the detailed preference scores for one method
compared to each other whereas right plots show the mean preference
scores averaging all scores related to each method.
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male voices in 4 languages). Only voiced segments were
transformed and the unvoiced segments were taken from
the original recordings. 21 listeners answered the two pages
of the test and the corresponding results are shown in
Fig. 13.

Globally, SVLN clearly improves the transpositions of
(1200 cents. According to informal listening, distortions
in PSOLA and STRAIGHT increase when the transposi-
tion factor decreases whereas the quality given by SVLN
seems more constant. On the one hand, the glottal model
is a constrained representation of the glottal pulse in terms
of temporal shape and spectral characteristics which are
related to know acoustic properties that a glottal source
should have. SVLN always respects these constraints what-
ever the transposition factor and may thus ensure some
basic naturalness. On the other hand, methods which does
not consider these constraints may generate a source signal
which does not have the basic properties that a glottal
source should have. About upward transpositions, the
same behavior does not appear. Globally, differences
between upward transpositions are hardly noticeable
(which has been also reported spontaneously by many lis-
teners). The only clear difference comes from the PSOLA
method whose preference is reduced for +1200 transposi-
tions. Despite the post-processing randomizing the phase
spectrum in the PSOLA method, the noise component
seems to suffer of a lack of naturalness according to infor-
mal listening. Moreover, higher the transposition, more
important this effect. For upward transpositions, it seems
therefore more important to ensure the quality of the noise
component whereas the naturalness of the glottal pulse
seems to play a more important role in the downward
transpositions.

6. Conclusions

In this article, an encoding/decoding method has been
presented, called Separation of the Vocal tract with the
Liljencrants–fant model plus Noise (SVLN). Whereas most
of the existing techniques can be applied to any pseudo-
periodic signal (e.g. vocoders, PSOLA, STRAIGHT), the
presented method aims to separate a given speech spectrum
into four parts related to voice production: a deterministic
source modeled by a glottal model, a random source, a
Vocal Tract Filter (VTF) and a radiation filter. This
method is thus dedicated to voice processing like ARX
methods and the Glottal Spectral Separation (GSS)
method. Compared to the former, the presented method
makes use of the simplicity of the source-filter model in
the spectral domain, using spectral division like GSS,
allowing to use any VTF estimation method. In terms of
speech analysis, or more specifically glottal source analysis,
spectral division therefore provides also a promising mean
by widening the possible techniques which can be used in
inverse filtering. Compared to GSS, the presented method
simplifies both representation of the deterministic and ran-
dom components using the unique Rd shape parameter of

the Liljencrants–Fant (LF) glottal model and a standard-
deviation of Gaussian noise.

A first listening test about resynthesis on a frame by
frame basis has shown that SVLN and the widely used
STRAIGHT method provide similar overall qualities
whereas SVLN seems to have a slightly better quality than
GSS. Among the methods, the evaluated quality is different
if both voiced and unvoiced segments are resynthesized or
if only the voiced segments are resynthesized (keeping the
original signal in the unvoiced segments). Using SVLN
and GSS, the quality is clearly better when resynthesizing
only the voiced segments whereas this difference can not
be established for STRAIGHT. Using glottal models, as
in SVLN and GSS, there is therefore a stability problem
between voiced and unvoiced segments. A preliminary test
using HMM-based speech synthesis led us to similar con-
clusions, the utterances synthesized by STRAIGHT being
preferred compared to that of SVLN. Nevertheless, keep-
ing the unvoiced segments unchanged, by transforming
only the voiced segments, we carried out two other listen-
ing tests to evaluate the capacity of the proposed method
to transform the breathiness and the pitch of a recording.
The first test has shown that, whereas SVLN introduces
breathiness in the resynthesis, this voice quality can be
clearly modified using the proposed method. Finally, the
last test about pitch transposition has shown that SVLN
is slightly preferred or similar to STRAIGHT and PSOLA
methods, except for downward transpositions of one
octave where it is clearly preferred. For important down-
ward transpositions, the LF glottal model constraints the
deterministic component of the glottal source in a way that
it obeys, at least, to known basic a priori on the glottal
pulse provided by many studies on glottal source analysis.
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